organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-4,4′-Di­chloro-2,2′-[azinobis(phenyl­methyl­­idyne)]diphenol

aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian,Shandong, People's Republic of China
*Correspondence e-mail: tsucjg@163.com

(Received 25 September 2009; accepted 10 October 2009; online 17 October 2009)

The title compound, C26H18Cl2N2O2, was synthesized by the reaction of (5-chloro-2-hydroxy­phen­yl)(phen­yl)methanone with hydrazine hydrate. The mol­ecule possesses a crystallographically imposed centre of symmetry at the mid-point of the N—N bond. The conformation of the mol­ecule is stabilized by an intra­molecular O—H⋯N hydrogen bond.

Related literature

For further details of the chemistry of the title compound, see: Glaser et al. (1995[Glaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449-1458.]); Hunig et al. (2000[Hunig, S., Kemmer, M. & Wenner, H. (2000). Chem. Eur. J. 6, 2618-2632.]). For similar structures, see: Kundu et al. (2005[Kundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583-m1585.]); Chang et al. (2007[Chang, J.-G., He, G.-F. & Li, Y.-F. (2007). Acta Cryst. E63, o3982.]); Kesslen et al. (1999[Kesslen, E. C., Euler, W. B. & Foxman, B. M. (1999). Chem. Mater. 11, 336-340.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18Cl2N2O2

  • Mr = 461.32

  • Orthorhombic, P b c n

  • a = 13.1622 (11) Å

  • b = 10.6184 (9) Å

  • c = 16.0671 (13) Å

  • V = 2245.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.21 × 0.19 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.960

  • 11062 measured reflections

  • 1995 independent reflections

  • 1448 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.163

  • S = 1.00

  • 1995 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.572 (3) 145

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, a number of azine compounds containing both a diimine linkage and N—N bonding have been investigated in terms of their crystallography and coordination chemistry (Kundu et al., 2005; Kesslen et al., 1999; Chang et al., 2007;). As an extension of work on the structural characterization of azine derivatives, the title compound was synthesized and its crystal structure is reported here.

In the title compound, there is a crystallographic centre of symmetry at the midpoint of the N—N bond (Fig. 1.). The molecule displays an (E, E) conformation with respect to the C7=N1 and its symmetry related c7a=N1a double bond (Fig. 1.). This configuration agrees with those commonly found in similar compounds (Glaser et al., 1995; Hunig et al., 2000). The benzene rings, C1—C6(A), C8—C13(B) make dihedral angles of 85.26 (10)°. The conformation of the molecule is stabilized by intramolecular O—H···N hydrogen bonds. (Table 1. and Fig. 1).

Related literature top

For further details of the chemistry of the title compound, see: Glaser et al. (1995); Hunig et al. (2000). For similar structures, see: Kundu et al. (2005); Chang et al. (2007); Kesslen et al. (1999).

Experimental top

An ethanol solution (50 ml) of hydrazine (0.02 mol) and (5-chloro-2-hydroxyphenyl)(phenyl)methanone (0.04 mol) was refluxed and stirred for 6 h; the mixture was cooled and the resulting solid product, was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in acetone.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H(aromatic) = 0.93 Å, O—H = 0.82 Å and with Uiso(H) =1.5Ueq(O) and 1.2Ueq(Car).

Structure description top

Recently, a number of azine compounds containing both a diimine linkage and N—N bonding have been investigated in terms of their crystallography and coordination chemistry (Kundu et al., 2005; Kesslen et al., 1999; Chang et al., 2007;). As an extension of work on the structural characterization of azine derivatives, the title compound was synthesized and its crystal structure is reported here.

In the title compound, there is a crystallographic centre of symmetry at the midpoint of the N—N bond (Fig. 1.). The molecule displays an (E, E) conformation with respect to the C7=N1 and its symmetry related c7a=N1a double bond (Fig. 1.). This configuration agrees with those commonly found in similar compounds (Glaser et al., 1995; Hunig et al., 2000). The benzene rings, C1—C6(A), C8—C13(B) make dihedral angles of 85.26 (10)°. The conformation of the molecule is stabilized by intramolecular O—H···N hydrogen bonds. (Table 1. and Fig. 1).

For further details of the chemistry of the title compound, see: Glaser et al. (1995); Hunig et al. (2000). For similar structures, see: Kundu et al. (2005); Chang et al. (2007); Kesslen et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines show intramolecular hydrogen bonds.
(E,E)-4,4'-Dichloro-2,2'-[azinobis(phenylmethylidyne)]diphenol top
Crystal data top
C26H18Cl2N2O2F(000) = 952
Mr = 461.32Dx = 1.365 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2411 reflections
a = 13.1622 (11) Åθ = 2.5–24.9°
b = 10.6184 (9) ŵ = 0.32 mm1
c = 16.0671 (13) ÅT = 295 K
V = 2245.6 (3) Å3Plate, yellow
Z = 40.21 × 0.19 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1995 independent reflections
Radiation source: fine-focus sealed tube1448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 715
Tmin = 0.925, Tmax = 0.960k = 1212
11062 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.113P)2 + 0.120P]
where P = (Fo^2^ + 2Fc^2^)/3
1995 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C26H18Cl2N2O2V = 2245.6 (3) Å3
Mr = 461.32Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 13.1622 (11) ŵ = 0.32 mm1
b = 10.6184 (9) ÅT = 295 K
c = 16.0671 (13) Å0.21 × 0.19 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1995 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1448 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.960Rint = 0.033
11062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
1995 reflectionsΔρmin = 0.41 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23969 (7)0.00971 (8)0.37894 (5)0.0751 (4)
O10.0498 (2)0.25287 (17)0.10094 (15)0.0776 (7)
H10.03360.20490.06320.116*
N10.01697 (18)0.03788 (18)0.03234 (13)0.0534 (6)
C10.0915 (2)0.1871 (2)0.16297 (18)0.0584 (8)
C20.09948 (19)0.0543 (2)0.16200 (16)0.0487 (7)
C30.1464 (2)0.0039 (2)0.22956 (15)0.0502 (7)
H30.15340.09110.23000.060*
C40.1822 (2)0.0646 (2)0.29475 (16)0.0555 (7)
C50.1737 (2)0.1941 (3)0.29588 (19)0.0671 (8)
H50.19830.24020.34080.081*
C60.1291 (3)0.2536 (3)0.2306 (2)0.0709 (9)
H60.12350.34090.23120.085*
C70.06111 (19)0.0215 (2)0.09230 (15)0.0468 (6)
C80.0749 (2)0.1609 (2)0.09250 (16)0.0503 (7)
C90.0003 (3)0.2398 (3)0.1189 (2)0.0801 (10)
H90.06090.20680.13910.096*
C100.0135 (3)0.3694 (3)0.1158 (3)0.1007 (13)
H100.03770.42300.13420.121*
C110.1022 (3)0.4180 (3)0.0857 (2)0.0905 (11)
H110.11080.50480.08270.109*
C120.1777 (3)0.3402 (3)0.0602 (2)0.0782 (10)
H120.23840.37370.04050.094*
C130.1644 (2)0.2118 (3)0.06340 (19)0.0660 (8)
H130.21640.15870.04570.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0985 (7)0.0654 (6)0.0615 (6)0.0123 (4)0.0284 (4)0.0114 (3)
O10.124 (2)0.0360 (11)0.0729 (14)0.0034 (11)0.0286 (14)0.0010 (9)
N10.0740 (15)0.0362 (11)0.0500 (12)0.0003 (10)0.0115 (10)0.0046 (9)
C10.0757 (19)0.0383 (14)0.0612 (17)0.0019 (12)0.0088 (14)0.0026 (12)
C20.0576 (15)0.0352 (12)0.0533 (14)0.0035 (11)0.0037 (11)0.0052 (11)
C30.0596 (15)0.0379 (12)0.0531 (15)0.0002 (11)0.0045 (11)0.0052 (11)
C40.0639 (16)0.0462 (14)0.0565 (15)0.0000 (12)0.0074 (13)0.0065 (12)
C50.084 (2)0.0506 (16)0.0673 (18)0.0046 (15)0.0175 (15)0.0158 (14)
C60.099 (2)0.0402 (14)0.0733 (19)0.0036 (14)0.0188 (17)0.0107 (13)
C70.0564 (15)0.0362 (13)0.0477 (13)0.0009 (10)0.0035 (11)0.0037 (10)
C80.0636 (16)0.0387 (13)0.0486 (13)0.0017 (12)0.0098 (12)0.0031 (11)
C90.080 (2)0.0472 (17)0.113 (3)0.0045 (15)0.0075 (18)0.0080 (16)
C100.112 (3)0.057 (2)0.133 (3)0.022 (2)0.006 (2)0.015 (2)
C110.128 (3)0.0418 (18)0.102 (3)0.0125 (19)0.032 (2)0.0059 (17)
C120.104 (2)0.0579 (19)0.0724 (19)0.0258 (18)0.0146 (18)0.0126 (16)
C130.0825 (19)0.0504 (16)0.0653 (17)0.0083 (14)0.0043 (15)0.0053 (13)
Geometric parameters (Å, º) top
Cl1—C41.739 (3)C6—H60.9300
O1—C11.335 (3)C7—C81.491 (4)
O1—H10.8200C8—C91.365 (4)
N1—C71.290 (3)C8—C131.378 (4)
N1—N1i1.388 (4)C9—C101.388 (4)
C1—C61.387 (4)C9—H90.9300
C1—C21.414 (4)C10—C111.365 (5)
C2—C31.394 (4)C10—H100.9300
C2—C71.469 (3)C11—C121.355 (5)
C3—C41.360 (3)C11—H110.9300
C3—H30.9300C12—C131.376 (4)
C4—C51.381 (4)C12—H120.9300
C5—C61.359 (4)C13—H130.9300
C5—H50.9300
C1—O1—H1109.5N1—C7—C8122.8 (2)
C7—N1—N1i114.9 (2)C2—C7—C8120.0 (2)
O1—C1—C6117.7 (2)C9—C8—C13119.0 (3)
O1—C1—C2122.9 (2)C9—C8—C7121.5 (3)
C6—C1—C2119.4 (3)C13—C8—C7119.5 (2)
C3—C2—C1117.8 (2)C8—C9—C10120.2 (4)
C3—C2—C7120.2 (2)C8—C9—H9119.9
C1—C2—C7122.0 (2)C10—C9—H9119.9
C4—C3—C2121.1 (2)C11—C10—C9120.0 (4)
C4—C3—H3119.5C11—C10—H10120.0
C2—C3—H3119.5C9—C10—H10120.0
C3—C4—C5121.0 (2)C12—C11—C10120.2 (3)
C3—C4—Cl1120.50 (19)C12—C11—H11119.9
C5—C4—Cl1118.5 (2)C10—C11—H11119.9
C6—C5—C4119.2 (2)C11—C12—C13120.0 (3)
C6—C5—H5120.4C11—C12—H12120.0
C4—C5—H5120.4C13—C12—H12120.0
C5—C6—C1121.5 (2)C12—C13—C8120.6 (3)
C5—C6—H6119.3C12—C13—H13119.7
C1—C6—H6119.3C8—C13—H13119.7
N1—C7—C2117.2 (2)
O1—C1—C2—C3178.7 (3)C1—C2—C7—N11.8 (4)
C6—C1—C2—C30.8 (4)C3—C2—C7—C81.7 (4)
O1—C1—C2—C70.6 (4)C1—C2—C7—C8177.6 (2)
C6—C1—C2—C7179.9 (3)N1—C7—C8—C983.9 (4)
C1—C2—C3—C40.8 (4)C2—C7—C8—C996.8 (3)
C7—C2—C3—C4179.9 (2)N1—C7—C8—C1394.4 (3)
C2—C3—C4—C50.4 (4)C2—C7—C8—C1384.9 (3)
C2—C3—C4—Cl1179.5 (2)C13—C8—C9—C100.5 (5)
C3—C4—C5—C60.2 (5)C7—C8—C9—C10177.8 (3)
Cl1—C4—C5—C6180.0 (3)C8—C9—C10—C110.4 (6)
C4—C5—C6—C10.2 (5)C9—C10—C11—C121.2 (6)
O1—C1—C6—C5179.2 (3)C10—C11—C12—C131.0 (5)
C2—C1—C6—C50.3 (5)C11—C12—C13—C80.1 (5)
N1i—N1—C7—C2179.4 (3)C9—C8—C13—C120.6 (4)
N1i—N1—C7—C80.0 (4)C7—C8—C13—C12177.7 (3)
C3—C2—C7—N1178.9 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.572 (3)145

Experimental details

Crystal data
Chemical formulaC26H18Cl2N2O2
Mr461.32
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)13.1622 (11), 10.6184 (9), 16.0671 (13)
V3)2245.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.21 × 0.19 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.925, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
11062, 1995, 1448
Rint0.033
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.163, 1.00
No. of reflections1995
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.572 (3)145.4
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (No. Y05–2–09)

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, J.-G., He, G.-F. & Li, Y.-F. (2007). Acta Cryst. E63, o3982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449–1458.  CSD CrossRef Google Scholar
First citationHunig, S., Kemmer, M. & Wenner, H. (2000). Chem. Eur. J. 6, 2618–2632.  CrossRef PubMed CAS Google Scholar
First citationKesslen, E. C., Euler, W. B. & Foxman, B. M. (1999). Chem. Mater. 11, 336–340.  Web of Science CSD CrossRef CAS Google Scholar
First citationKundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583–m1585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds