organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(SS,2S,3R)-2-(2-Methyl­propane-2-sulfin­amido)-3-phenyl­butyro­nitrile

aPhilipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
*Correspondence e-mail: klaus.harms@chemie.uni-marburg.de

(Received 25 September 2009; accepted 9 October 2009; online 17 October 2009)

The absolute configuration has been determined for the title compound, C14H20N2OS. Inter­molecular N—H⋯O hydrogen bonds are observed in the crystal packing, forming infinitive one-dimensional chains with the base vector [100].

Related literature

For uses of tert-butane­sulfinimines, see: Ferreira et al. (2009[Ferreira, F., Botuha, C., Chemla, F. & Peréz-Luna, A. (2009). Chem. Soc. Rev. 38, 1162-1186.]). For asymmetric Strecker reactions utilizing this auxiliary, see: Davis et al. (1994[Davis, F. A., Reddy, R. E. & Portonovo, P. S. (1994). Tetrahedron Lett. 35, 9351-9354.]); Li et al. (2003[Li, B.-F., Yuan, K., Zhang, M.-J., Wu, H., Dai, L.-X., Wang, Q. R. & Hou, X.-L. (2003). J. Org. Chem. 68, 6264-6267.]). For the mannopeptimycin gene cluster, see: Magarvey et al. (2006[Magarvey, N. A., Haltli, B., He, M., Greenstein, M. & Hucul, J. A. (2006). Antimicrob. Agents Chemother. 50, 2167-2177.]). For a related structure, see: Harms et al. (2009[Harms, K., Marsch, M., Oberthür, M. & Schüler, P. (2009). Acta Cryst. E65, o2742.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N2OS

  • Mr = 264.38

  • Orthorhombic, P 21 21 21

  • a = 8.7892 (3) Å

  • b = 8.7967 (4) Å

  • c = 18.5217 (7) Å

  • V = 1432.02 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.36 × 0.18 × 0.15 mm

Data collection
  • STOE IPDS II diffractometer

  • Absorption correction: none

  • 22029 measured reflections

  • 3031 independent reflections

  • 2624 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.064

  • S = 0.92

  • 3031 reflections

  • 244 parameters

  • All H-atom parameters refined

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1272 Friedel pairs

  • Flack parameter: 0.02 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O1i 0.89 (2) 2.167 (19) 2.9511 (18) 146.5 (18)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2004 (Burla et al, 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Chiral sulfinimines have proven to be powerful and versatile precursors for the synthesis of nonproteinogenic amino acids (Ferreira et al., 2008). They allow the stereoselective introduction of cyanide therefore representing an asymmetric modification of the Strecker reaction (Davis et al., 1994); Li et al., 2003). We have synthesized the title compound, (I), that can be hydrolyzed to give (2S,3R)-β-methylphenylalanine which is of practical use as reference substance in the investigation of the methyltransferase present in the mannopeptimycin gene cluster (Magarvey et al., 2006). In this paper we report the crystal structure and absolute configuration of (I).

The molecular structure of (I) is presented in Fig. 1. The structure exhibits intermolecular N—H···O hydrogen bonds [H···O = 2.167 (19) Å] resulting in infinitive one dimensional chains with the base vector [1 0 0] (details have have been provided in Table 1 and Fig. 2).

The crystal structure and absolute configuration of a closely related compound has just been reported (Harms et al., 2009).

Related literature top

For uses of tert-butanesulfinimines, see: Ferreira et al. (2009). For asymmetric Strecker reactions utilizing this auxiliary, see: Davis et al. (1994); Li et al. (2003). For the mannopeptimycin gene cluster, see: Magarvey et al. (2006). For a related structure, see: Harms et al. (2009).

Experimental top

Trimethylsilyl cyanide (TMSCN) (706 µL, 5.64 mmol) was added dropwise to a solution of (SS)-(2-phenylpropyliden)-2-methyl-2-propansulfinylimin (1.12 g, 4.70 mmol) and CsF (858 mg, 5.64 mmol) in 50 ml n-hexane at 240 K. The mixture was stirred at this temperature for 14 h and subsequently quenched with semisaturated aqueous NH4Cl solution. Extraction with EtOAc (2×50 ml) and drying of the combined organic phases (MgSO4) yielded a crude mixture of 3S/3R epimers. Crystallization from petrolether/EtOAc yielded 370 mg (1.41 mmol, 35%) of a 1:1 mixture of the diastereomers. Flash column chromatography of the mother liquor yielded 80 mg (303 mmol, 6%) of the pure 3S isomer, which had a slightly higher Rf-value (Rf= 0.30 in petrol ether/EtOAc 2:1) than the 3R isomer of which 60 mg (227 mmol, 5%) could be isolated. The remaining fractions afforded 400 mg (1.53 mmol, 32%) of a roughly 1:1 mixture of the epimers. (SS,2S,3R)-(2-Methylpropansulfinyl)-2-amino-3-phenylbutyronitril was crystallized from petrol ether/THF.

Refinement top

H atoms were located in the difference Fourier map and all H atom parameters were allowed to refine with isotropic displacement parameters.

Structure description top

Chiral sulfinimines have proven to be powerful and versatile precursors for the synthesis of nonproteinogenic amino acids (Ferreira et al., 2008). They allow the stereoselective introduction of cyanide therefore representing an asymmetric modification of the Strecker reaction (Davis et al., 1994); Li et al., 2003). We have synthesized the title compound, (I), that can be hydrolyzed to give (2S,3R)-β-methylphenylalanine which is of practical use as reference substance in the investigation of the methyltransferase present in the mannopeptimycin gene cluster (Magarvey et al., 2006). In this paper we report the crystal structure and absolute configuration of (I).

The molecular structure of (I) is presented in Fig. 1. The structure exhibits intermolecular N—H···O hydrogen bonds [H···O = 2.167 (19) Å] resulting in infinitive one dimensional chains with the base vector [1 0 0] (details have have been provided in Table 1 and Fig. 2).

The crystal structure and absolute configuration of a closely related compound has just been reported (Harms et al., 2009).

For uses of tert-butanesulfinimines, see: Ferreira et al. (2009). For asymmetric Strecker reactions utilizing this auxiliary, see: Davis et al. (1994); Li et al. (2003). For the mannopeptimycin gene cluster, see: Magarvey et al. (2006). For a related structure, see: Harms et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry operation (i): x+1/2, -y+1/2, -z.
[Figure 2] Fig. 2. Unit cell packing of (I) viewed down the b-axis. Dotted lines indicate hydrogen bonds.
(SS,2S,3R)-2-(2-Methylpropane-2-sulfinamido)- 3-phenylbutyronitrile top
Crystal data top
C14H20N2OSF(000) = 568
Mr = 264.38Dx = 1.226 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 22507 reflections
a = 8.7892 (3) Åθ = 2.2–25°
b = 8.7967 (4) ŵ = 0.22 mm1
c = 18.5217 (7) ÅT = 100 K
V = 1432.02 (10) Å3Prism, colourless
Z = 40.36 × 0.18 × 0.15 mm
Data collection top
STOE IPDS II
diffractometer
2624 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.070
Graphite monochromatorθmax = 26.8°, θmin = 2.2°
area detetor, ω scansh = 1111
22029 measured reflectionsk = 1111
3031 independent reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0378P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max < 0.001
S = 0.92Δρmax = 0.18 e Å3
3031 reflectionsΔρmin = 0.23 e Å3
244 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0113 (13)
0 constraintsAbsolute structure: Flack (1983), 1272 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (6)
Crystal data top
C14H20N2OSV = 1432.02 (10) Å3
Mr = 264.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7892 (3) ŵ = 0.22 mm1
b = 8.7967 (4) ÅT = 100 K
c = 18.5217 (7) Å0.36 × 0.18 × 0.15 mm
Data collection top
STOE IPDS II
diffractometer
2624 reflections with I > 2σ(I)
22029 measured reflectionsRint = 0.070
3031 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.064Δρmax = 0.18 e Å3
S = 0.92Δρmin = 0.23 e Å3
3031 reflectionsAbsolute structure: Flack (1983), 1272 Friedel pairs
244 parametersAbsolute structure parameter: 0.02 (6)
0 restraints
Special details top

Experimental. δH(300 MHz; DMSO) 1.13 (s, 9H, tBu), 1.28 (d, 3H, 3JMe,CH = 7.0 Hz, CH3), 3.14 (dq, 1H, 3JCH,CHN = 9.9, JCH,Me = 7.0 Hz, CH), 4.48 (pt, 1H, 3JCHN,CH = 9.9 Hz, CHN), 6.37 (d, 1H, 3JNH,CHN = 9.9 Hz, NH), 7.22 – 7.38 (m, 5H, CHarom); δC(75 MHz; DMSO-d6) 18.3 (CH3), 22.5 (C(CH3)3), 43.6 (CH), 52.4 (CHN), 56.4 (C(CH3)3), 119.8 (CN), 127.2 (p-CHarom), 127.8 (CHarom),128.5 (CHarom), 141.7 (i-Carom).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43208 (18)0.5330 (2)0.00956 (9)0.0303 (4)
C20.56755 (17)0.6458 (2)0.00597 (9)0.0311 (4)
C30.40206 (16)0.4817 (2)0.08405 (11)0.0337 (4)
C40.57924 (19)0.7071 (2)0.07072 (10)0.0343 (4)
C50.55157 (17)0.7666 (2)0.06356 (9)0.0322 (4)
C60.46159 (19)0.8950 (2)0.05357 (10)0.0362 (4)
C70.4397 (2)0.9986 (2)0.10900 (12)0.0451 (5)
C80.5075 (2)0.9750 (3)0.17589 (12)0.0480 (5)
C90.5996 (2)0.8499 (3)0.18570 (11)0.0467 (5)
C100.6223 (2)0.7472 (2)0.13039 (10)0.0394 (4)
C110.39529 (17)0.2377 (2)0.15401 (9)0.0321 (4)
C120.4864 (3)0.3546 (3)0.19584 (12)0.0498 (5)
C130.2643 (2)0.1791 (3)0.20040 (12)0.0447 (5)
C140.4918 (2)0.1082 (3)0.12683 (12)0.0459 (5)
N10.45589 (15)0.40435 (17)0.03876 (8)0.0302 (3)
N20.37703 (17)0.4385 (2)0.14134 (9)0.0449 (4)
O10.23286 (12)0.20929 (14)0.03335 (7)0.0376 (3)
S10.30144 (4)0.33362 (5)0.07741 (2)0.03041 (11)
H20.6626 (19)0.578 (2)0.0175 (9)0.034 (5)*
H4A0.655 (2)0.795 (2)0.0753 (11)0.042 (5)*
H80.495 (2)1.053 (3)0.2164 (11)0.059 (6)*
H010.521 (2)0.334 (2)0.0226 (10)0.038 (5)*
H4B0.486 (2)0.751 (2)0.0859 (10)0.041 (5)*
H100.689 (2)0.649 (2)0.1366 (10)0.049 (5)*
H10.3383 (18)0.586 (2)0.0075 (9)0.030 (4)*
H13A0.307 (3)0.113 (3)0.2399 (12)0.064 (7)*
H60.417 (2)0.910 (2)0.0079 (10)0.040 (5)*
H14C0.570 (2)0.146 (2)0.0968 (11)0.053 (6)*
H12A0.509 (3)0.315 (3)0.2468 (13)0.063 (6)*
H14B0.425 (2)0.024 (3)0.0969 (13)0.059 (7)*
H4C0.604 (2)0.621 (2)0.1034 (11)0.051 (6)*
H13B0.205 (3)0.270 (3)0.2212 (12)0.067 (7)*
H12C0.576 (3)0.393 (3)0.1711 (14)0.080 (8)*
H70.379 (2)1.088 (3)0.0992 (12)0.053 (6)*
H12B0.424 (3)0.447 (3)0.2040 (12)0.060 (7)*
H90.650 (2)0.827 (3)0.2315 (12)0.060 (6)*
H14A0.539 (3)0.049 (3)0.1672 (12)0.061 (7)*
H13C0.192 (3)0.115 (3)0.1726 (12)0.061 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (8)0.0324 (9)0.0348 (9)0.0004 (7)0.0002 (7)0.0003 (7)
C20.0230 (7)0.0334 (10)0.0368 (9)0.0003 (7)0.0000 (6)0.0008 (8)
C30.0232 (7)0.0387 (9)0.0394 (10)0.0018 (6)0.0012 (7)0.0008 (9)
C40.0303 (8)0.0346 (10)0.0381 (10)0.0040 (7)0.0005 (7)0.0012 (8)
C50.0242 (7)0.0346 (9)0.0378 (9)0.0056 (7)0.0021 (6)0.0003 (8)
C60.0240 (8)0.0381 (10)0.0465 (10)0.0054 (7)0.0032 (7)0.0046 (8)
C70.0304 (9)0.0389 (11)0.0661 (14)0.0059 (8)0.0134 (9)0.0087 (10)
C80.0445 (10)0.0477 (13)0.0518 (12)0.0203 (9)0.0177 (9)0.0157 (10)
C90.0468 (10)0.0524 (13)0.0408 (11)0.0187 (10)0.0043 (8)0.0025 (11)
C100.0368 (9)0.0407 (11)0.0408 (10)0.0094 (8)0.0004 (7)0.0008 (9)
C110.0264 (8)0.0318 (9)0.0380 (9)0.0014 (7)0.0002 (6)0.0011 (8)
C120.0603 (12)0.0454 (13)0.0436 (11)0.0135 (11)0.0102 (10)0.0023 (11)
C130.0351 (9)0.0486 (12)0.0505 (11)0.0009 (10)0.0047 (8)0.0134 (11)
C140.0428 (10)0.0481 (12)0.0466 (11)0.0145 (9)0.0039 (9)0.0072 (10)
N10.0235 (6)0.0296 (8)0.0375 (8)0.0017 (6)0.0030 (6)0.0012 (7)
N20.0350 (8)0.0575 (11)0.0421 (10)0.0049 (8)0.0003 (7)0.0064 (8)
O10.0311 (6)0.0367 (7)0.0451 (7)0.0088 (5)0.0069 (5)0.0010 (6)
S10.02191 (15)0.0315 (2)0.0378 (2)0.00129 (16)0.00057 (16)0.0009 (2)
Geometric parameters (Å, º) top
C1—N11.458 (2)C9—C101.380 (3)
C1—C31.476 (3)C9—H90.98 (2)
C1—C21.551 (2)C10—H101.05 (2)
C1—H10.998 (17)C11—C141.507 (3)
C2—C51.512 (2)C11—C121.517 (3)
C2—C41.523 (2)C11—C131.526 (2)
C2—H21.046 (18)C11—S11.8454 (17)
C3—N21.148 (2)C12—H12A1.02 (2)
C4—H4A1.019 (19)C12—H12C0.97 (3)
C4—H4B0.95 (2)C12—H12B0.99 (3)
C4—H4C0.99 (2)C13—H13A1.01 (2)
C5—C61.391 (3)C13—H13B1.03 (2)
C5—C101.395 (2)C13—H13C0.99 (2)
C6—C71.386 (3)C14—H14C0.94 (2)
C6—H60.943 (19)C14—H14B1.10 (2)
C7—C81.390 (3)C14—H14A1.00 (2)
C7—H70.96 (2)N1—S11.6560 (14)
C8—C91.378 (3)N1—H010.89 (2)
C8—H81.02 (2)O1—S11.4918 (12)
N1—C1—C3111.21 (15)C9—C10—C5120.9 (2)
N1—C1—C2111.10 (13)C9—C10—H10122.5 (11)
C3—C1—C2111.90 (13)C5—C10—H10116.5 (11)
N1—C1—H1106.6 (10)C14—C11—C12112.71 (17)
C3—C1—H1106.9 (9)C14—C11—C13110.95 (17)
C2—C1—H1108.8 (10)C12—C11—C13109.88 (17)
C5—C2—C4114.53 (15)C14—C11—S1109.91 (13)
C5—C2—C1110.36 (13)C12—C11—S1108.57 (14)
C4—C2—C1108.55 (13)C13—C11—S1104.48 (11)
C5—C2—H2109.2 (10)C11—C12—H12A110.1 (15)
C4—C2—H2109.7 (9)C11—C12—H12C115.1 (16)
C1—C2—H2104.0 (10)H12A—C12—H12C113 (2)
N2—C3—C1178.3 (2)C11—C12—H12B109.8 (13)
C2—C4—H4A112.9 (11)H12A—C12—H12B104 (2)
C2—C4—H4B111.2 (11)H12C—C12—H12B104 (2)
H4A—C4—H4B103.3 (15)C11—C13—H13A108.8 (13)
C2—C4—H4C108.2 (12)C11—C13—H13B109.2 (12)
H4A—C4—H4C112.6 (15)H13A—C13—H13B111.5 (17)
H4B—C4—H4C108.6 (16)C11—C13—H13C112.4 (13)
C6—C5—C10118.05 (17)H13A—C13—H13C106.7 (17)
C6—C5—C2121.98 (15)H13B—C13—H13C108.3 (18)
C10—C5—C2119.90 (16)C11—C14—H14C109.8 (13)
C7—C6—C5120.94 (19)C11—C14—H14B112.1 (11)
C7—C6—H6120.9 (12)H14C—C14—H14B109.4 (17)
C5—C6—H6118.2 (12)C11—C14—H14A112.4 (13)
C6—C7—C8120.2 (2)H14C—C14—H14A108.6 (17)
C6—C7—H7118.1 (14)H14B—C14—H14A104.4 (18)
C8—C7—H7121.7 (14)C1—N1—S1116.06 (11)
C9—C8—C7119.2 (2)C1—N1—H01115.0 (12)
C9—C8—H8120.2 (12)S1—N1—H01114.2 (13)
C7—C8—H8120.4 (12)O1—S1—N1111.73 (7)
C8—C9—C10120.6 (2)O1—S1—C11105.41 (7)
C8—C9—H9122.8 (14)N1—S1—C1197.92 (7)
C10—C9—H9116.6 (14)
N1—C1—C2—C5172.20 (13)C7—C8—C9—C101.3 (3)
C3—C1—C2—C547.23 (18)C8—C9—C10—C50.6 (3)
N1—C1—C2—C461.53 (18)C6—C5—C10—C92.1 (3)
C3—C1—C2—C4173.50 (14)C2—C5—C10—C9174.84 (15)
N1—C1—C3—N231 (6)C3—C1—N1—S188.88 (15)
C2—C1—C3—N2156 (6)C2—C1—N1—S1145.76 (12)
C4—C2—C5—C639.8 (2)C1—N1—S1—O190.88 (13)
C1—C2—C5—C683.09 (19)C1—N1—S1—C11158.98 (12)
C4—C2—C5—C10143.46 (15)C14—C11—S1—O148.56 (14)
C1—C2—C5—C1093.69 (17)C12—C11—S1—O1172.26 (13)
C10—C5—C6—C71.6 (2)C13—C11—S1—O170.54 (14)
C2—C5—C6—C7175.21 (15)C14—C11—S1—N166.65 (14)
C5—C6—C7—C80.2 (3)C12—C11—S1—N157.04 (15)
C6—C7—C8—C91.7 (3)C13—C11—S1—N1174.25 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O1i0.89 (2)2.167 (19)2.9511 (18)146.5 (18)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H20N2OS
Mr264.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.7892 (3), 8.7967 (4), 18.5217 (7)
V3)1432.02 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.36 × 0.18 × 0.15
Data collection
DiffractometerSTOE IPDS II
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22029, 3031, 2624
Rint0.070
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.064, 0.92
No. of reflections3031
No. of parameters244
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.18, 0.23
Absolute structureFlack (1983), 1272 Friedel pairs
Absolute structure parameter0.02 (6)

Computer programs: X-AREA (Stoe & Cie, 2002), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O1i0.89 (2)2.167 (19)2.9511 (18)146.5 (18)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors gratefully acknowledge funding by the Philipps-Universität Marburg, the Deutsche Forschungsgemeinschaft (PS & MO) and the Ernst-Schering-Foundation (PS).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDavis, F. A., Reddy, R. E. & Portonovo, P. S. (1994). Tetrahedron Lett. 35, 9351–9354.  CrossRef CAS Web of Science Google Scholar
First citationFerreira, F., Botuha, C., Chemla, F. & Peréz-Luna, A. (2009). Chem. Soc. Rev. 38, 1162–1186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K., Marsch, M., Oberthür, M. & Schüler, P. (2009). Acta Cryst. E65, o2742.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, B.-F., Yuan, K., Zhang, M.-J., Wu, H., Dai, L.-X., Wang, Q. R. & Hou, X.-L. (2003). J. Org. Chem. 68, 6264–6267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMagarvey, N. A., Haltli, B., He, M., Greenstein, M. & Hucul, J. A. (2006). Antimicrob. Agents Chemother. 50, 2167–2177.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds