organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A dimeric sesquiterpene, gochnatiolide A

aDepartment of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China, and bDepartment of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
*Correspondence e-mail: wuzhijun999@sina.com

(Received 10 September 2009; accepted 17 October 2009; online 23 October 2009)

The title compound [systematic name: 5′a-hydroxy-1′,3,6,8′-tetrakis(methylene)-3a,4,5,5′,5′a,6,6′,6a,7,7′,7′a,8′,9a,9b,10′a,10′b-hexadecahydrospiro[azuleno[4,5-b]furan-9(2H),3′-[3H]benz[1,8]azuleno[4,5-b]furan]-2,2′,8,9′(1′H,3H,4′H)-tetrone acetone 0.92-solvate], C30H30O7·0.92C3H6O, is a dimeric sequiterpene formed by a cyclohexane system connecting two monomeric sesquiterpene lactone units of dehydro­zaluzanin C. It was isolated from Ainsliaea henryi.

Related literature

For similar compounds and background information, see: Chinese Materia Medica (2007[Chinese Materia Medica (2007). Chinese Materia Medica, Vol. 21, p. 643. Shanghai Science Press.]); Bohlmann & Zdero (1979[Bohlmann, F. & Zdero, C. (1979). Phytochemistry, 18, 85-98.]); Bohlmann et al. (1981[Bohlmann, F., Jakupovic, J., Robinson, H. & King, R. M. (1981). Phytochemistry, 20, 109-112.], 1982[Bohlmann, F., Adler, A., Jakupovic, J., King, R. M. & Robinson, H. (1982). Phytochemistry, 21, 1349-1355.], 1983[Bohlmann, F., Ahmed, M., Jakupovic, J., King, R. M. & Robinson, H. (1983). Phytochemistry, 22, 191-195.], 1984[Bohlmann, F., Schmeda-Hirschmann, G., Jakupovic, J., King, R. M. & Robinson, H. (1984). Phytochemistry, 23, 1989-1993..], 1986[Bohlmann, F., Zdero, C., Schmeda-Hirschmann, G., Jakupovic, J., Dominguez, X. A., King, R. M. & Robinson, H. (1986). Phytochemistry, 25, 1175-1178.]). For the pharmacological activity of a related compound, see: Wu et al. (2008[Wu, Z. J., Xu, X. K., Shen, Y. H., Su, J., Tian, J. M., Liang, S., Li, H. L., Liu, R. H. & Zhang, W. D. (2008). Org. Lett. 10, 2397-2400.]).

[Scheme 1]

Experimental

Crystal data
  • C30H30O7·0.92C3H6O

  • Mr = 555.94

  • Orthorhombic, P 21 21 21

  • a = 8.709 (4) Å

  • b = 12.652 (6) Å

  • c = 25.890 (12) Å

  • V = 2853 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.986, Tmax = 0.993

  • 11789 measured reflections

  • 2864 independent reflections

  • 1873 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 0.93

  • 2864 reflections

  • 401 parameters

  • 128 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ainsliaea henryi Diels is mainly distributed in south-west of China. The whole plant of Ainsliaea henryi has been used in Chinese folk medicine to treat cough, asthma and lumbago (Editorial committee of Chinese Mateia Medica, 2007). The chemical constituents of this plant have not been reported previously. Our chemical investigation of this plant for bioactive components resulted in the isolation of the title compound (I), which was previously obtained from the South American species, Gochnatia paniculata (Bohlmann et al., 1983) and Gochnatia polymorpha (Bohlmann et al., 1986). This kind of dimeric sesquiterpene has exhibited a remarkable inhibitory activity against the production of nitric oxide in RAW264.7 (Mouse leukaemic monocyte macrophage cell line) stimulated by LPS (Lipopolysaccharide) (Wu et al., 2008).

The molecular struture of (I) is shown in Fig.1; bond lengths and angles are within normal ranges. Gochnatiolide A is a dimeric sequiterpene which was derived from two molecules of the compound dehydrozaluzanin C. The dehydrozaluzanin C molecule is composed of a seven-membered ring and two five-membered rings (A ring atoms C1—C5; B ring atoms C1—C10; C ring atoms C6/C7/C11/C12/O4). The connections between the two dehydrozaluzanin C molecules are the bonds C2—C24, and C10—C14—C35—C24. Ring A adopts an envelope conformation, ring B adopts a badly distorted chair conformation, while ring C exhibits an envelope conformation.

Related literature top

For similar compounds and background information, see: Chinese Materia Medica (2007); Bohlmann & Zdero (1979); Bohlmann et al. (1981, 1982, 1983, 1984, 1986). For the pharmacological activity, see: Wu et al. (2008). Scheme - show solvent

Experimental top

Dry powders (5 kg) of the whole plant of Ainsliaea henryi were refluxed for 1 h with 95% ethanol (50L) three times. After removal of the ethanol under reduced pressure, the extract was suspended in water and then partitioned with petroleum ether, chloroform, ethyl acetate and n-butanol. The chloroform soluble fraction (30 g) was subjected to silica gel column chromatography using gradient elution (petroleum ether/acetone, 15:1 to 2:1, v/v). Gochnatiolide A was obtained from the fraction eluted by petroleum ether/acetone (5:1). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from petroleum ether/acetone (1:1) after two weeks at room temperature.

Refinement top

The hydroxyl H atoms attached at O2 was located in a difference Fourier map and isotropically refined using a riding model with O—H distance 0.82 Å. The remaining H atoms were placed in calculated positions with C—H distances in the range 0.93–0.98 Å. The Uĩso values were set equal to 1.5Ueq (C) for methyl H atoms and 1.5Ueq(C) for the remaining H atoms. Friedel pairs were merged before the final refinement as there is no significant anomalous dispersion. As a consequence the absolute configuration of the compound is unknown.The stereochemistry of the title compound is known from the literature (Bohlmann et al. (1983)).Its structure was elucidated by highfield 1H-NMR spectroscopy. We have also confirmed its structure by 1H, 13C, 2DNMR spectroscopy.

A number of restraints (128 in total) were required the ensure that the geometry (SADI and SAME in SHELXL-97) and displacement parameters (SIMU in SHELXL-97) retained chemically and physically reasonable values during the refinement.

Structure description top

Ainsliaea henryi Diels is mainly distributed in south-west of China. The whole plant of Ainsliaea henryi has been used in Chinese folk medicine to treat cough, asthma and lumbago (Editorial committee of Chinese Mateia Medica, 2007). The chemical constituents of this plant have not been reported previously. Our chemical investigation of this plant for bioactive components resulted in the isolation of the title compound (I), which was previously obtained from the South American species, Gochnatia paniculata (Bohlmann et al., 1983) and Gochnatia polymorpha (Bohlmann et al., 1986). This kind of dimeric sesquiterpene has exhibited a remarkable inhibitory activity against the production of nitric oxide in RAW264.7 (Mouse leukaemic monocyte macrophage cell line) stimulated by LPS (Lipopolysaccharide) (Wu et al., 2008).

The molecular struture of (I) is shown in Fig.1; bond lengths and angles are within normal ranges. Gochnatiolide A is a dimeric sequiterpene which was derived from two molecules of the compound dehydrozaluzanin C. The dehydrozaluzanin C molecule is composed of a seven-membered ring and two five-membered rings (A ring atoms C1—C5; B ring atoms C1—C10; C ring atoms C6/C7/C11/C12/O4). The connections between the two dehydrozaluzanin C molecules are the bonds C2—C24, and C10—C14—C35—C24. Ring A adopts an envelope conformation, ring B adopts a badly distorted chair conformation, while ring C exhibits an envelope conformation.

For similar compounds and background information, see: Chinese Materia Medica (2007); Bohlmann & Zdero (1979); Bohlmann et al. (1981, 1982, 1983, 1984, 1986). For the pharmacological activity, see: Wu et al. (2008). Scheme - show solvent

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of (I), viewed along the a axis.
5'a-hydroxy-1',3,6,8'-tetrakis(methylene)- 3a,4,5,5',5'a,6,6',6a,7,7',7'a,8',9a,9b,10'a,10'b-hexadecahydro spiro[azuleno[4,5-b]furan-9(2H),3'- [3H]benz[1,8]azuleno[4,5-b]furan]- 2,2',8,9'(1'H,3H,4'H)-tetrone acetone 0.92-solvate top
Crystal data top
C30H30O7·0.92C3H6OF(000) = 1182
Mr = 555.94Dx = 1.294 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1001 reflections
a = 8.709 (4) Åθ = 2.5–24.3°
b = 12.652 (6) ŵ = 0.09 mm1
c = 25.890 (12) ÅT = 294 K
V = 2853 (2) Å3Block, colourless
Z = 40.15 × 0.10 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2864 independent reflections
Radiation source: sealed tube1873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.986, Tmax = 0.993k = 1514
11789 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0673P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
2864 reflectionsΔρmax = 0.32 e Å3
401 parametersΔρmin = 0.12 e Å3
128 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0034 (11)
Primary atom site location: structure-invariant direct methods
Crystal data top
C30H30O7·0.92C3H6OV = 2853 (2) Å3
Mr = 555.94Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.709 (4) ŵ = 0.09 mm1
b = 12.652 (6) ÅT = 294 K
c = 25.890 (12) Å0.15 × 0.10 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2864 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1873 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.993Rint = 0.078
11789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047128 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.93Δρmax = 0.32 e Å3
2864 reflectionsΔρmin = 0.12 e Å3
401 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 >2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4589 (3)0.8430 (3)0.72146 (11)0.0859 (10)
O30.0138 (4)0.9219 (3)0.95361 (11)0.1010 (12)
O40.0768 (3)0.8957 (2)0.87468 (10)0.0704 (8)
O50.3123 (4)0.6000 (3)0.68984 (12)0.0936 (10)
O60.0973 (3)0.9794 (2)0.61271 (10)0.0648 (8)
O70.0044 (4)1.1419 (3)0.60213 (13)0.0963 (11)
C20.1914 (4)0.8169 (3)0.70590 (13)0.0511 (9)
C30.3257 (5)0.8549 (3)0.73401 (15)0.0609 (10)
C40.2677 (5)0.9100 (3)0.78106 (14)0.0609 (11)
C50.0944 (4)0.9005 (3)0.78111 (13)0.0523 (9)
H50.05030.97160.77910.063*
C60.0263 (4)0.8446 (3)0.82731 (13)0.0510 (9)
H60.06020.77070.82740.061*
C70.1479 (5)0.8484 (4)0.82852 (14)0.0612 (10)
H70.18160.91310.81110.073*
C110.1797 (5)0.8596 (4)0.88515 (15)0.0695 (12)
C120.0371 (5)0.8938 (4)0.91013 (17)0.0737 (12)
C130.3092 (7)0.8448 (5)0.91028 (19)0.0967 (16)
H13A0.31330.85620.94570.116*
H13B0.39650.82300.89260.116*
C80.2239 (6)0.7527 (4)0.80139 (18)0.0570 (14)0.808 (5)
H8A0.21500.69190.82400.068*0.808 (5)
H8B0.33250.76770.79740.068*0.808 (5)
C90.1589 (6)0.7225 (4)0.74833 (17)0.0584 (13)0.808 (5)
H9A0.23890.68610.72920.070*0.808 (5)
H9B0.07610.67240.75370.070*0.808 (5)
C100.0979 (5)0.8128 (4)0.71442 (17)0.0512 (11)0.808 (5)
O20.1932 (4)0.9031 (3)0.71949 (13)0.0660 (10)0.808 (5)
H20.28350.88470.71970.099*0.808 (5)
C140.0889 (5)0.7804 (5)0.65696 (19)0.0609 (17)0.808 (5)
H14A0.18300.74400.64780.073*0.808 (5)
H14B0.08330.84400.63610.073*0.808 (5)
C10.0602 (6)0.8438 (4)0.7319 (3)0.0468 (15)0.808 (5)
C8'0.263 (2)0.7876 (19)0.7957 (6)0.062 (5)*0.192 (5)
H8'10.26290.71330.80490.075*0.192 (5)
H8'20.36610.81530.80080.075*0.192 (5)
C9'0.214 (2)0.8023 (17)0.7405 (7)0.060 (3)*0.192 (5)
H9'10.21030.87780.73400.073*0.192 (5)
H9'20.29440.77360.71880.073*0.192 (5)
C10'0.0634 (19)0.7563 (13)0.7216 (7)0.051 (3)*0.192 (5)
O2'0.0418 (17)0.6540 (11)0.7438 (6)0.070 (4)*0.192 (5)
H2'0.05030.64110.74560.106*0.192 (5)
C14'0.102 (2)0.754 (3)0.6631 (7)0.062 (4)*0.192 (5)
H14C0.18850.70820.65550.074*0.192 (5)
H14D0.12200.82430.64950.074*0.192 (5)
C1'0.081 (3)0.817 (2)0.7323 (14)0.045 (4)*0.192 (5)
C150.3579 (6)0.9603 (4)0.81350 (18)0.0902 (17)
H15A0.46320.96260.80760.108*
H15B0.31650.99350.84230.108*
C210.3861 (4)0.7640 (3)0.58050 (14)0.0600 (10)
H210.47440.80790.57090.072*
C220.4426 (5)0.6809 (4)0.61919 (16)0.0775 (13)
H22A0.45970.61390.60190.093*
H22B0.53830.70340.63490.093*
C230.3214 (5)0.6699 (4)0.65901 (15)0.0693 (11)
C240.2052 (4)0.7607 (3)0.65507 (13)0.0519 (9)
C250.2759 (4)0.8337 (3)0.61335 (13)0.0511 (9)
H250.34080.88440.63180.061*
C260.1675 (4)0.8979 (3)0.58093 (12)0.0509 (9)
H260.08620.85100.56820.061*
C270.2387 (5)0.9549 (3)0.53460 (13)0.0558 (10)
H270.34690.96960.54220.067*
C280.2292 (5)0.8915 (3)0.48538 (14)0.0612 (10)
H28A0.25860.93650.45670.073*
H28B0.12320.87060.48000.073*
C290.3292 (5)0.7929 (4)0.48453 (14)0.0665 (11)
H29A0.30350.75240.45390.080*
H29B0.43550.81490.48120.080*
C300.3170 (4)0.7206 (4)0.53086 (14)0.0585 (10)
C310.1522 (5)1.0569 (3)0.53462 (16)0.0658 (11)
C320.0762 (5)1.0678 (4)0.58487 (18)0.0683 (12)
C330.1407 (7)1.1302 (4)0.49896 (19)0.0936 (16)
H33A0.08331.19080.50530.112*
H33B0.18991.12150.46740.112*
C340.2586 (5)0.6260 (4)0.5270 (2)0.0837 (14)
H34A0.22330.60170.49530.100*
H34B0.25220.58290.55610.100*
C350.0480 (5)0.7089 (3)0.64304 (13)0.0637 (11)
H35A0.04340.69200.60650.076*
H35B0.03970.64330.66220.076*
O80.3631 (7)0.4623 (4)0.8854 (2)0.146 (2)0.919 (7)
C400.3646 (10)0.6279 (6)0.9215 (3)0.133 (3)0.919 (7)
H40A0.34170.58870.95230.199*0.919 (7)
H40B0.28520.67910.91550.199*0.919 (7)
H40C0.46120.66340.92550.199*0.919 (7)
C410.3730 (8)0.5566 (5)0.8781 (3)0.104 (2)0.919 (7)
C420.3737 (11)0.6047 (7)0.8249 (3)0.153 (3)0.919 (7)
H42A0.46790.58700.80770.230*0.919 (7)
H42B0.36490.68010.82760.230*0.919 (7)
H42C0.28860.57750.80540.230*0.919 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0530 (19)0.142 (3)0.0630 (18)0.0116 (19)0.0036 (14)0.0044 (19)
O30.105 (3)0.149 (3)0.0488 (18)0.008 (2)0.0050 (17)0.024 (2)
O40.0734 (18)0.090 (2)0.0480 (15)0.0099 (17)0.0003 (14)0.0065 (15)
O50.120 (3)0.088 (2)0.072 (2)0.024 (2)0.009 (2)0.0258 (19)
O60.0758 (18)0.0645 (17)0.0542 (16)0.0076 (15)0.0078 (14)0.0041 (15)
O70.114 (3)0.071 (2)0.104 (2)0.021 (2)0.007 (2)0.0157 (19)
C20.055 (2)0.057 (2)0.041 (2)0.0060 (19)0.0039 (18)0.0063 (17)
C30.052 (2)0.083 (3)0.048 (2)0.016 (2)0.006 (2)0.008 (2)
C40.069 (3)0.070 (3)0.044 (2)0.024 (2)0.0062 (19)0.000 (2)
C50.058 (2)0.051 (2)0.048 (2)0.0062 (18)0.0026 (18)0.0016 (18)
C60.061 (2)0.049 (2)0.043 (2)0.0018 (18)0.0023 (18)0.0045 (17)
C70.059 (2)0.076 (3)0.049 (2)0.006 (2)0.0055 (19)0.002 (2)
C110.068 (3)0.088 (3)0.053 (2)0.003 (3)0.012 (2)0.003 (2)
C120.078 (3)0.088 (3)0.055 (3)0.006 (3)0.010 (2)0.006 (2)
C130.091 (4)0.128 (4)0.071 (3)0.009 (3)0.017 (3)0.014 (3)
C80.044 (3)0.074 (3)0.053 (3)0.002 (2)0.002 (2)0.002 (2)
C90.059 (3)0.065 (3)0.051 (2)0.013 (2)0.004 (2)0.004 (2)
C100.047 (2)0.056 (2)0.051 (2)0.003 (2)0.0003 (19)0.000 (2)
O20.060 (2)0.076 (2)0.062 (2)0.0098 (19)0.0026 (18)0.0013 (19)
C140.051 (3)0.084 (4)0.048 (3)0.024 (3)0.003 (2)0.002 (3)
C10.049 (3)0.047 (3)0.044 (2)0.003 (3)0.004 (2)0.005 (3)
C150.085 (3)0.119 (4)0.067 (3)0.038 (3)0.000 (3)0.014 (3)
C210.049 (2)0.078 (3)0.053 (2)0.008 (2)0.0035 (18)0.002 (2)
C220.065 (3)0.106 (4)0.061 (3)0.016 (3)0.000 (2)0.014 (2)
C230.082 (3)0.077 (3)0.048 (2)0.012 (3)0.005 (2)0.008 (2)
C240.059 (2)0.062 (2)0.0348 (18)0.0041 (19)0.0005 (17)0.0052 (17)
C250.052 (2)0.060 (2)0.041 (2)0.0039 (18)0.0013 (17)0.0007 (18)
C260.052 (2)0.058 (2)0.0423 (19)0.006 (2)0.0009 (17)0.0030 (18)
C270.059 (2)0.064 (2)0.044 (2)0.0039 (19)0.0001 (18)0.0052 (19)
C280.066 (3)0.078 (3)0.039 (2)0.008 (2)0.0010 (18)0.000 (2)
C290.068 (3)0.089 (3)0.042 (2)0.002 (3)0.002 (2)0.007 (2)
C300.052 (2)0.070 (3)0.053 (2)0.009 (2)0.0046 (19)0.006 (2)
C310.074 (3)0.067 (3)0.056 (3)0.007 (2)0.010 (2)0.008 (2)
C320.067 (3)0.062 (3)0.076 (3)0.001 (2)0.007 (2)0.007 (2)
C330.122 (4)0.074 (3)0.084 (3)0.009 (3)0.005 (3)0.017 (3)
C340.085 (3)0.083 (3)0.083 (3)0.010 (3)0.007 (3)0.014 (3)
C350.081 (3)0.067 (3)0.043 (2)0.018 (2)0.010 (2)0.0013 (19)
O80.191 (6)0.105 (4)0.143 (4)0.033 (4)0.016 (4)0.010 (3)
C400.156 (7)0.126 (6)0.117 (5)0.007 (5)0.026 (5)0.016 (5)
C410.131 (6)0.074 (4)0.106 (5)0.024 (4)0.027 (4)0.022 (4)
C420.208 (9)0.138 (7)0.114 (5)0.043 (7)0.002 (6)0.016 (5)
Geometric parameters (Å, º) top
O1—C31.214 (5)C10'—C1'1.499 (10)
O3—C121.198 (5)C10'—C14'1.554 (17)
O4—C121.351 (5)O2'—H2'0.8200
O4—C61.454 (4)C14'—C351.518 (11)
O5—C231.193 (5)C14'—H14C0.9700
O6—C321.344 (5)C14'—H14D0.9700
O6—C261.454 (4)C15—H15A0.9300
O7—C321.212 (5)C15—H15B0.9300
C2—C1'1.18 (3)C21—C301.522 (5)
C2—C11.370 (8)C21—C221.533 (6)
C2—C31.459 (5)C21—C251.556 (5)
C2—C241.500 (5)C21—H210.9800
C3—C41.492 (6)C22—C231.482 (6)
C4—C151.315 (5)C22—H22A0.9700
C4—C51.514 (5)C22—H22B0.9700
C5—C11.491 (8)C23—C241.535 (6)
C5—C61.511 (5)C24—C251.548 (5)
C5—C1'1.65 (3)C24—C351.549 (5)
C5—H50.9800C25—C261.502 (5)
C6—C71.518 (5)C25—H250.9800
C6—H60.9800C26—C271.531 (5)
C7—C111.499 (5)C26—H260.9800
C7—C8'1.525 (11)C27—C311.494 (6)
C7—C81.548 (6)C27—C281.509 (5)
C7—H70.9800C27—H270.9800
C11—C131.315 (6)C28—C291.522 (6)
C11—C121.465 (7)C28—H28A0.9700
C13—H13A0.9300C28—H28B0.9700
C13—H13B0.9300C29—C301.512 (5)
C8—C91.534 (6)C29—H29A0.9700
C8—H8A0.9700C29—H29B0.9700
C8—H8B0.9700C30—C341.304 (6)
C9—C101.536 (6)C31—C331.312 (6)
C9—H9A0.9700C31—C321.466 (6)
C9—H9B0.9700C33—H33A0.9300
C10—O21.418 (6)C33—H33B0.9300
C10—C11.502 (6)C34—H34A0.9300
C10—C141.545 (6)C34—H34B0.9300
O2—H20.8200C35—H35A0.9700
C14—C351.539 (6)C35—H35B0.9700
C14—H14A0.9700O8—C411.211 (7)
C14—H14B0.9700C40—C411.441 (8)
C8'—C9'1.505 (17)C40—H40A0.9600
C8'—H8'10.9700C40—H40B0.9600
C8'—H8'20.9700C40—H40C0.9600
C9'—C10'1.513 (16)C41—C421.507 (9)
C9'—H9'10.9700C42—H42A0.9600
C9'—H9'20.9700C42—H42B0.9600
C10'—O2'1.427 (15)C42—H42C0.9600
C12—O4—C6110.1 (3)H14C—C14'—H14D109.7
C32—O6—C26110.2 (3)C2—C1'—C10'125 (2)
C1'—C2—C3111.3 (13)C2—C1'—C5112.8 (12)
C1—C2—C3109.9 (4)C10'—C1'—C5122 (2)
C1'—C2—C24125.1 (13)C4—C15—H15A120.0
C1—C2—C24128.1 (4)C4—C15—H15B120.0
C3—C2—C24121.9 (3)H15A—C15—H15B120.0
O1—C3—C2126.3 (4)C30—C21—C22115.5 (4)
O1—C3—C4126.9 (4)C30—C21—C25114.9 (3)
C2—C3—C4106.8 (3)C22—C21—C25103.3 (3)
C15—C4—C3123.0 (4)C30—C21—H21107.6
C15—C4—C5129.3 (4)C22—C21—H21107.6
C3—C4—C5107.6 (3)C25—C21—H21107.6
C1—C5—C6111.9 (3)C23—C22—C21106.9 (3)
C1—C5—C4103.7 (4)C23—C22—H22A110.3
C6—C5—C4115.4 (3)C21—C22—H22A110.3
C6—C5—C1'106.2 (11)C23—C22—H22B110.3
C4—C5—C1'97.0 (8)C21—C22—H22B110.3
C1—C5—H5108.5H22A—C22—H22B108.6
C6—C5—H5108.5O5—C23—C22125.6 (4)
C4—C5—H5108.5O5—C23—C24123.7 (4)
C1'—C5—H5121.2C22—C23—C24110.7 (4)
O4—C6—C5109.9 (3)C2—C24—C23110.4 (3)
O4—C6—C7105.7 (3)C2—C24—C25111.2 (3)
C5—C6—C7113.2 (3)C23—C24—C25103.3 (3)
O4—C6—H6109.3C2—C24—C35107.8 (3)
C5—C6—H6109.3C23—C24—C35106.2 (3)
C7—C6—H6109.3C25—C24—C35117.6 (3)
C11—C7—C6102.0 (3)C26—C25—C24117.6 (3)
C11—C7—C8'118.1 (8)C26—C25—C21112.9 (3)
C6—C7—C8'129.2 (10)C24—C25—C21106.8 (3)
C11—C7—C8116.0 (4)C26—C25—H25106.3
C6—C7—C8113.1 (4)C24—C25—H25106.3
C11—C7—H7108.4C21—C25—H25106.3
C6—C7—H7108.4O6—C26—C25109.4 (3)
C8'—C7—H788.1O6—C26—C27106.2 (3)
C8—C7—H7108.4C25—C26—C27116.0 (3)
C13—C11—C12123.4 (4)O6—C26—H26108.4
C13—C11—C7129.0 (4)C25—C26—H26108.4
C12—C11—C7107.6 (4)C27—C26—H26108.4
O3—C12—O4120.6 (4)C31—C27—C28115.6 (3)
O3—C12—C11130.2 (4)C31—C27—C26101.7 (3)
O4—C12—C11109.1 (4)C28—C27—C26112.9 (3)
C11—C13—H13A120.0C31—C27—H27108.8
C11—C13—H13B120.0C28—C27—H27108.8
H13A—C13—H13B120.0C26—C27—H27108.8
C9—C8—C7116.3 (4)C27—C28—C29114.6 (3)
C9—C8—H8A108.2C27—C28—H28A108.6
C7—C8—H8A108.2C29—C28—H28A108.6
C9—C8—H8B108.2C27—C28—H28B108.6
C7—C8—H8B108.2C29—C28—H28B108.6
H8A—C8—H8B107.4H28A—C28—H28B107.6
C8—C9—C10117.0 (4)C30—C29—C28116.4 (3)
C8—C9—H9A108.1C30—C29—H29A108.2
C10—C9—H9A108.1C28—C29—H29A108.2
C8—C9—H9B108.1C30—C29—H29B108.2
C10—C9—H9B108.1C28—C29—H29B108.2
H9A—C9—H9B107.3H29A—C29—H29B107.3
O2—C10—C1107.3 (4)C34—C30—C29121.5 (4)
O2—C10—C9110.1 (4)C34—C30—C21123.4 (4)
C1—C10—C9109.8 (4)C29—C30—C21115.0 (4)
O2—C10—C14109.4 (4)C33—C31—C32121.5 (4)
C1—C10—C14108.3 (4)C33—C31—C27130.4 (4)
C9—C10—C14111.8 (4)C32—C31—C27108.0 (3)
C35—C14—C10114.8 (4)O7—C32—O6121.1 (4)
C35—C14—H14A108.6O7—C32—C31129.3 (4)
C10—C14—H14A108.6O6—C32—C31109.6 (4)
C35—C14—H14B108.6C31—C33—H33A120.0
C10—C14—H14B108.6C31—C33—H33B120.0
H14A—C14—H14B107.5H33A—C33—H33B120.0
C2—C1—C5111.9 (4)C30—C34—H34A120.0
C2—C1—C10123.4 (5)C30—C34—H34B120.0
C5—C1—C10124.5 (5)H34A—C34—H34B120.0
C9'—C8'—C7106.1 (13)C14'—C35—C24122.2 (12)
C9'—C8'—H8'1110.5C14—C35—C24112.9 (4)
C7—C8'—H8'1110.5C14'—C35—H35A112.3
C9'—C8'—H8'2110.5C14—C35—H35A109.0
C7—C8'—H8'2110.5C24—C35—H35A109.0
H8'1—C8'—H8'2108.7C14'—C35—H35B94.8
C8'—C9'—C10'120.5 (16)C14—C35—H35B109.0
C8'—C9'—H9'1107.2C24—C35—H35B109.0
C10'—C9'—H9'1107.2H35A—C35—H35B107.8
C8'—C9'—H9'2107.2C41—C40—H40A109.5
C10'—C9'—H9'2107.2C41—C40—H40B109.5
H9'1—C9'—H9'2106.8H40A—C40—H40B109.5
O2'—C10'—C1'106.4 (15)C41—C40—H40C109.5
O2'—C10'—C9'109.5 (14)H40A—C40—H40C109.5
C1'—C10'—C9'117.9 (17)H40B—C40—H40C109.5
O2'—C10'—C14'113.8 (16)O8—C41—C40119.4 (7)
C1'—C10'—C14'111.8 (18)O8—C41—C42122.7 (6)
C9'—C10'—C14'97.7 (11)C40—C41—C42117.4 (6)
C10'—O2'—H2'109.5C41—C42—H42A109.5
C35—C14'—C10'98.8 (11)C41—C42—H42B109.5
C35—C14'—H14C112.0H42A—C42—H42B109.5
C10'—C14'—H14C112.0C41—C42—H42C109.5
C35—C14'—H14D112.0H42A—C42—H42C109.5
C10'—C14'—H14D112.0H42B—C42—H42C109.5

Experimental details

Crystal data
Chemical formulaC30H30O7·0.92C3H6O
Mr555.94
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)8.709 (4), 12.652 (6), 25.890 (12)
V3)2853 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.986, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
11789, 2864, 1873
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 0.93
No. of reflections2864
No. of parameters401
No. of restraints128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.12

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Dr Jing-Mei Wang (Center of Analysis and Measurement, Fudan University, Shanghai 200433, China) for the the structure analysis.

References

First citationBohlmann, F., Adler, A., Jakupovic, J., King, R. M. & Robinson, H. (1982). Phytochemistry, 21, 1349–1355.  CrossRef CAS Web of Science Google Scholar
First citationBohlmann, F., Ahmed, M., Jakupovic, J., King, R. M. & Robinson, H. (1983). Phytochemistry, 22, 191–195.  CrossRef CAS Web of Science Google Scholar
First citationBohlmann, F., Jakupovic, J., Robinson, H. & King, R. M. (1981). Phytochemistry, 20, 109–112.  CrossRef CAS Web of Science Google Scholar
First citationBohlmann, F., Schmeda-Hirschmann, G., Jakupovic, J., King, R. M. & Robinson, H. (1984). Phytochemistry, 23, 1989-1993.CrossRef CAS Web of Science Google Scholar
First citationBohlmann, F. & Zdero, C. (1979). Phytochemistry, 18, 85–98.  Google Scholar
First citationBohlmann, F., Zdero, C., Schmeda-Hirschmann, G., Jakupovic, J., Dominguez, X. A., King, R. M. & Robinson, H. (1986). Phytochemistry, 25, 1175–1178.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinese Materia Medica (2007). Chinese Materia Medica, Vol. 21, p. 643. Shanghai Science Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Z. J., Xu, X. K., Shen, Y. H., Su, J., Tian, J. M., Liang, S., Li, H. L., Liu, R. H. & Zhang, W. D. (2008). Org. Lett. 10, 2397–2400.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds