organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Amino-8-(2-bromo­phen­yl)-1,7,8,8a-tetra­hydro-3H-iso­thio­chromene-5,7,7-tricarbo­nitrile di­methyl­formamide solvate

aXuzhou Jinmao Chemical Limited Company, Xuzhou Jiangsu 221002, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou Jiangsu 221116, People's Republic of China
*Correspondence e-mail: xswang1974@yahoo.com

(Received 17 September 2009; accepted 26 September 2009; online 3 October 2009)

In the title compound, C18H13BrN4S·C3H7NO, the thio­pyran ring and the adjacent six-numbered ring adopt distorted boat conformations. The mol­ecules, lying about inversion centers, form hydrogen-bonded dimers involving one of the H atoms on the amino group with the N atom of a cyano group of an adjacent mol­ecule, resulting in a 12-membered ring system [R22(12) ring motif]. The other H atom of the amino group forms an inter­molecular hydrogen bond with the O atom of the dimethyl­formamide (DMF) mol­ecule. Another lone pair of electrons on the same carbonyl O atom of DMF mol­ecule forms a non-classical C—H⋯O inter­molecular hydrogen bond, resulting in a chain of mol­ecules.

Related literature

For the biological activity of related compounds, see: Karsten & Krisztina (2007[Karsten, K. & Krisztina, V. (2007). Synthesis, pp. 2894-2900.]); Wang et al. (1998[Wang, W. Y., Li, T. C., Milbum, R., Yates, J., Hinnant, E., Luzzio, M. J., Noble, S. A. & Attardo, G. (1998). Bioorg. Med. Chem. Lett. 8, 1579-1584.], 2006[Wang, G., Liu, J. K. & Ma, B. J. (2006). China Patent CN 1733765 A.]); Zhang et al. (2008[Zhang, L., Zhu, X. S., Zhao, B. X., Zhao, J., Zhang, Y., Zhang, S. L. & Miao, J. Y. (2008). Vasc. Pharm. 48, 63-69.]). For a related structure, see: (Mereiter et al. 2000[Mereiter, K., Gaith, A. H. & Frolich, J. (2000). Private communication (CCDC deposition number 149844). CCDC, Union Road, Cambridge, England.]). For graph-set notation, see: Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13BrN4S·C3H7NO

  • Mr = 470.39

  • Monoclinic, P 21 /c

  • a = 14.7733 (4) Å

  • b = 9.1710 (3) Å

  • c = 15.7897 (4) Å

  • β = 92.478 (2)°

  • V = 2137.28 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 296 K

  • 0.44 × 0.36 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.422, Tmax = 0.900

  • 13894 measured reflections

  • 3841 independent reflections

  • 2723 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.04

  • 3841 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O1i 0.89 (4) 1.96 (4) 2.856 (4) 178 (3)
N3—H3A⋯N4ii 0.79 (3) 2.54 (3) 3.294 (4) 162 (3)
C15—H15A⋯O1iii 0.93 2.54 3.438 (4) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Iso(thio)chromene derivatives are important and useful skeletons in organic synthesis. For example, it was reported that many isochromene derivatives displayed a wide range of biological activities, such as antiinflammatory activity (Wang et al. 2006), antitumor activity (Wang et al. 1998), antiviral activity (Karsten & Krisztina, 2007), and anti-apoptotic activity (Zhang, et al. 2008). We report here the crystal structure of the title compound, (I).

In the crystal structure of (I) (Fig. 1), the thiopyran ring adopts a distorted boat conformation: the atoms C5—C6, C8—C9 are coplanar, while the atoms C7 and S1 deviate from the plane by 0.332 (6) and -0.628 (6) Å, respectively. The adjacent six-numbered ring (C1—C6) also adopts a distorted boat conformation, with the atoms C1 and C6 deviating from the plane defined by atoms C2—C5 by 0.330 (5) and -0.404 (5) Å, respectively. The basal plane of the ring C1—C6 forms a dihedral angle of 16.5 (2) ° to the thiopyran ring and is nearly perpendicular to the benzene ring (C13—C18), forming a dihedral angle of 86.8 (1) °

The classical (N—H···O and N—H···N) and non-classical (C—H···O) inter-molecular hydrogen bonds are present in the crystal structure of (I). The molecules of (I) lying about inversion centers form hydrogen bonded dimers involving one of the hydrogen atoms (H3A) on the amino group with the atom N4 of the cyano group of an adjacent molecule, resulting in a twelve membered ring system which may be described in terms of graph set notation (Bernstein et al. 1994) as R22(12) ring motif; details are given in Table 1 and Figure 2. The other hydrogen atom (H3B) of the amino group forms an intermolecular hydrogen bond with atom O1 of the DMF molecule. An other lone pair of electrons on the same carbonyl O1 atom of DMF molecule form a non-classical intermolecular (C15—H15A···O1) hydrogen bond, thus resulting in a chain of molecules.

The crystal structure of a closely related compound has been reported (Mereiter et al. 2000).

Related literature top

For the biological activity of related compounds, see: Karsten & Krisztina (2007); Wang et al. (1998, 2006); Zhang et al. (2008). For a related structure, see: (Mereiter et al. 2000). For praph-set notation, see: Bernstein et al. (1994).

Experimental top

The title compound, (I), was prepared by the reaction of 2-bromobenzaldehyde (1 mmol, 0.185 g), malononitrile (1.2 mmol, 0.079 g) and 2-(tetrahydrothiopyran-4-ylidene)malononitrile (1 mmol, 0.164 g) in 1-butyl-3-methylimidazolium fluoroborate (20 ml) at 353 K. The single crystals suitable for X-ray diffraction were obtained by slow evaporation from a DMF solution.

Refinement top

The H atoms bonded to C atoms were included at geometrically calculated positions and in riding mode at C—H distances 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methine and methylene type H-atoms, respectively, with Uiso(H) = 1.5Ueq(methyl C-atoms) and 1.2Ueq(non-methyl C-atoms). The H-atoms bonded to N3 were allowed to refine with isotropic displacement parameters.

Structure description top

Iso(thio)chromene derivatives are important and useful skeletons in organic synthesis. For example, it was reported that many isochromene derivatives displayed a wide range of biological activities, such as antiinflammatory activity (Wang et al. 2006), antitumor activity (Wang et al. 1998), antiviral activity (Karsten & Krisztina, 2007), and anti-apoptotic activity (Zhang, et al. 2008). We report here the crystal structure of the title compound, (I).

In the crystal structure of (I) (Fig. 1), the thiopyran ring adopts a distorted boat conformation: the atoms C5—C6, C8—C9 are coplanar, while the atoms C7 and S1 deviate from the plane by 0.332 (6) and -0.628 (6) Å, respectively. The adjacent six-numbered ring (C1—C6) also adopts a distorted boat conformation, with the atoms C1 and C6 deviating from the plane defined by atoms C2—C5 by 0.330 (5) and -0.404 (5) Å, respectively. The basal plane of the ring C1—C6 forms a dihedral angle of 16.5 (2) ° to the thiopyran ring and is nearly perpendicular to the benzene ring (C13—C18), forming a dihedral angle of 86.8 (1) °

The classical (N—H···O and N—H···N) and non-classical (C—H···O) inter-molecular hydrogen bonds are present in the crystal structure of (I). The molecules of (I) lying about inversion centers form hydrogen bonded dimers involving one of the hydrogen atoms (H3A) on the amino group with the atom N4 of the cyano group of an adjacent molecule, resulting in a twelve membered ring system which may be described in terms of graph set notation (Bernstein et al. 1994) as R22(12) ring motif; details are given in Table 1 and Figure 2. The other hydrogen atom (H3B) of the amino group forms an intermolecular hydrogen bond with atom O1 of the DMF molecule. An other lone pair of electrons on the same carbonyl O1 atom of DMF molecule form a non-classical intermolecular (C15—H15A···O1) hydrogen bond, thus resulting in a chain of molecules.

The crystal structure of a closely related compound has been reported (Mereiter et al. 2000).

For the biological activity of related compounds, see: Karsten & Krisztina (2007); Wang et al. (1998, 2006); Zhang et al. (2008). For a related structure, see: (Mereiter et al. 2000). For praph-set notation, see: Bernstein et al. (1994).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability of displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagram showing the hydrogen bonds in the crystal of (I).
6-Amino-8-(2-bromophenyl)-1,7,8,8a-tetrahydro-3H-isothiochromene- 5,7,7-tricarbonitrile dimethylformamide solvate top
Crystal data top
C18H13BrN4S·C3H7NOF(000) = 960
Mr = 470.39Dx = 1.462 Mg m3
Monoclinic, P21/cMelting point = 530–532 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.7733 (4) ÅCell parameters from 4434 reflections
b = 9.1710 (3) Åθ = 2.6–22.6°
c = 15.7897 (4) ŵ = 2.04 mm1
β = 92.478 (2)°T = 296 K
V = 2137.28 (11) Å3Plate, colourless
Z = 40.44 × 0.36 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3841 independent reflections
Radiation source: fine-focus sealed tube2723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 25.2°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1417
Tmin = 0.422, Tmax = 0.900k = 910
13894 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.4516P]
where P = (Fo2 + 2Fc2)/3
3841 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H13BrN4S·C3H7NOV = 2137.28 (11) Å3
Mr = 470.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7733 (4) ŵ = 2.04 mm1
b = 9.1710 (3) ÅT = 296 K
c = 15.7897 (4) Å0.44 × 0.36 × 0.05 mm
β = 92.478 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3841 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2723 reflections with I > 2σ(I)
Tmin = 0.422, Tmax = 0.900Rint = 0.032
13894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
3841 reflectionsΔρmin = 0.23 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.26620 (2)0.56202 (4)0.85086 (2)0.06278 (16)
S10.08662 (5)0.75087 (9)0.66332 (5)0.0568 (2)
C90.08406 (19)0.4522 (3)0.65402 (18)0.0437 (7)
H9A0.11630.36540.64810.052*
C10.15871 (17)0.5338 (3)0.66735 (17)0.0353 (6)
H1A0.15050.49010.72310.042*
C50.00049 (18)0.4509 (3)0.62871 (16)0.0347 (6)
C60.06373 (18)0.5807 (3)0.63235 (17)0.0361 (6)
H6A0.06940.61790.57460.043*
C40.03938 (18)0.3190 (3)0.59218 (15)0.0341 (6)
N30.1653 (2)0.1753 (3)0.54913 (17)0.0465 (7)
C20.19932 (18)0.4123 (3)0.61042 (17)0.0347 (6)
C100.02003 (18)0.2040 (3)0.56411 (17)0.0400 (7)
C30.12949 (18)0.2955 (3)0.58223 (16)0.0351 (6)
C110.2753 (2)0.3418 (3)0.66002 (19)0.0447 (7)
N40.06658 (17)0.1117 (3)0.53989 (18)0.0582 (7)
C120.2385 (2)0.4739 (3)0.5331 (2)0.0428 (7)
C130.22316 (18)0.6621 (3)0.68104 (17)0.0379 (6)
C180.27173 (19)0.6886 (3)0.75675 (17)0.0431 (7)
C70.02957 (19)0.7038 (3)0.6874 (2)0.0506 (8)
H7A0.06700.78930.67990.061*
H7B0.03610.67490.74650.061*
N10.2686 (2)0.5194 (3)0.47443 (19)0.0646 (8)
N20.3323 (2)0.2913 (3)0.69975 (19)0.0716 (8)
C140.2323 (2)0.7653 (3)0.6164 (2)0.0489 (8)
H14A0.20020.75270.56500.059*
C80.1330 (2)0.5780 (3)0.6909 (2)0.0555 (8)
H8A0.13090.56870.75220.067*
H8B0.19610.57450.67130.067*
C150.2877 (2)0.8846 (3)0.6273 (2)0.0628 (9)
H15A0.29390.94980.58290.075*
C170.3260 (2)0.8109 (4)0.7679 (2)0.0633 (9)
H17A0.35700.82700.81960.076*
C160.3338 (3)0.9082 (4)0.7027 (3)0.0738 (11)
H16A0.37040.99010.70990.089*
O10.65268 (16)0.8365 (3)0.50459 (17)0.0758 (7)
N50.53153 (19)0.7245 (3)0.55611 (19)0.0675 (8)
C190.6160 (2)0.7654 (4)0.5584 (3)0.0671 (10)
H19A0.65170.73760.60560.081*
C200.4938 (3)0.6366 (6)0.6229 (3)0.1171 (17)
H20A0.53990.61790.66620.176*
H20B0.47210.54580.59950.176*
H20C0.44450.68820.64690.176*
C210.4730 (3)0.7652 (6)0.4850 (3)0.1229 (18)
H21A0.50640.82200.44600.184*
H21B0.42330.82180.50440.184*
H21C0.45010.67900.45710.184*
H3A0.131 (2)0.119 (3)0.5268 (18)0.042 (9)*
H3B0.222 (3)0.169 (4)0.533 (2)0.074 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0733 (3)0.0739 (3)0.0399 (2)0.01304 (18)0.01097 (16)0.00090 (16)
S10.0557 (5)0.0529 (5)0.0613 (5)0.0176 (4)0.0045 (4)0.0084 (4)
C90.0404 (18)0.0459 (17)0.0447 (17)0.0014 (14)0.0006 (14)0.0004 (13)
C10.0387 (15)0.0341 (15)0.0329 (15)0.0012 (12)0.0014 (12)0.0010 (12)
C50.0372 (16)0.0374 (16)0.0289 (14)0.0018 (12)0.0060 (12)0.0021 (11)
C60.0403 (16)0.0359 (16)0.0317 (15)0.0042 (12)0.0025 (12)0.0003 (12)
C40.0368 (16)0.0320 (14)0.0333 (14)0.0021 (12)0.0014 (12)0.0026 (12)
N30.0385 (16)0.0382 (16)0.0624 (18)0.0015 (13)0.0031 (14)0.0120 (13)
C20.0353 (15)0.0323 (15)0.0359 (15)0.0021 (12)0.0037 (12)0.0026 (12)
C100.0356 (16)0.0396 (17)0.0450 (17)0.0027 (14)0.0039 (13)0.0003 (13)
C30.0416 (17)0.0286 (15)0.0343 (15)0.0002 (12)0.0055 (12)0.0018 (12)
C110.0474 (18)0.0373 (17)0.0487 (18)0.0025 (14)0.0066 (14)0.0090 (14)
N40.0469 (16)0.0502 (16)0.077 (2)0.0109 (14)0.0022 (14)0.0160 (14)
C120.0422 (17)0.0393 (17)0.0467 (19)0.0041 (13)0.0005 (15)0.0043 (14)
C130.0391 (16)0.0300 (15)0.0444 (16)0.0005 (12)0.0024 (13)0.0013 (13)
C180.0443 (17)0.0378 (16)0.0468 (17)0.0017 (13)0.0022 (14)0.0030 (13)
C70.0465 (18)0.0455 (17)0.059 (2)0.0053 (14)0.0028 (15)0.0130 (15)
N10.075 (2)0.0656 (19)0.0541 (18)0.0172 (15)0.0148 (16)0.0007 (15)
N20.070 (2)0.0647 (19)0.077 (2)0.0193 (16)0.0305 (16)0.0106 (16)
C140.0499 (19)0.0363 (17)0.0597 (19)0.0021 (14)0.0066 (15)0.0070 (15)
C80.0440 (18)0.066 (2)0.057 (2)0.0067 (15)0.0035 (15)0.0056 (16)
C150.063 (2)0.0366 (18)0.089 (3)0.0007 (17)0.005 (2)0.0175 (18)
C170.060 (2)0.053 (2)0.076 (2)0.0118 (17)0.0147 (18)0.0157 (19)
C160.071 (3)0.040 (2)0.109 (3)0.0164 (17)0.012 (2)0.004 (2)
O10.0585 (16)0.0812 (18)0.0890 (19)0.0077 (13)0.0197 (14)0.0008 (15)
N50.0437 (17)0.084 (2)0.075 (2)0.0016 (15)0.0046 (15)0.0082 (17)
C190.054 (2)0.074 (3)0.073 (3)0.0110 (19)0.0049 (19)0.013 (2)
C200.099 (4)0.121 (4)0.135 (4)0.020 (3)0.041 (3)0.047 (3)
C210.074 (3)0.190 (5)0.103 (4)0.014 (3)0.022 (3)0.025 (4)
Geometric parameters (Å, º) top
Br1—C181.890 (3)C13—C181.389 (4)
S1—C81.788 (3)C13—C141.402 (4)
S1—C71.795 (3)C18—C171.385 (4)
C9—C51.328 (4)C7—H7A0.9700
C9—C81.494 (4)C7—H7B0.9700
C9—H9A0.9300C14—C151.372 (4)
C1—C131.523 (4)C14—H14A0.9300
C1—C61.546 (4)C8—H8A0.9700
C1—C21.568 (4)C8—H8B0.9700
C1—H1A0.9800C15—C161.363 (5)
C5—C41.468 (4)C15—H15A0.9300
C5—C61.512 (4)C17—C161.371 (5)
C6—C71.525 (4)C17—H17A0.9300
C6—H6A0.9800C16—H16A0.9300
C4—C31.364 (4)O1—C191.216 (4)
C4—C101.431 (4)N5—C191.302 (4)
N3—C31.339 (4)N5—C211.436 (5)
N3—H3A0.79 (3)N5—C201.457 (5)
N3—H3B0.89 (4)C19—H19A0.9300
C2—C121.485 (4)C20—H20A0.9600
C2—C111.488 (4)C20—H20B0.9600
C2—C31.539 (4)C20—H20C0.9600
C10—N41.145 (3)C21—H21A0.9600
C11—N21.128 (4)C21—H21B0.9600
C12—N11.126 (4)C21—H21C0.9600
C8—S1—C796.21 (14)C6—C7—S1113.2 (2)
C5—C9—C8127.0 (3)C6—C7—H7A108.9
C5—C9—H9A116.5S1—C7—H7A108.9
C8—C9—H9A116.5C6—C7—H7B108.9
C13—C1—C6112.8 (2)S1—C7—H7B108.9
C13—C1—C2112.2 (2)H7A—C7—H7B107.7
C6—C1—C2110.9 (2)C15—C14—C13121.5 (3)
C13—C1—H1A106.8C15—C14—H14A119.2
C6—C1—H1A106.8C13—C14—H14A119.2
C2—C1—H1A106.8C9—C8—S1113.1 (2)
C9—C5—C4121.0 (2)C9—C8—H8A109.0
C9—C5—C6124.7 (2)S1—C8—H8A109.0
C4—C5—C6114.3 (2)C9—C8—H8B109.0
C5—C6—C7112.7 (2)S1—C8—H8B109.0
C5—C6—C1110.2 (2)H8A—C8—H8B107.8
C7—C6—C1108.6 (2)C16—C15—C14120.6 (3)
C5—C6—H6A108.4C16—C15—H15A119.7
C7—C6—H6A108.4C14—C15—H15A119.7
C1—C6—H6A108.4C16—C17—C18119.9 (3)
C3—C4—C10115.9 (2)C16—C17—H17A120.1
C3—C4—C5125.2 (2)C18—C17—H17A120.1
C10—C4—C5119.0 (2)C15—C16—C17119.8 (3)
C3—N3—H3A117 (2)C15—C16—H16A120.1
C3—N3—H3B124 (2)C17—C16—H16A120.1
H3A—N3—H3B115 (3)C19—N5—C21119.4 (3)
C12—C2—C11106.6 (2)C19—N5—C20122.4 (4)
C12—C2—C3107.9 (2)C21—N5—C20118.2 (3)
C11—C2—C3109.3 (2)O1—C19—N5126.2 (4)
C12—C2—C1111.9 (2)O1—C19—H19A116.9
C11—C2—C1107.8 (2)N5—C19—H19A116.9
C3—C2—C1113.1 (2)N5—C20—H20A109.5
N4—C10—C4178.4 (3)N5—C20—H20B109.5
N3—C3—C4125.4 (3)H20A—C20—H20B109.5
N3—C3—C2114.5 (2)N5—C20—H20C109.5
C4—C3—C2120.1 (2)H20A—C20—H20C109.5
N2—C11—C2177.7 (3)H20B—C20—H20C109.5
N1—C12—C2179.4 (3)N5—C21—H21A109.5
C18—C13—C14116.4 (2)N5—C21—H21B109.5
C18—C13—C1123.6 (2)H21A—C21—H21B109.5
C14—C13—C1119.9 (2)N5—C21—H21C109.5
C17—C18—C13121.7 (3)H21A—C21—H21C109.5
C17—C18—Br1116.2 (2)H21B—C21—H21C109.5
C13—C18—Br1122.1 (2)
C8—C9—C5—C4179.0 (3)C11—C2—C3—C4133.3 (3)
C8—C9—C5—C60.4 (5)C1—C2—C3—C413.2 (3)
C9—C5—C6—C713.9 (4)C12—C2—C11—N2121 (9)
C4—C5—C6—C7167.4 (2)C3—C2—C11—N2123 (9)
C9—C5—C6—C1135.4 (3)C1—C2—C11—N21 (9)
C4—C5—C6—C146.0 (3)C11—C2—C12—N140 (33)
C13—C1—C6—C5174.2 (2)C3—C2—C12—N177 (33)
C2—C1—C6—C558.9 (3)C1—C2—C12—N1158 (100)
C13—C1—C6—C750.4 (3)C6—C1—C13—C18127.9 (3)
C2—C1—C6—C7177.3 (2)C2—C1—C13—C18106.0 (3)
C9—C5—C4—C3164.3 (3)C6—C1—C13—C1448.9 (3)
C6—C5—C4—C317.0 (4)C2—C1—C13—C1477.3 (3)
C9—C5—C4—C1015.7 (4)C14—C13—C18—C170.3 (4)
C6—C5—C4—C10163.0 (2)C1—C13—C18—C17176.5 (3)
C13—C1—C2—C1247.4 (3)C14—C13—C18—Br1179.3 (2)
C6—C1—C2—C1279.8 (3)C1—C13—C18—Br12.4 (4)
C13—C1—C2—C1169.6 (3)C5—C6—C7—S149.2 (3)
C6—C1—C2—C11163.2 (2)C1—C6—C7—S1171.53 (19)
C13—C1—C2—C3169.4 (2)C8—S1—C7—C662.6 (2)
C6—C1—C2—C342.2 (3)C18—C13—C14—C151.1 (4)
C3—C4—C10—N448 (11)C1—C13—C14—C15178.1 (3)
C5—C4—C10—N4131 (11)C5—C9—C8—S122.8 (4)
C10—C4—C3—N30.2 (4)C7—S1—C8—C947.3 (3)
C5—C4—C3—N3179.8 (3)C13—C14—C15—C161.8 (5)
C10—C4—C3—C2179.9 (2)C13—C18—C17—C161.1 (5)
C5—C4—C3—C20.1 (4)Br1—C18—C17—C16179.9 (3)
C12—C2—C3—N369.1 (3)C14—C15—C16—C171.0 (5)
C11—C2—C3—N346.5 (3)C18—C17—C16—C150.4 (5)
C1—C2—C3—N3166.6 (2)C21—N5—C19—O10.4 (6)
C12—C2—C3—C4111.2 (3)C20—N5—C19—O1178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.89 (4)1.96 (4)2.856 (4)178 (3)
N3—H3A···N4ii0.79 (3)2.54 (3)3.294 (4)162 (3)
C15—H15A···O1iii0.932.543.438 (4)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H13BrN4S·C3H7NO
Mr470.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.7733 (4), 9.1710 (3), 15.7897 (4)
β (°) 92.478 (2)
V3)2137.28 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.44 × 0.36 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.422, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
13894, 3841, 2723
Rint0.032
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.04
No. of reflections3841
No. of parameters270
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.89 (4)1.96 (4)2.856 (4)178 (3)
N3—H3A···N4ii0.79 (3)2.54 (3)3.294 (4)162 (3)
C15—H15A···O1iii0.932.543.438 (4)161.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

We are grateful to the Natural Science Foundation (08KJD150019) and the Qing Lan Project (08QLT001) of the Jiangsu Education Committee for financial support.

References

First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 431–507. New York: VCH.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarsten, K. & Krisztina, V. (2007). Synthesis, pp. 2894–2900.  Google Scholar
First citationMereiter, K., Gaith, A. H. & Frolich, J. (2000). Private communication (CCDC deposition number 149844). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W. Y., Li, T. C., Milbum, R., Yates, J., Hinnant, E., Luzzio, M. J., Noble, S. A. & Attardo, G. (1998). Bioorg. Med. Chem. Lett. 8, 1579–1584.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, G., Liu, J. K. & Ma, B. J. (2006). China Patent CN 1733765 A.  Google Scholar
First citationZhang, L., Zhu, X. S., Zhao, B. X., Zhao, J., Zhang, Y., Zhang, S. L. & Miao, J. Y. (2008). Vasc. Pharm. 48, 63–69.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds