organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(SS,2S,3S)-2-(2-Methyl­propan-2-sulfin­amido)-3-phenyl­butyro­nitrile

aPhilipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
*Correspondence e-mail: klaus.harms@chemie.uni-marburg.de

(Received 25 September 2009; accepted 9 October 2009; online 17 October 2009)

The absolute configuration has been determined for the title compound, C14H20N2OS. There are two independent mol­ecules in the asymmetric unit. Inter­molecular N—H⋯O hydrogen bonds are observed in the crystal packing, forming infinite chains with the base vectors [100] and [010]. Each chain contains only one of the two independent mol­ecules.

Related literature

For uses of tert-butane­sulfinimines, see: Ferreira et al. (2009[Ferreira, F., Botuha, C., Chemla, F. & Peréz-Luna, A. (2009). Chem. Soc. Rev. 38, 1162-1186.]). For asymmetric Strecker reactions utilizing this auxiliary, see: Davis et al. (1994[Davis, F. A., Reddy, R. E. & Portonovo, P. S. (1994). Tetrahedron Lett. 35, 9351-9354.]); Li et al. (2003[Li, B.-F., Yuan, K., Zhang, M.-J., Wu, H., Dai, L.-X., Wang, Q. R. & Hou, X.-L. (2003). J. Org. Chem. 68, 6264-6267.]). For natural sources of (2S,3S)-β-methyl­phenyl­alanine, see: Singh et al. (2003[Singh, M. P., Petersen, P. J., Weiss, W. J., Janso, J. E., Luckman, S. W., Lenoy, E. B., Bradford, P. A., Testa, R. T. & Greenstein, M. (2003). Antimicrob. Agents Chemother. 47, 62-69.]); Kaneda (1992[Kaneda, M. (1992). J. Antibiot. (Tokyo), 45, 792-796.], 2002[Kaneda, M. (2002). J. Antibiot. (Tokyo), 55, 924-928.]). For a related structure, see: Harms et al. (2009[Harms, K., Marsch, M., Oberthür, M. & Schüler, P. (2009). Acta Cryst. E65, o2742.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N2OS

  • Mr = 264.38

  • Orthorhombic, P 21 21 21

  • a = 9.0344 (4) Å

  • b = 9.0617 (5) Å

  • c = 35.767 (3) Å

  • V = 2928.1 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.36 × 0.08 × 0.06 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.936, Tmax = 1.041

  • 15474 measured reflections

  • 5160 independent reflections

  • 3413 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.074

  • S = 0.77

  • 5160 reflections

  • 342 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2183 Friedel pairs

  • Flack parameter: −0.04 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.85 (2) 2.110 (17) 2.882 (3) 151 (3)
N21—H211⋯O21ii 0.85 (2) 2.23 (2) 2.995 (4) 149 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Chiral sulfinimines have proven to be powerful and versatile precursors for the synthesis of nonproteinogenic amino acids (Ferreira et al., 2008). They allow the stereoselective introduction of cyanide therefore representing an asymmetric modification of the Strecker reaction (Davis et al., 1994); Li et al., 2003). We have synthesized the title compound, (I), that can be hydrolyzed to give (2S,3S)-β-methylphenylalanine which is an amino acid found in the antibiotic families of the bottromycins and the mannopeptimycins (Singh et al., 2003); Kaneda, 1992; and Kaneda, 2002). In this paper we report the crystal structure and absolute configuration of (I).

The molecular structure of (I) is presented in Fig. 1. There are two independent molecules in the asymmetric unit. The structure exhibits intermolecular N—H···O hydrogen bonds resulting in infinite one dimensional chains with the base vectors [1 0 0] and [0 1 0], respectively (details have have been provided in Table 1 and Fig. 2). Each chain contains only one of the two independent molecules.

The crystal structure and absolute configuration of a closely related compound has just been reported (Harms et al., 2009).

Related literature top

For uses of tert-butanesulfinimines, see: Ferreira et al. (2009). For asymmetric Strecker reactions utilizing this auxiliary, see: Davis et al. (1994); Li et al. (2003). For natural sources of (2S,3S)-β-methylphenylalanine, see: Singh et al. (2003); Kaneda (1992, 2002). For a related structure, see: Harms et al. (2009).

Experimental top

Trimethylsilyl cyanide (TMSCN) (706 µL, 5.64 mmol) was added dropwise to a solution of (SS)-(2-phenylpropyliden)-2-methyl-2-propansulfinylimin (1.12 g, 4.70 mmol) and CsF (858 mg, 5.64 mmol) in 50 ml n-hexane at 243 K. The mixture was stirred at this temperature for 14 h and subsequently quenched with semisaturated aqueous NH4Cl solution. Extraction with EtOAc (2×50 mL) and drying of the combined organic phases (MgSO4) yielded the crude mixture of 3S / 3R epimers. Crystallization from petrolether/EtOAc yielded 370 mg (1.41 mmol, 35%) of a 1:1 mixture of the diastereomers. Flash column chromatography of the mother liquor yielded 80 mg (303 mmol, 6%) of the pure 3S isomer, which had a slightly higher Rf-value (Rf=0.30 in petrol ether/EtOAc 2:1) than the 3R isomer of which 60 mg (227 mmol, 5%) could be isolated. The remaining fractions afforded 400 mg (1.53 mmol, 32%) of a roughly 1:1 mixture of the epimers. (SS,2S,3S)-(2-Methylpropansulfinyl)-2-amino-3-phenylbutyronitrile was crystallized from petrol ether/THF.

Refinement top

The amino H atoms were isotropically refined with a restraint (0.85 Å) N—H distance. The other H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms, with 1.5 Ueq(Cmethyl) or 1.2 Ueq(C).

Structure description top

Chiral sulfinimines have proven to be powerful and versatile precursors for the synthesis of nonproteinogenic amino acids (Ferreira et al., 2008). They allow the stereoselective introduction of cyanide therefore representing an asymmetric modification of the Strecker reaction (Davis et al., 1994); Li et al., 2003). We have synthesized the title compound, (I), that can be hydrolyzed to give (2S,3S)-β-methylphenylalanine which is an amino acid found in the antibiotic families of the bottromycins and the mannopeptimycins (Singh et al., 2003); Kaneda, 1992; and Kaneda, 2002). In this paper we report the crystal structure and absolute configuration of (I).

The molecular structure of (I) is presented in Fig. 1. There are two independent molecules in the asymmetric unit. The structure exhibits intermolecular N—H···O hydrogen bonds resulting in infinite one dimensional chains with the base vectors [1 0 0] and [0 1 0], respectively (details have have been provided in Table 1 and Fig. 2). Each chain contains only one of the two independent molecules.

The crystal structure and absolute configuration of a closely related compound has just been reported (Harms et al., 2009).

For uses of tert-butanesulfinimines, see: Ferreira et al. (2009). For asymmetric Strecker reactions utilizing this auxiliary, see: Davis et al. (1994); Li et al. (2003). For natural sources of (2S,3S)-β-methylphenylalanine, see: Singh et al. (2003); Kaneda (1992, 2002). For a related structure, see: Harms et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A view of the two molecules in the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry operations, (i): x-1/2, -y+3/2, -z; (ii): -x, y+1/2, -z+1/2.
[Figure 2] Fig. 2. Unit cell packing of (I) viewed down the b-axis. Dotted lines indicate hydrogen bonds.
(SS,2S,3S)-2-(2-Methylpropane-2-sulfinamido)-3- phenylbutyronitrile top
Crystal data top
C14H20N2OSF(000) = 1136
Mr = 264.38Dx = 1.199 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10131 reflections
a = 9.0344 (4) Åθ = 2.3–25°
b = 9.0617 (5) ŵ = 0.21 mm1
c = 35.767 (3) ÅT = 100 K
V = 2928.1 (3) Å3Prism, colourless
Z = 80.36 × 0.08 × 0.06 mm
Data collection top
Stoe IPDS II
diffractometer
5160 independent reflections
Radiation source: sealed tube3413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
area detetor, ω scansθmax = 25°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1010
Tmin = 0.936, Tmax = 1.041k = 910
15474 measured reflectionsl = 4142
Refinement top
Refinement on F2Hydrogen site location: CH inferred from neighbouring sites, NH located
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0105P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 0.77Δρmax = 0.19 e Å3
5160 reflectionsΔρmin = 0.24 e Å3
342 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
2 restraintsExtinction coefficient: 0.0011 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2183 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (9)
Crystal data top
C14H20N2OSV = 2928.1 (3) Å3
Mr = 264.38Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 9.0344 (4) ŵ = 0.21 mm1
b = 9.0617 (5) ÅT = 100 K
c = 35.767 (3) Å0.36 × 0.08 × 0.06 mm
Data collection top
Stoe IPDS II
diffractometer
5160 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3413 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 1.041Rint = 0.093
15474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.19 e Å3
S = 0.77Δρmin = 0.24 e Å3
5160 reflectionsAbsolute structure: Flack (1983), 2183 Friedel pairs
342 parametersAbsolute structure parameter: 0.04 (9)
2 restraints
Special details top

Experimental. νmax/cm-1 3232 (br), 2963 (w), 2930 (w), 2872(w), 1492 (w), 1454 (m), 1422 (m), 1364 (w), 1113 (w), 1085 (m), 1054 (s), 1016(m); δH (300 MHz; DMSO) 0.75 (s, 9H, tBu), 1.37 (d, 3H, 3JMe,CH = 7.1 Hz, CH3), 3.10 (dq, 1H, 3JCH,CHN = 10.3, JCH,Me = 7.1 Hz, CH), 4.51 (pt, 1H, 3JCHN,CH = 10.3 Hz, CHN), 6.24 (d, 1H, 3JNH,CHN = 10.5 Hz, NH), 7.14 – 7.32 (m, 5H, CHarom); δC (75 MHz; DMSO-d6)18.4 (CH3), 21.9 (C(CH3)3), 43.2 (CH), 52.8 (CHN), 55.9 (C(CH3)3), 120.2 (CN), 126.7 (p-CHarom), 127.7 (CHarom), 128.2 (CHarom), 141.9 (i-Carom); [α]D23 -1.0 (c 1.00 in CHCl3).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C210.2714 (4)0.3582 (4)0.27085 (9)0.0236 (9)
H210.360.29460.26620.028*
C220.3222 (4)0.5196 (4)0.27258 (10)0.0270 (9)
H220.2320.58120.27690.032*
C230.2020 (4)0.3113 (5)0.30640 (10)0.0288 (9)
C240.4285 (4)0.5485 (5)0.30544 (10)0.0336 (10)
H24A0.51890.49030.3020.05*
H24B0.38050.51980.32890.05*
H24C0.45370.65360.30630.05*
C250.3851 (4)0.5647 (4)0.23521 (10)0.0251 (9)
C260.3155 (4)0.6706 (4)0.21346 (10)0.0310 (9)
H260.2290.71790.22270.037*
C270.3702 (4)0.7092 (4)0.17816 (10)0.0332 (10)
H270.32170.7830.16380.04*
C280.4935 (4)0.6406 (4)0.16434 (11)0.0354 (11)
H280.53030.66590.14030.042*
C290.5647 (4)0.5341 (4)0.18560 (10)0.0308 (9)
H290.65010.48610.1760.037*
C2100.5117 (4)0.4971 (4)0.22081 (11)0.0265 (9)
H2100.56220.4250.23530.032*
C2110.0856 (4)0.2374 (4)0.17447 (11)0.0281 (9)
C2120.0540 (4)0.3289 (5)0.17864 (10)0.0370 (10)
H21A0.10070.34130.15410.056*
H21B0.02870.42590.18890.056*
H21C0.12270.27850.19560.056*
C2130.0538 (5)0.0964 (5)0.15275 (11)0.0448 (11)
H21D0.02140.03860.1660.067*
H21E0.14490.03830.15050.067*
H21F0.01750.12160.12770.067*
C2140.2103 (4)0.3255 (5)0.15608 (10)0.0322 (9)
H21G0.30060.26570.15560.048*
H21H0.22830.41580.17040.048*
H21I0.18170.35140.13050.048*
N210.1689 (3)0.3395 (3)0.23975 (7)0.0228 (7)
N220.1415 (4)0.2754 (4)0.33308 (9)0.0399 (9)
O210.0331 (3)0.0854 (3)0.23728 (7)0.0316 (6)
S210.15503 (10)0.17532 (11)0.22032 (3)0.0260 (2)
C10.8730 (4)0.4752 (4)0.02331 (10)0.0228 (8)
H10.94040.39110.01710.027*
C20.7114 (3)0.4153 (4)0.02369 (10)0.0252 (8)
H20.64490.49990.030.03*
C30.9145 (4)0.5311 (4)0.06101 (11)0.0268 (9)
C40.6885 (4)0.2967 (4)0.05361 (10)0.0325 (10)
H4A0.74810.20970.04750.049*
H4B0.71890.33540.0780.049*
H4C0.58360.26910.05450.049*
C50.6698 (4)0.3632 (4)0.01507 (9)0.0242 (9)
C60.5653 (4)0.4409 (4)0.03603 (10)0.0283 (9)
H60.51810.52540.02580.034*
C70.5311 (4)0.3941 (5)0.07186 (10)0.0320 (9)
H70.45860.44670.08570.038*
C80.5988 (4)0.2738 (4)0.08799 (11)0.0333 (10)
H80.57520.24420.11280.04*
C90.7019 (4)0.1975 (4)0.06715 (11)0.0317 (9)
H90.74960.11390.07770.038*
C100.7372 (4)0.2407 (4)0.03095 (11)0.0297 (9)
H100.80790.18610.0170.036*
C110.9830 (4)0.6723 (4)0.07127 (9)0.0234 (8)
C120.8840 (4)0.8074 (4)0.06764 (10)0.0320 (9)
H12A0.79220.780.05480.048*
H12B0.93550.88360.05320.048*
H12C0.86060.84560.09260.048*
C130.9020 (4)0.5441 (4)0.08954 (11)0.0317 (10)
H13A0.87190.57210.11490.047*
H13B0.96770.45820.09070.047*
H13C0.8140.51940.07480.047*
C141.1218 (4)0.7103 (4)0.09391 (10)0.0326 (10)
H14A1.09350.73470.11960.049*
H14B1.17170.79510.08250.049*
H14C1.1890.62540.09410.049*
N10.8892 (3)0.5844 (3)0.00524 (8)0.0215 (7)
N20.9438 (4)0.5784 (4)0.08972 (9)0.0397 (8)
O11.1317 (2)0.7367 (3)0.00919 (7)0.0304 (6)
S11.05045 (10)0.60907 (10)0.02574 (3)0.0241 (2)
H2110.087 (2)0.384 (4)0.2437 (9)0.031 (11)*
H1A0.831 (3)0.658 (2)0.0059 (9)0.027 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C210.0206 (18)0.025 (2)0.025 (2)0.0023 (15)0.0032 (14)0.0016 (16)
C220.023 (2)0.027 (2)0.031 (2)0.0031 (16)0.0027 (16)0.0024 (17)
C230.029 (2)0.030 (2)0.027 (2)0.0060 (18)0.0026 (17)0.001 (2)
C240.030 (2)0.039 (3)0.032 (2)0.0029 (19)0.0009 (18)0.0053 (18)
C250.027 (2)0.021 (2)0.0267 (19)0.0030 (16)0.0063 (16)0.0001 (16)
C260.024 (2)0.026 (2)0.043 (2)0.0047 (18)0.0068 (16)0.002 (2)
C270.041 (2)0.029 (2)0.030 (2)0.0087 (19)0.0113 (19)0.0050 (18)
C280.036 (2)0.040 (3)0.031 (2)0.0128 (19)0.0006 (17)0.0053 (19)
C290.026 (2)0.026 (2)0.041 (2)0.0049 (18)0.0029 (19)0.0031 (18)
C2100.019 (2)0.022 (2)0.038 (2)0.0009 (15)0.0020 (17)0.0003 (19)
C2110.025 (2)0.029 (2)0.031 (2)0.0043 (17)0.0041 (16)0.0008 (17)
C2120.031 (2)0.041 (2)0.039 (2)0.003 (2)0.0036 (18)0.015 (2)
C2130.048 (2)0.038 (3)0.049 (3)0.016 (2)0.004 (2)0.002 (2)
C2140.029 (2)0.033 (2)0.035 (2)0.0036 (19)0.0043 (16)0.004 (2)
N210.0181 (17)0.0239 (17)0.0263 (15)0.0025 (14)0.0009 (13)0.0021 (14)
N220.039 (2)0.038 (2)0.043 (2)0.0162 (17)0.0033 (18)0.0054 (17)
O210.0292 (14)0.0269 (15)0.0386 (15)0.0126 (12)0.0023 (11)0.0106 (13)
S210.0233 (5)0.0241 (5)0.0306 (5)0.0019 (4)0.0000 (4)0.0011 (4)
C10.0180 (18)0.0209 (19)0.030 (2)0.0025 (14)0.0008 (16)0.0009 (17)
C20.0179 (18)0.030 (2)0.0282 (19)0.0001 (15)0.0006 (15)0.0043 (19)
C30.016 (2)0.033 (2)0.032 (2)0.0072 (16)0.0033 (16)0.0015 (18)
C40.023 (2)0.040 (3)0.035 (2)0.0018 (17)0.0022 (16)0.005 (2)
C50.0168 (18)0.026 (2)0.030 (2)0.0042 (16)0.0004 (15)0.0012 (16)
C60.0199 (19)0.027 (2)0.038 (2)0.0019 (17)0.0033 (17)0.0041 (17)
C70.027 (2)0.037 (2)0.032 (2)0.010 (2)0.0006 (17)0.002 (2)
C80.028 (2)0.040 (3)0.032 (2)0.0152 (18)0.0005 (17)0.004 (2)
C90.031 (2)0.024 (2)0.041 (2)0.0078 (17)0.0058 (17)0.005 (2)
C100.0200 (19)0.028 (2)0.041 (2)0.0025 (16)0.0004 (18)0.0013 (19)
C110.026 (2)0.0224 (19)0.0222 (19)0.0018 (16)0.0003 (14)0.0002 (17)
C120.036 (2)0.029 (2)0.031 (2)0.0051 (18)0.0019 (16)0.0009 (19)
C130.029 (2)0.035 (2)0.031 (2)0.0019 (17)0.0029 (17)0.0009 (19)
C140.026 (2)0.035 (3)0.037 (2)0.0069 (17)0.0029 (17)0.0021 (19)
N10.0145 (16)0.0214 (18)0.0287 (16)0.0009 (13)0.0041 (12)0.0014 (14)
N20.0345 (19)0.044 (2)0.041 (2)0.0121 (17)0.0020 (17)0.0041 (18)
O10.0252 (13)0.0318 (15)0.0342 (15)0.0099 (12)0.0069 (12)0.0021 (12)
S10.0194 (4)0.0229 (5)0.0300 (5)0.0018 (4)0.0001 (4)0.0006 (5)
Geometric parameters (Å, º) top
C21—N211.457 (4)C1—N11.429 (4)
C21—C231.480 (5)C1—C31.488 (5)
C21—C221.535 (5)C1—C21.557 (4)
C21—H211C1—H11
C22—C251.509 (5)C2—C51.512 (5)
C22—C241.540 (5)C2—C41.530 (5)
C22—H221C2—H21
C23—N221.146 (4)C3—N21.144 (4)
C24—H24A0.98C4—H4A0.98
C24—H24B0.98C4—H4B0.98
C24—H24C0.98C4—H4C0.98
C25—C261.386 (5)C5—C101.387 (5)
C25—C2101.396 (5)C5—C61.396 (5)
C26—C271.400 (5)C6—C71.385 (5)
C26—H260.95C6—H60.95
C27—C281.369 (5)C7—C81.377 (5)
C27—H270.95C7—H70.95
C28—C291.387 (5)C8—C91.379 (5)
C28—H280.95C8—H80.95
C29—C2101.388 (5)C9—C101.390 (5)
C29—H290.95C9—H90.95
C210—H2100.95C10—H100.95
C211—C2121.516 (5)C11—C131.520 (5)
C211—C2131.523 (5)C11—C121.522 (5)
C211—C2141.529 (5)C11—C141.532 (4)
C211—S211.843 (4)C11—S11.831 (3)
C212—H21A0.98C12—H12A0.98
C212—H21B0.98C12—H12B0.98
C212—H21C0.98C12—H12C0.98
C213—H21D0.98C13—H13A0.98
C213—H21E0.98C13—H13B0.98
C213—H21F0.98C13—H13C0.98
C214—H21G0.98C14—H14A0.98
C214—H21H0.98C14—H14B0.98
C214—H21I0.98C14—H14C0.98
N21—S211.647 (3)N1—S11.646 (3)
N21—H2110.85 (2)N1—H1A0.85 (2)
O21—S211.498 (2)O1—S11.493 (2)
N21—C21—C23110.7 (3)N1—C1—C3112.7 (3)
N21—C21—C22109.4 (3)N1—C1—C2110.1 (3)
C23—C21—C22111.5 (3)C3—C1—C2110.3 (3)
N21—C21—H21108.4N1—C1—H1107.9
C23—C21—H21108.4C3—C1—H1107.9
C22—C21—H21108.4C2—C1—H1107.9
C25—C22—C21109.6 (3)C5—C2—C4112.8 (3)
C25—C22—C24113.3 (3)C5—C2—C1109.5 (3)
C21—C22—C24112.3 (3)C4—C2—C1112.2 (3)
C25—C22—H22107.1C5—C2—H2107.3
C21—C22—H22107.1C4—C2—H2107.3
C24—C22—H22107.1C1—C2—H2107.3
N22—C23—C21176.6 (4)N2—C3—C1177.7 (4)
C22—C24—H24A109.5C2—C4—H4A109.5
C22—C24—H24B109.5C2—C4—H4B109.5
H24A—C24—H24B109.5H4A—C4—H4B109.5
C22—C24—H24C109.5C2—C4—H4C109.5
H24A—C24—H24C109.5H4A—C4—H4C109.5
H24B—C24—H24C109.5H4B—C4—H4C109.5
C26—C25—C210117.9 (4)C10—C5—C6118.7 (3)
C26—C25—C22120.9 (3)C10—C5—C2121.1 (3)
C210—C25—C22121.1 (3)C6—C5—C2120.2 (3)
C25—C26—C27121.3 (4)C7—C6—C5119.6 (4)
C25—C26—H26119.4C7—C6—H6120.2
C27—C26—H26119.4C5—C6—H6120.2
C28—C27—C26120.0 (4)C8—C7—C6122.1 (4)
C28—C27—H27120C8—C7—H7119
C26—C27—H27120C6—C7—H7119
C27—C28—C29119.7 (4)C7—C8—C9118.1 (4)
C27—C28—H28120.1C7—C8—H8121
C29—C28—H28120.1C9—C8—H8121
C28—C29—C210120.4 (4)C8—C9—C10121.1 (4)
C28—C29—H29119.8C8—C9—H9119.4
C210—C29—H29119.8C10—C9—H9119.4
C29—C210—C25120.8 (4)C5—C10—C9120.4 (4)
C29—C210—H210119.6C5—C10—H10119.8
C25—C210—H210119.6C9—C10—H10119.8
C212—C211—C213110.6 (3)C13—C11—C12111.6 (3)
C212—C211—C214111.7 (3)C13—C11—C14109.8 (3)
C213—C211—C214110.9 (3)C12—C11—C14110.2 (3)
C212—C211—S21111.2 (2)C13—C11—S1107.7 (3)
C213—C211—S21105.2 (3)C12—C11—S1111.8 (2)
C214—C211—S21107.0 (2)C14—C11—S1105.5 (2)
C211—C212—H21A109.5C11—C12—H12A109.5
C211—C212—H21B109.5C11—C12—H12B109.5
H21A—C212—H21B109.5H12A—C12—H12B109.5
C211—C212—H21C109.5C11—C12—H12C109.5
H21A—C212—H21C109.5H12A—C12—H12C109.5
H21B—C212—H21C109.5H12B—C12—H12C109.5
C211—C213—H21D109.5C11—C13—H13A109.5
C211—C213—H21E109.5C11—C13—H13B109.5
H21D—C213—H21E109.5H13A—C13—H13B109.5
C211—C213—H21F109.5C11—C13—H13C109.5
H21D—C213—H21F109.5H13A—C13—H13C109.5
H21E—C213—H21F109.5H13B—C13—H13C109.5
C211—C214—H21G109.5C11—C14—H14A109.5
C211—C214—H21H109.5C11—C14—H14B109.5
H21G—C214—H21H109.5H14A—C14—H14B109.5
C211—C214—H21I109.5C11—C14—H14C109.5
H21G—C214—H21I109.5H14A—C14—H14C109.5
H21H—C214—H21I109.5H14B—C14—H14C109.5
C21—N21—S21118.4 (2)C1—N1—S1120.2 (2)
C21—N21—H211112 (2)C1—N1—H1A120 (2)
S21—N21—H211115 (3)S1—N1—H1A115 (2)
O21—S21—N21112.12 (15)O1—S1—N1111.33 (15)
O21—S21—C211106.03 (15)O1—S1—C11105.92 (16)
N21—S21—C21197.20 (16)N1—S1—C1198.29 (15)
N21—C21—C22—C2554.4 (4)N1—C1—C2—C553.4 (4)
C23—C21—C22—C25177.1 (3)C3—C1—C2—C5178.3 (3)
N21—C21—C22—C24178.7 (3)N1—C1—C2—C4179.5 (3)
C23—C21—C22—C2456.0 (4)C3—C1—C2—C455.6 (4)
N21—C21—C23—N2217 (8)N1—C1—C3—N244 (10)
C22—C21—C23—N22105 (7)C2—C1—C3—N280 (10)
C21—C22—C25—C26114.1 (4)C4—C2—C5—C1058.2 (4)
C24—C22—C25—C26119.7 (4)C1—C2—C5—C1067.5 (4)
C21—C22—C25—C21063.4 (4)C4—C2—C5—C6123.8 (3)
C24—C22—C25—C21062.8 (4)C1—C2—C5—C6110.4 (3)
C210—C25—C26—C270.1 (5)C10—C5—C6—C70.3 (5)
C22—C25—C26—C27177.7 (3)C2—C5—C6—C7178.3 (3)
C25—C26—C27—C280.8 (5)C5—C6—C7—C81.1 (5)
C26—C27—C28—C290.6 (5)C6—C7—C8—C91.1 (5)
C27—C28—C29—C2100.2 (5)C7—C8—C9—C100.2 (5)
C28—C29—C210—C250.9 (5)C6—C5—C10—C90.5 (5)
C26—C25—C210—C290.8 (5)C2—C5—C10—C9177.5 (3)
C22—C25—C210—C29176.8 (3)C8—C9—C10—C50.5 (5)
C23—C21—N21—S2183.2 (3)C3—C1—N1—S185.7 (3)
C22—C21—N21—S21153.6 (2)C2—C1—N1—S1150.7 (2)
C21—N21—S21—O2193.0 (3)C1—N1—S1—O198.6 (3)
C21—N21—S21—C211156.4 (2)C1—N1—S1—C11150.6 (3)
C212—C211—S21—O2159.6 (3)C13—C11—S1—O1178.8 (2)
C213—C211—S21—O2160.2 (3)C12—C11—S1—O158.2 (3)
C214—C211—S21—O21178.2 (2)C14—C11—S1—O161.6 (3)
C212—C211—S21—N2156.0 (3)C13—C11—S1—N166.1 (3)
C213—C211—S21—N21175.7 (2)C12—C11—S1—N156.9 (3)
C214—C211—S21—N2166.2 (3)C14—C11—S1—N1176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (2)2.11 (2)2.882 (3)151 (3)
N21—H211···O21ii0.85 (2)2.23 (2)2.995 (4)149 (3)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H20N2OS
Mr264.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.0344 (4), 9.0617 (5), 35.767 (3)
V3)2928.1 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.36 × 0.08 × 0.06
Data collection
DiffractometerStoe IPDS II
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.936, 1.041
No. of measured, independent and
observed [I > 2σ(I)] reflections
15474, 5160, 3413
Rint0.093
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.074, 0.77
No. of reflections5160
No. of parameters342
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.24
Absolute structureFlack (1983), 2183 Friedel pairs
Absolute structure parameter0.04 (9)

Computer programs: X-AREA (Stoe & Cie, 2002), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (2)2.110 (17)2.882 (3)151 (3)
N21—H211···O21ii0.85 (2)2.23 (2)2.995 (4)149 (3)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge funding by the Philipps-Universität Marburg, the Deutsche Forschungsgemeinschaft (PS & MO) and the Ernst-Schering-Foundation (PS).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavis, F. A., Reddy, R. E. & Portonovo, P. S. (1994). Tetrahedron Lett. 35, 9351–9354.  CrossRef CAS Web of Science Google Scholar
First citationFerreira, F., Botuha, C., Chemla, F. & Peréz-Luna, A. (2009). Chem. Soc. Rev. 38, 1162–1186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K., Marsch, M., Oberthür, M. & Schüler, P. (2009). Acta Cryst. E65, o2742.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaneda, M. (1992). J. Antibiot. (Tokyo), 45, 792–796.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKaneda, M. (2002). J. Antibiot. (Tokyo), 55, 924–928.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, B.-F., Yuan, K., Zhang, M.-J., Wu, H., Dai, L.-X., Wang, Q. R. & Hou, X.-L. (2003). J. Org. Chem. 68, 6264–6267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, M. P., Petersen, P. J., Weiss, W. J., Janso, J. E., Luckman, S. W., Lenoy, E. B., Bradford, P. A., Testa, R. T. & Greenstein, M. (2003). Antimicrob. Agents Chemother. 47, 62–69.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds