organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(8-Hydr­­oxy-3-methyl-1,4-dioxo-1,4-di­hydro-2-naphth­yl)butanoic acid

aSchool of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and bKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenzfgxnu@yahoo.com

(Received 11 September 2009; accepted 1 October 2009; online 17 October 2009)

In the title compound, C15H14O5, an intramolecular O—H⋯O hydrogen bond occurs. In the crystal, the molecules form inversion dimers linked by pairs of O—H⋯O bonds, which are further linked by C—H⋯O interactions.

Related literature

For the synthesis and biological properties of the title compound, see: Salmon-Chemin et al. (2001[Salmon-Chemin, L., Buisine, E., Yardley, V., Kohler, S., Debreu, M.-A., Landry, V., Sergheraert, C., Croft, S. L., Krauth-Siegel, L. & Davioud-Charvet, E. (2001). J. Med. Chem. 44, 548-565.]). For crystal structures of similar compounds, see: Vijayalakshmi et al. (1987[Vijayalakshmi, J., Rajan, S. S. & Srinivasan, R. (1987). Acta Cryst. C43, 2375-2377.]); Ghouse & Rao (1974[Ghouse, K. M. & Rao, B. R. (1974). Z. Kristallogr. Kristallphys. Kristallchem. 139, 335-336.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O5

  • Mr = 274.26

  • Monoclinic, P 21 /n

  • a = 10.881 (3) Å

  • b = 9.973 (2) Å

  • c = 12.705 (3) Å

  • β = 106.936 (5)°

  • V = 1319.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.45 × 0.30 × 0.24 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB: Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.734, Tmax = 0.975

  • 11416 measured reflections

  • 2405 independent reflections

  • 1779 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.198

  • S = 1.09

  • 2405 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.43 3.315 (4) 160
O5—H5⋯O4ii 0.82 1.77 2.589 (3) 174
O1—H1⋯O3 0.82 1.87 2.582 (3) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+2.

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000[Rigaku/MSC & Rigaku (2000). CrystalStrucutre. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Plumbagin is a potent toxic natural product extracted from Plumbago Zeylanica L. (Plumbaginaceae), which has been used in China as well as other Asian countries for the treatment of rheumatoid arthritis, dysmenorrhea, injury by bumping, and even cancer. The title compound is a 2-substituted 1,4-naphthoquinone derivative. Its synthesis has been reported by Salmon-Chemin et al.(2001), we now report its structure. The molecular structure of the title compound is shown in Fig.1. The bond lengths and angles of the napthoquinone molecule are normal and comparable to those of plumbagin (Ghouse & Rao, 1974; Vijayalakshmi, et al., 1987). Geometric parameters for the butanoic acid group are also normal. As shown in Fig.2, a two-dimensional network is generated via intermolecular hydrogen bond interactions involving C—H···O, O—H···O.

Related literature top

For the synthesis and biological properties of the title compound, see: Salmon-Chemin et al. (2001). For crystal structures of similar compounds, see: Vijayalakshmi et al. (1987); Ghouse & Rao (1974).

Experimental top

0.2 mmol compound were dissolved in 10 ml methanol and 10 ml CH2Cl2. The resulting red solution was filtered. The filtrate was allowed to sit under ambient conditions for two weeks, dark-red block crystals were obtained.

Refinement top

The H bound to C atoms of naphthoquinone, and to C(11) as well as to C(12)—C(14) were treated as riding, with C—H distances of 0.93, 0.96 and 0.97Å with Uiso(H) = 1.2Ueq(C), respectively. Hydroxyl O—H distances were set to 0.82Å and were refined as riding with Uiso(H) = 1.5Ueq(O).

Structure description top

Plumbagin is a potent toxic natural product extracted from Plumbago Zeylanica L. (Plumbaginaceae), which has been used in China as well as other Asian countries for the treatment of rheumatoid arthritis, dysmenorrhea, injury by bumping, and even cancer. The title compound is a 2-substituted 1,4-naphthoquinone derivative. Its synthesis has been reported by Salmon-Chemin et al.(2001), we now report its structure. The molecular structure of the title compound is shown in Fig.1. The bond lengths and angles of the napthoquinone molecule are normal and comparable to those of plumbagin (Ghouse & Rao, 1974; Vijayalakshmi, et al., 1987). Geometric parameters for the butanoic acid group are also normal. As shown in Fig.2, a two-dimensional network is generated via intermolecular hydrogen bond interactions involving C—H···O, O—H···O.

For the synthesis and biological properties of the title compound, see: Salmon-Chemin et al. (2001). For crystal structures of similar compounds, see: Vijayalakshmi et al. (1987); Ghouse & Rao (1974).

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of molecules roughly down the [100] direction showing the two-dimensional network of molecules. Hydrogen bonds are shown as dashed lines.
4-(8-Hydroxy-3-methyl-1,4-dioxo-1,4-dihydro-2-naphthyl)butanoic acid top
Crystal data top
C15H14O5F(000) = 576
Mr = 274.26Dx = 1.381 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 3725 reflections
a = 10.881 (3) Åθ = 3.4–25.3°
b = 9.973 (2) ŵ = 0.10 mm1
c = 12.705 (3) ÅT = 293 K
β = 106.936 (5)°Block, dark-red
V = 1319.0 (6) Å30.45 × 0.30 × 0.24 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2405 independent reflections
Radiation source: fine-focus sealed tube1779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.4°
ω scansh = 1313
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
k = 1112
Tmin = 0.734, Tmax = 0.975l = 1315
11416 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0888P)2 + 0.5298P]
where P = (Fo2 + 2Fc2)/3
2405 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H14O5V = 1319.0 (6) Å3
Mr = 274.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.881 (3) ŵ = 0.10 mm1
b = 9.973 (2) ÅT = 293 K
c = 12.705 (3) Å0.45 × 0.30 × 0.24 mm
β = 106.936 (5)°
Data collection top
Rigaku Mercury CCD
diffractometer
2405 independent reflections
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
1779 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.975Rint = 0.038
11416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.09Δρmax = 0.19 e Å3
2405 reflectionsΔρmin = 0.25 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9902 (2)0.8451 (2)0.6287 (2)0.0868 (8)
H11.01150.80010.68510.130*
O20.7285 (3)0.3526 (3)0.4035 (2)0.0943 (9)
O31.0036 (2)0.6313 (2)0.74605 (17)0.0752 (7)
O40.9090 (2)0.1025 (2)0.90860 (19)0.0749 (7)
O51.0253 (3)0.1478 (2)1.08016 (19)0.0808 (8)
H51.04110.06741.08060.121*
C10.9241 (3)0.7683 (3)0.5446 (3)0.0619 (8)
C20.8795 (3)0.8269 (4)0.4409 (3)0.0741 (10)
H20.89640.91690.43170.089*
C30.8115 (3)0.7538 (4)0.3534 (3)0.0782 (11)
H30.78360.79400.28460.094*
C40.7827 (3)0.6200 (4)0.3646 (2)0.0665 (9)
H40.73460.57160.30400.080*
C50.8260 (2)0.5593 (3)0.4661 (2)0.0516 (7)
C60.7964 (3)0.4165 (3)0.4808 (2)0.0587 (8)
C70.8472 (3)0.3520 (3)0.5893 (2)0.0523 (7)
C80.9164 (2)0.4235 (3)0.6766 (2)0.0475 (7)
C90.9428 (3)0.5675 (3)0.6644 (2)0.0490 (7)
C100.8974 (2)0.6322 (3)0.5572 (2)0.0480 (7)
C110.8153 (3)0.2063 (3)0.5962 (3)0.0781 (10)
H11A0.88950.15970.64070.117*
H11B0.78970.16820.52370.117*
H11C0.74620.19780.62870.117*
C120.9674 (3)0.3671 (3)0.7905 (2)0.0565 (8)
H12A1.04330.41680.83030.068*
H12B0.99230.27440.78590.068*
C130.8682 (3)0.3741 (3)0.8535 (2)0.0593 (8)
H13A0.83850.46580.85310.071*
H13B0.79490.31890.81650.071*
C140.9219 (3)0.3269 (3)0.9717 (3)0.0640 (8)
H14A0.99950.37711.00630.077*
H14B0.86000.34701.01110.077*
C150.9521 (3)0.1824 (3)0.9828 (3)0.0582 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1058 (19)0.0542 (14)0.0918 (18)0.0175 (13)0.0155 (15)0.0019 (12)
O20.1062 (19)0.106 (2)0.0626 (15)0.0342 (16)0.0118 (14)0.0271 (14)
O30.0995 (17)0.0634 (13)0.0507 (12)0.0164 (12)0.0031 (12)0.0043 (10)
O40.0928 (17)0.0626 (14)0.0654 (15)0.0010 (12)0.0167 (13)0.0090 (11)
O50.1021 (18)0.0667 (15)0.0655 (15)0.0022 (14)0.0119 (13)0.0084 (11)
C10.0604 (17)0.0583 (19)0.067 (2)0.0009 (15)0.0189 (16)0.0156 (16)
C20.074 (2)0.065 (2)0.087 (3)0.0133 (17)0.030 (2)0.0290 (19)
C30.069 (2)0.106 (3)0.064 (2)0.024 (2)0.0276 (18)0.040 (2)
C40.0576 (18)0.097 (3)0.0443 (16)0.0080 (17)0.0132 (14)0.0075 (16)
C50.0471 (15)0.0657 (19)0.0428 (15)0.0011 (13)0.0143 (13)0.0042 (13)
C60.0525 (16)0.073 (2)0.0518 (17)0.0070 (15)0.0166 (14)0.0131 (15)
C70.0511 (15)0.0492 (16)0.0593 (17)0.0005 (13)0.0204 (14)0.0020 (13)
C80.0454 (14)0.0504 (16)0.0496 (15)0.0017 (12)0.0183 (12)0.0047 (12)
C90.0519 (15)0.0507 (16)0.0427 (15)0.0022 (13)0.0110 (13)0.0008 (12)
C100.0479 (15)0.0533 (16)0.0429 (15)0.0017 (12)0.0134 (12)0.0071 (12)
C110.079 (2)0.0543 (19)0.104 (3)0.0133 (17)0.031 (2)0.0053 (18)
C120.0590 (17)0.0578 (18)0.0545 (17)0.0092 (14)0.0195 (14)0.0184 (13)
C130.0690 (19)0.0570 (18)0.0561 (17)0.0093 (14)0.0247 (15)0.0090 (14)
C140.080 (2)0.060 (2)0.0567 (18)0.0069 (16)0.0276 (16)0.0067 (14)
C150.0665 (18)0.062 (2)0.0472 (16)0.0049 (15)0.0177 (14)0.0079 (14)
Geometric parameters (Å, º) top
O1—C11.341 (4)C7—C81.349 (4)
O1—H10.8200C7—C111.502 (4)
O2—C61.222 (3)C8—C91.482 (4)
O3—C91.232 (3)C8—C121.500 (4)
O4—C151.220 (4)C9—C101.457 (4)
O5—C151.307 (4)C11—H11A0.9600
O5—H50.8200C11—H11B0.9600
C1—C21.393 (4)C11—H11C0.9600
C1—C101.407 (4)C12—C131.521 (4)
C2—C31.355 (5)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.387 (5)C13—C141.520 (4)
C3—H30.9300C13—H13A0.9700
C4—C51.377 (4)C13—H13B0.9700
C4—H40.9300C14—C151.476 (4)
C5—C101.395 (4)C14—H14A0.9700
C5—C61.484 (4)C14—H14B0.9700
C6—C71.475 (4)
C1—O1—H1109.5C5—C10—C9120.0 (3)
C15—O5—H5109.5C1—C10—C9120.5 (3)
O1—C1—C2118.1 (3)C7—C11—H11A109.5
O1—C1—C10122.8 (3)C7—C11—H11B109.5
C2—C1—C10119.1 (3)H11A—C11—H11B109.5
C3—C2—C1120.4 (3)C7—C11—H11C109.5
C3—C2—H2119.8H11A—C11—H11C109.5
C1—C2—H2119.8H11B—C11—H11C109.5
C2—C3—C4121.3 (3)C8—C12—C13111.8 (2)
C2—C3—H3119.3C8—C12—H12A109.3
C4—C3—H3119.3C13—C12—H12A109.3
C5—C4—C3119.5 (3)C8—C12—H12B109.3
C5—C4—H4120.3C13—C12—H12B109.3
C3—C4—H4120.3H12A—C12—H12B107.9
C4—C5—C10120.2 (3)C14—C13—C12112.2 (2)
C4—C5—C6120.8 (3)C14—C13—H13A109.2
C10—C5—C6119.0 (2)C12—C13—H13A109.2
O2—C6—C7119.9 (3)C14—C13—H13B109.2
O2—C6—C5120.1 (3)C12—C13—H13B109.2
C7—C6—C5120.0 (2)H13A—C13—H13B107.9
C8—C7—C6120.4 (3)C15—C14—C13114.1 (3)
C8—C7—C11123.1 (3)C15—C14—H14A108.7
C6—C7—C11116.5 (3)C13—C14—H14A108.7
C7—C8—C9120.3 (2)C15—C14—H14B108.7
C7—C8—C12123.8 (3)C13—C14—H14B108.7
C9—C8—C12115.9 (2)H14A—C14—H14B107.6
O3—C9—C10120.8 (3)O4—C15—O5123.4 (3)
O3—C9—C8119.0 (2)O4—C15—C14122.6 (3)
C10—C9—C8120.2 (2)O5—C15—C14113.9 (3)
C5—C10—C1119.4 (3)
O1—C1—C2—C3179.5 (3)C7—C8—C9—C101.9 (4)
C10—C1—C2—C30.1 (5)C12—C8—C9—C10180.0 (2)
C1—C2—C3—C41.0 (5)C4—C5—C10—C10.3 (4)
C2—C3—C4—C51.2 (5)C6—C5—C10—C1178.9 (3)
C3—C4—C5—C100.5 (4)C4—C5—C10—C9179.9 (3)
C3—C4—C5—C6179.7 (3)C6—C5—C10—C90.7 (4)
C4—C5—C6—O23.0 (4)O1—C1—C10—C5178.8 (3)
C10—C5—C6—O2176.2 (3)C2—C1—C10—C50.5 (4)
C4—C5—C6—C7178.0 (3)O1—C1—C10—C90.7 (4)
C10—C5—C6—C72.8 (4)C2—C1—C10—C9179.9 (3)
O2—C6—C7—C8176.4 (3)O3—C9—C10—C5178.5 (3)
C5—C6—C7—C82.6 (4)C8—C9—C10—C51.7 (4)
O2—C6—C7—C112.5 (4)O3—C9—C10—C11.0 (4)
C5—C6—C7—C11178.5 (3)C8—C9—C10—C1178.8 (3)
C6—C7—C8—C90.2 (4)C7—C8—C12—C1385.5 (3)
C11—C7—C8—C9179.1 (3)C9—C8—C12—C1392.5 (3)
C6—C7—C8—C12177.7 (2)C8—C12—C13—C14175.7 (2)
C11—C7—C8—C121.1 (4)C12—C13—C14—C1567.6 (4)
C7—C8—C9—O3178.3 (3)C13—C14—C15—O417.6 (5)
C12—C8—C9—O30.2 (4)C13—C14—C15—O5164.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.433.315 (4)160
O5—H5···O4ii0.821.772.589 (3)174
O1—H1···O30.821.872.582 (3)145
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H14O5
Mr274.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.881 (3), 9.973 (2), 12.705 (3)
β (°) 106.936 (5)
V3)1319.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.30 × 0.24
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(REQAB: Jacobson, 1998)
Tmin, Tmax0.734, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
11416, 2405, 1779
Rint0.038
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.198, 1.09
No. of reflections2405
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC & Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.433.315 (4)160.1
O5—H5···O4ii0.821.772.589 (3)174.0
O1—H1···O30.821.872.582 (3)145.2
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y, z+2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 20861002), the 973 Plan of China (2009CB526503) and the Natural Science Foundation of Guangxi Province of China (Nos. 0429001, 0991012Z, 0991003), and the Open Foundation of the Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) for financial support.

References

First citationGhouse, K. M. & Rao, B. R. (1974). Z. Kristallogr. Kristallphys. Kristallchem. 139, 335–336.  CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku (2000). CrystalStrucutre. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationSalmon-Chemin, L., Buisine, E., Yardley, V., Kohler, S., Debreu, M.-A., Landry, V., Sergheraert, C., Croft, S. L., Krauth-Siegel, L. & Davioud-Charvet, E. (2001). J. Med. Chem. 44, 548–565.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayalakshmi, J., Rajan, S. S. & Srinivasan, R. (1987). Acta Cryst. C43, 2375–2377.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds