metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridobis{2-[(di­methyl­amino)­meth­yl]phen­yl}anti­mony(III)

aUniversitatea Babeş-Bolyai, Facultatea de Chimie şi Inginerie Chimicã, 11 Arany Janos, 400028 Cluj-Napoca, Romania
*Correspondence e-mail: crat@chem.ubbcluj.ro

(Received 1 October 2009; accepted 13 October 2009; online 17 October 2009)

In the title compound, [Sb(C9H12N)2Cl], the Sb atom adopts a Ψ-trigonal-bipyramidal geometry. The two 2-[(dimethyl­amino)­methyl]­phenyl ligands are coordinated asymmetrically to the Sb atom. The carbon atoms of one of the ligands are disordered over sets of sites with equal occupancy, resulting in two conformational isomers in the crystal. The Sb—C and Sb—N distances in the ordered ligand are: 2.153 (4) and 3.326 (5) Å, respectively. The corresponding distances in the disordered ligand are: 2.103 (5)/2.188 (5) and 2.454 (3) Å, respectively. The structure displays intra­molecular C—H⋯Cl hydrogen bonding.

Related literature

For the structure of the perdeuterobenzene solvate of the title compound, see: Carmalt et al. (1997[Carmalt, C. J., Cowley, A. H., Culp, R. D., Jones, R. A., Kamepalli, S. & Norman, N. C. (1997). Inorg. Chem. 36, 2770-2776.]). For anti­mony(III) compounds with 2-[(dimethyl­amino)­methyl]­phenyl substituents, see: Kamepalli et al. (1996[Kamepalli, S., Carmalt, C. J., Culp, R. D., Cowley, A. H., Jones, R. A. & Norman, N. C. (1996). Inorg. Chem. 35, 6179-6183.]); Tokunaga et al. (2000a[Tokunaga, T., Seki, H., Yasuike, S., Ikoma, M., Kurita, J. & Yamaguchi, K. (2000a). Tetrahedron, 56, 8833-8839.],b[Tokunaga, T., Seki, H., Yasuike, S., Ikoma, M., Kurita, J. & Yamaguchi, K. (2000b). Tetrahedron Lett. 41, 1031-1034.]); Breunig et al. (2003[Breunig, H. J., Ghesner, I., Ghesner, M. E. & Lork, E. (2003). Inorg. Chem. 42, 1751-1757.]); Opris et al. (2003[Opris, L. M., Silvestru, A., Silvestru, C., Breunig, H. J. & Lork, E. (2003). Dalton Trans. pp. 4367-4374.], 2004[Opris, L. M., Silvestru, A., Silvestru, C., Breunig, H. J. & Lork, E. (2004). Dalton Trans. pp. 3575-3585.], 2009[Opris, L. M., Preda, A. M., Varga, R. A., Breunig, H. J. & Silvestru, C. (2009). Eur. J. Inorg. Chem. pp. 1187-1193.]); Sharma et al. (2004[Sharma, P., Castillo, D., Rosas, N., Cabrera, A., Gomez, E., Toscano, A., Lara, F., Hernández, S. & Espinosa, G. (2004). J. Organomet. Chem. 689, 2593-2600.]).

[Scheme 1]

Experimental

Crystal data
  • [Sb(C9H12N)2Cl]

  • Mr = 425.60

  • Triclinic, [P \overline 1]

  • a = 9.289 (7) Å

  • b = 9.367 (7) Å

  • c = 12.888 (10) Å

  • α = 98.073 (13)°

  • β = 103.611 (13)°

  • γ = 116.819 (12)°

  • V = 932.6 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 297 K

  • 0.33 × 0.31 × 0.27 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.617, Tmax = 0.669

  • 10065 measured reflections

  • 3801 independent reflections

  • 3530 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.078

  • S = 1.13

  • 3801 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cl1 0.93 2.65 3.291 (7) 127
C6A—H6A⋯Cl1 0.93 2.74 3.353 (7) 125

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The molecular structure of the perdeuterated benzene solvate of the title compound, (I).C6D6, was first determined by Carmalt et al. (1997). The existence of different enantiomers in the crystal structures of bis[2-(dimethylaminomethyl)phenyl]organoantimony(III) bromide and iodide has been reported (Opris et al., 2003).

In the structure of (I), there are two dimethylaminomethylphenyl ligands that are asymmetrically coordinated to the Sb atom; the Sb atom adopts a Ψ-trigonal-bipyramidal geometry. The ligand containing nitrogen atom N1 was found to be disordered over two positions with s.o.f. of 0.501 (6) (Fig. 1), and 0.499 (6) (Fig. 2) thus resulting in two conformational isomers. Intramolecular hydrogen bonds are present between the chlorine atom and hydrogen atom in position 6 of the organic substituent containing the N1 atom (Table 1).

Bond distances and bond angles in (I) are similar to those reported for the perdeuteraded benzene solvate of the title compound (Carmalt et al., 1997).

Related literature top

For the structure of the perdeuterobenzene solvate of the title compound, see: Carmalt et al. (1997). For antimony(III) compounds with 2-[(dimethylamino)methyl]phenyl substituents, see: Kamepalli et al. (1996); Tokunaga et al. (2000a,b); Breunig et al. (2003); Opris et al. (2003, 2004, 2009); Sharma et al. (2004).

Experimental top

The title compound was prepared according to a previously described method (Carmalt et al., 1997). Colourless crystals were obtained from a solution in chloroform by slow evaporation of the solvent.

Refinement top

The organic group containing N1 was found disordered over two positions. The components of the disorder were refined using a second free-variable. The phenyl groups were refined as rigid groups.

All nonhydrogen atoms were treated anisotropically. Hydrogen atoms were placed in calculated positions with isotropic thermal parameters set at 1.2 times the carbon atoms directly attached for aromatic and methylene hydrogen atoms, and 1.5 for hydrogen atoms of the methyl groups. The position of the hydrogen atoms of the methyl groups was calculated from the electron density.

Structure description top

?···..

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Graphical representation of the molecular structure of RN1,SN2-1. Hydrogen atoms were omitted for clarity. Displacement ellipsoids are drawn at 25% probability.
[Figure 2] Fig. 2. Graphical representation of the molecular structure of SN1,SN2-1. Hydrogen atoms were omitted for clarity. Displacement ellipsoids are drawn at 25% probability.
Chloridobis{2-[(dimethylamino)methyl]phenyl}antimony(III) top
Crystal data top
[Sb(C9H12N)2Cl]Z = 2
Mr = 425.60F(000) = 428
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.289 (7) ÅCell parameters from 3906 reflections
b = 9.367 (7) Åθ = 2.5–24.4°
c = 12.888 (10) ŵ = 1.62 mm1
α = 98.073 (13)°T = 297 K
β = 103.611 (13)°Blocks, colourless
γ = 116.819 (12)°0.33 × 0.31 × 0.27 mm
V = 932.6 (13) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3801 independent reflections
Radiation source: fine-focus sealed tube3530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.617, Tmax = 0.669k = 1111
10065 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.035P)2 + 0.2481P]
where P = (Fo2 + 2Fc2)/3
3801 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Sb(C9H12N)2Cl]γ = 116.819 (12)°
Mr = 425.60V = 932.6 (13) Å3
Triclinic, P1Z = 2
a = 9.289 (7) ÅMo Kα radiation
b = 9.367 (7) ŵ = 1.62 mm1
c = 12.888 (10) ÅT = 297 K
α = 98.073 (13)°0.33 × 0.31 × 0.27 mm
β = 103.611 (13)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3801 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3530 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.669Rint = 0.027
10065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.13Δρmax = 0.78 e Å3
3801 reflectionsΔρmin = 0.45 e Å3
263 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7468 (8)0.4324 (9)0.6493 (5)0.047 (6)0.501 (6)
C20.6306 (6)0.2626 (10)0.6213 (6)0.048 (2)0.501 (6)
C30.6832 (9)0.1477 (7)0.5996 (7)0.065 (3)0.501 (6)
H30.60550.0340.58080.078*0.501 (6)
C40.8521 (10)0.2026 (8)0.6058 (7)0.065 (4)0.501 (6)
H40.88730.12570.59130.078*0.501 (6)
C50.9683 (8)0.3724 (8)0.6339 (7)0.067 (2)0.501 (6)
H51.08130.40910.63810.081*0.501 (6)
C60.9156 (8)0.4873 (6)0.6556 (6)0.058 (2)0.501 (6)
H60.99340.6010.67440.069*0.501 (6)
C70.4477 (9)0.2067 (9)0.6097 (6)0.055 (2)0.501 (6)
H7A0.38640.20570.53720.065*0.501 (6)
H7B0.39130.09520.61810.065*0.501 (6)
C80.2676 (10)0.3037 (11)0.6608 (8)0.074 (3)0.501 (6)
H8A0.24160.31830.58770.111*0.501 (6)
H8B0.26190.38440.7120.111*0.501 (6)
H8C0.18590.19330.65890.111*0.501 (6)
C90.4842 (13)0.2998 (11)0.8043 (7)0.069 (3)0.501 (6)
H9A0.3910.19530.80180.104*0.501 (6)
H9B0.4950.38820.8590.104*0.501 (6)
H9C0.58860.29630.82380.104*0.501 (6)
C1A0.7522 (8)0.4295 (8)0.6416 (5)0.042 (5)0.499 (6)
C2A0.6821 (9)0.2798 (10)0.6685 (5)0.048 (2)0.499 (6)
C3A0.7282 (10)0.1620 (8)0.6387 (7)0.056 (3)0.499 (6)
H3A0.68130.06180.65680.067*0.499 (6)
C4A0.8444 (10)0.1940 (7)0.5819 (7)0.068 (4)0.499 (6)
H4A0.87520.11520.5620.081*0.499 (6)
C5A0.9145 (7)0.3438 (8)0.5549 (6)0.060 (2)0.499 (6)
H5A0.99220.36520.51690.072*0.499 (6)
C6A0.8684 (7)0.4615 (6)0.5847 (6)0.0510 (19)0.499 (6)
H6A0.91530.56170.56670.061*0.499 (6)
C7A0.5589 (10)0.2447 (9)0.7299 (7)0.057 (2)0.499 (6)
H7A10.62090.28620.80930.068*0.499 (6)
H7A20.48350.12510.71150.068*0.499 (6)
C8A0.3298 (10)0.2411 (10)0.5935 (7)0.064 (2)0.499 (6)
H8A10.24380.13540.59540.096*0.499 (6)
H8A20.38390.22350.54210.096*0.499 (6)
H8A30.27730.30440.57020.096*0.499 (6)
C9A0.3800 (12)0.3423 (11)0.7886 (7)0.070 (3)0.499 (6)
H9A10.31750.39970.77350.105*0.499 (6)
H9A20.47150.40340.85870.105*0.499 (6)
H9A30.30430.23270.79150.105*0.499 (6)
C100.7798 (4)0.6853 (4)0.8586 (3)0.0469 (8)
C110.7516 (5)0.7975 (4)0.9215 (3)0.0555 (9)
C120.8347 (6)0.8557 (5)1.0355 (3)0.0677 (11)
H120.8180.93211.0780.081*
C130.9393 (6)0.8043 (6)1.0865 (3)0.0768 (14)
H130.99080.84211.16350.092*
C140.9696 (5)0.6964 (6)1.0246 (4)0.0748 (13)
H141.04410.66321.05950.09*
C150.8894 (5)0.6365 (5)0.9100 (3)0.0606 (10)
H150.91010.56310.86810.073*
C160.6406 (6)0.8609 (5)0.8671 (4)0.0683 (11)
H16A0.65360.95230.92170.082*
H16B0.67890.90410.80860.082*
C170.3876 (7)0.6916 (8)0.9063 (5)0.1067 (18)
H17A0.44410.64560.95080.16*
H17B0.26760.61110.87280.16*
H17C0.40230.79030.95260.16*
C180.3679 (9)0.7882 (9)0.7445 (6)0.133 (3)
H18A0.37490.88670.7850.199*
H18B0.250.70140.71160.199*
H18C0.4170.81270.6870.199*
N10.4519 (4)0.3284 (4)0.6993 (2)0.0517 (7)
N20.4613 (5)0.7338 (5)0.8199 (3)0.0714 (9)
Sb10.65485 (3)0.59640 (3)0.680735 (17)0.04391 (10)
Cl10.92046 (15)0.84267 (12)0.66663 (9)0.0677 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.044 (12)0.053 (13)0.038 (9)0.024 (11)0.009 (9)0.004 (8)
C20.056 (5)0.042 (4)0.040 (5)0.026 (4)0.009 (4)0.003 (4)
C30.093 (8)0.052 (6)0.058 (7)0.043 (6)0.023 (6)0.015 (4)
C40.097 (12)0.063 (9)0.057 (6)0.061 (9)0.020 (6)0.013 (5)
C50.070 (6)0.077 (6)0.068 (6)0.045 (5)0.031 (5)0.016 (5)
C60.062 (5)0.061 (5)0.059 (5)0.035 (4)0.026 (5)0.022 (4)
C70.054 (5)0.042 (4)0.052 (4)0.018 (3)0.011 (3)0.005 (3)
C80.045 (4)0.063 (5)0.090 (7)0.015 (4)0.018 (4)0.008 (5)
C90.085 (7)0.057 (5)0.057 (5)0.026 (5)0.028 (5)0.021 (4)
C1A0.056 (14)0.038 (11)0.038 (9)0.028 (10)0.016 (9)0.013 (7)
C2A0.045 (5)0.045 (5)0.048 (6)0.021 (4)0.008 (4)0.012 (4)
C3A0.054 (5)0.036 (4)0.068 (8)0.021 (4)0.011 (5)0.011 (4)
C4A0.050 (8)0.069 (10)0.072 (7)0.034 (7)0.006 (5)0.003 (5)
C5A0.047 (4)0.057 (5)0.070 (6)0.024 (4)0.022 (4)0.005 (4)
C6A0.045 (4)0.053 (4)0.053 (5)0.024 (4)0.013 (4)0.014 (4)
C7A0.060 (5)0.049 (4)0.064 (5)0.025 (4)0.024 (4)0.025 (4)
C8A0.057 (5)0.048 (4)0.066 (5)0.016 (4)0.014 (4)0.004 (4)
C9A0.076 (6)0.070 (6)0.063 (5)0.028 (5)0.040 (5)0.020 (4)
C100.0482 (18)0.0412 (18)0.0354 (17)0.0122 (15)0.0117 (14)0.0073 (14)
C110.061 (2)0.0398 (18)0.0454 (19)0.0094 (17)0.0221 (17)0.0055 (15)
C120.066 (3)0.055 (2)0.052 (2)0.008 (2)0.025 (2)0.0036 (19)
C130.067 (3)0.081 (3)0.0329 (19)0.005 (2)0.0127 (19)0.001 (2)
C140.060 (3)0.086 (3)0.056 (3)0.025 (2)0.004 (2)0.022 (2)
C150.056 (2)0.066 (2)0.046 (2)0.025 (2)0.0093 (17)0.0096 (18)
C160.101 (3)0.048 (2)0.066 (3)0.041 (2)0.040 (2)0.0163 (19)
C170.100 (4)0.128 (5)0.122 (5)0.066 (4)0.067 (4)0.039 (4)
C180.146 (6)0.149 (6)0.161 (7)0.114 (5)0.044 (5)0.077 (5)
N10.0538 (17)0.0515 (17)0.0482 (17)0.0244 (15)0.0207 (14)0.0115 (14)
N20.078 (2)0.076 (2)0.083 (3)0.050 (2)0.036 (2)0.034 (2)
Sb10.05461 (16)0.04224 (14)0.03608 (14)0.02685 (12)0.01251 (10)0.01049 (9)
Cl10.0829 (7)0.0465 (5)0.0674 (6)0.0227 (5)0.0340 (6)0.0182 (5)
Geometric parameters (Å, º) top
C1—C21.39C7A—H7A10.97
C1—C61.39C7A—H7A20.97
C1—Sb12.103 (5)C8A—N11.391 (8)
C2—C31.39C8A—H8A10.96
C2—C71.496 (9)C8A—H8A20.96
C3—C41.39C8A—H8A30.96
C3—H30.93C9A—N11.479 (9)
C4—C51.39C9A—H9A10.96
C4—H40.93C9A—H9A20.96
C5—C61.39C9A—H9A30.96
C5—H50.93C10—C151.369 (5)
C6—H60.93C10—C111.393 (5)
C7—N11.484 (8)C10—Sb12.153 (4)
C7—H7A0.97C11—C121.383 (5)
C7—H7B0.97C11—C161.496 (6)
C8—N11.563 (9)C12—C131.348 (7)
C8—H8A0.96C12—H120.93
C8—H8B0.96C13—C141.368 (7)
C8—H8C0.96C13—H130.93
C9—N11.406 (8)C14—C151.387 (6)
C9—H9A0.96C14—H140.93
C9—H9B0.96C15—H150.93
C9—H9C0.96C16—N21.446 (6)
C1A—C2A1.39C16—H16A0.97
C1A—C6A1.39C16—H16B0.97
C1A—Sb12.188 (5)C17—N21.451 (6)
C2A—C3A1.39C17—H17A0.96
C2A—C7A1.484 (9)C17—H17B0.96
C3A—C4A1.39C17—H17C0.96
C3A—H3A0.93C18—N21.448 (6)
C4A—C5A1.39C18—H18A0.96
C4A—H4A0.93C18—H18B0.96
C5A—C6A1.39C18—H18C0.96
C5A—H5A0.93N1—Sb12.454 (3)
C6A—H6A0.93N2—Sb13.326 (5)
C7A—N11.537 (8)Sb1—Cl12.5759 (18)
C2—C1—C6120C12—C11—C10118.7 (4)
C2—C1—Sb1117.2 (4)C12—C11—C16120.2 (4)
C6—C1—Sb1122.8 (4)C10—C11—C16121.0 (3)
C3—C2—C1120C13—C12—C11121.5 (4)
C3—C2—C7121.1 (6)C13—C12—H12119.2
C1—C2—C7118.9 (6)C11—C12—H12119.2
C4—C3—C2120C12—C13—C14119.8 (4)
C4—C3—H3120C12—C13—H13120.1
C2—C3—H3120C14—C13—H13120.1
C5—C4—C3120C13—C14—C15120.2 (4)
C5—C4—H4120C13—C14—H14119.9
C3—C4—H4120C15—C14—H14119.9
C6—C5—C4120C10—C15—C14120.0 (4)
C6—C5—H5120C10—C15—H15120
C4—C5—H5120C14—C15—H15120
C5—C6—C1120N2—C16—C11112.9 (3)
C5—C6—H6120N2—C16—H16A109
C1—C6—H6120C11—C16—H16A109
N1—C7—C2106.2 (5)N2—C16—H16B109
N1—C7—H7A110.5C11—C16—H16B109
C2—C7—H7A110.5H16A—C16—H16B107.8
N1—C7—H7B110.5N2—C17—H17A109.5
C2—C7—H7B110.5N2—C17—H17B109.5
H7A—C7—H7B108.7H17A—C17—H17B109.5
N1—C8—H8A109.5N2—C17—H17C109.5
N1—C8—H8B109.5H17A—C17—H17C109.5
N1—C8—H8C109.5H17B—C17—H17C109.5
N1—C9—H9A109.5N2—C18—H18A109.5
N1—C9—H9B109.5N2—C18—H18B109.5
N1—C9—H9C109.5H18A—C18—H18B109.5
C2A—C1A—C6A120N2—C18—H18C109.5
C2A—C1A—Sb1116.7 (4)H18A—C18—H18C109.5
C6A—C1A—Sb1123.1 (4)H18B—C18—H18C109.5
C3A—C2A—C1A120C8A—N1—C9137.0 (6)
C3A—C2A—C7A119.5 (6)C8A—N1—C9A114.3 (6)
C1A—C2A—C7A120.5 (6)C9—N1—C9A48.6 (5)
C2A—C3A—C4A120C8A—N1—C751.7 (5)
C2A—C3A—H3A120C9—N1—C7114.1 (6)
C4A—C3A—H3A120C9A—N1—C7143.2 (5)
C5A—C4A—C3A120C8A—N1—C7A110.2 (5)
C5A—C4A—H4A120C9—N1—C7A59.8 (5)
C3A—C4A—H4A120C9A—N1—C7A107.8 (6)
C6A—C5A—C4A120C7—N1—C7A61.0 (4)
C6A—C5A—H5A120C8A—N1—C854.1 (5)
C4A—C5A—H5A120C9—N1—C8108.4 (6)
C5A—C6A—C1A120C9A—N1—C864.2 (6)
C5A—C6A—H6A120C7—N1—C8104.2 (5)
C1A—C6A—H6A120C7A—N1—C8145.7 (5)
C2A—C7A—N1110.5 (5)C8A—N1—Sb1105.1 (4)
C2A—C7A—H7A1109.5C9—N1—Sb1117.9 (4)
N1—C7A—H7A1109.5C9A—N1—Sb1114.6 (4)
C2A—C7A—H7A2109.5C7—N1—Sb1102.2 (3)
N1—C7A—H7A2109.5C7A—N1—Sb1104.3 (3)
H7A1—C7A—H7A2108.1C8—N1—Sb1109.2 (4)
N1—C8A—H8A1109.5C16—N2—C18110.2 (4)
N1—C8A—H8A2109.5C16—N2—C17111.2 (4)
H8A1—C8A—H8A2109.5C18—N2—C17110.9 (5)
N1—C8A—H8A3109.5C1—Sb1—C1096.9 (2)
H8A1—C8A—H8A3109.5C1—Sb1—C1A2.6 (3)
H8A2—C8A—H8A3109.5C10—Sb1—C1A98.77 (18)
N1—C9A—H9A1109.5C1—Sb1—N173.2 (2)
N1—C9A—H9A2109.5C10—Sb1—N189.75 (12)
H9A1—C9A—H9A2109.5C1A—Sb1—N175.0 (2)
N1—C9A—H9A3109.5C1—Sb1—Cl191.9 (2)
H9A1—C9A—H9A3109.5C10—Sb1—Cl187.61 (10)
H9A2—C9A—H9A3109.5C1A—Sb1—Cl190.3 (2)
C15—C10—C11119.7 (3)N1—Sb1—Cl1164.43 (8)
C15—C10—Sb1121.0 (3)N2—Sb1—Cl1110.65 (8)
C11—C10—Sb1119.3 (3)
C6—C1—C2—C30C11—C16—N2—C18165.1 (4)
Sb1—C1—C2—C3180.0 (5)C11—C16—N2—C1771.6 (5)
C6—C1—C2—C7177.0 (7)C2—C1—Sb1—C10106.9 (4)
Sb1—C1—C2—C73.0 (7)C6—C1—Sb1—C1073.1 (4)
C1—C2—C3—C40C2—C1—Sb1—C1A114 (7)
C7—C2—C3—C4177.0 (7)C6—C1—Sb1—C1A66 (7)
C2—C3—C4—C50C2—C1—Sb1—N119.3 (4)
C3—C4—C5—C60C6—C1—Sb1—N1160.7 (4)
C4—C5—C6—C10C2—C1—Sb1—Cl1165.3 (4)
C2—C1—C6—C50C6—C1—Sb1—Cl114.7 (4)
Sb1—C1—C6—C5180.0 (5)C15—C10—Sb1—C14.3 (4)
C3—C2—C7—N1144.3 (5)C11—C10—Sb1—C1177.3 (3)
C1—C2—C7—N138.6 (8)C15—C10—Sb1—C1A2.6 (4)
C6A—C1A—C2A—C3A0C11—C10—Sb1—C1A179.0 (3)
Sb1—C1A—C2A—C3A175.2 (4)C15—C10—Sb1—N177.3 (3)
C6A—C1A—C2A—C7A179.6 (7)C11—C10—Sb1—N1104.3 (3)
Sb1—C1A—C2A—C7A5.2 (7)C15—C10—Sb1—Cl187.3 (3)
C1A—C2A—C3A—C4A0C11—C10—Sb1—Cl191.1 (3)
C7A—C2A—C3A—C4A179.6 (7)C2A—C1A—Sb1—C133 (7)
C2A—C3A—C4A—C5A0C6A—C1A—Sb1—C1152 (7)
C3A—C4A—C5A—C6A0C2A—C1A—Sb1—C1074.1 (3)
C4A—C5A—C6A—C1A0C6A—C1A—Sb1—C10110.8 (4)
C2A—C1A—C6A—C5A0C2A—C1A—Sb1—N113.3 (3)
Sb1—C1A—C6A—C5A174.9 (5)C6A—C1A—Sb1—N1161.8 (4)
C3A—C2A—C7A—N1148.5 (4)C2A—C1A—Sb1—Cl1161.7 (3)
C1A—C2A—C7A—N131.9 (8)C6A—C1A—Sb1—Cl123.2 (4)
C15—C10—C11—C120.6 (5)C8A—N1—Sb1—C190.6 (5)
Sb1—C10—C11—C12179.0 (3)C9—N1—Sb1—C188.5 (6)
C15—C10—C11—C16176.5 (4)C9A—N1—Sb1—C1143.0 (5)
Sb1—C10—C11—C161.9 (5)C7—N1—Sb1—C137.4 (4)
C10—C11—C12—C131.1 (6)C7A—N1—Sb1—C125.4 (4)
C16—C11—C12—C13178.2 (4)C8—N1—Sb1—C1147.3 (5)
C11—C12—C13—C142.2 (6)C8A—N1—Sb1—C10172.1 (4)
C12—C13—C14—C151.7 (7)C9—N1—Sb1—C108.7 (5)
C11—C10—C15—C141.1 (6)C9A—N1—Sb1—C1045.8 (5)
Sb1—C10—C15—C14179.5 (3)C7—N1—Sb1—C10134.6 (4)
C13—C14—C15—C100.1 (6)C7A—N1—Sb1—C1071.8 (4)
C12—C11—C16—N2113.5 (4)C8—N1—Sb1—C10115.5 (4)
C10—C11—C16—N269.5 (5)C8A—N1—Sb1—C1A88.7 (4)
C2—C7—N1—C8A147.4 (8)C9—N1—Sb1—C1A90.4 (6)
C2—C7—N1—C980.7 (7)C9A—N1—Sb1—C1A145.0 (5)
C2—C7—N1—C9A133.0 (9)C7—N1—Sb1—C1A35.5 (4)
C2—C7—N1—C7A52.1 (6)C7A—N1—Sb1—C1A27.3 (4)
C2—C7—N1—C8161.3 (6)C8—N1—Sb1—C1A145.4 (4)
C2—C7—N1—Sb147.7 (6)C8A—N1—Sb1—Cl1107.7 (5)
C2A—C7A—N1—C8A74.7 (7)C9—N1—Sb1—Cl171.4 (6)
C2A—C7A—N1—C9151.9 (8)C9A—N1—Sb1—Cl1126.0 (5)
C2A—C7A—N1—C9A159.9 (6)C7—N1—Sb1—Cl154.5 (5)
C2A—C7A—N1—C758.5 (6)C7A—N1—Sb1—Cl18.3 (5)
C2A—C7A—N1—C8130.0 (9)C8—N1—Sb1—Cl1164.4 (4)
C2A—C7A—N1—Sb137.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl10.932.653.291 (7)127
C6A—H6A···Cl10.932.743.353 (7)125

Experimental details

Crystal data
Chemical formula[Sb(C9H12N)2Cl]
Mr425.60
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)9.289 (7), 9.367 (7), 12.888 (10)
α, β, γ (°)98.073 (13), 103.611 (13), 116.819 (12)
V3)932.6 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.33 × 0.31 × 0.27
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.617, 0.669
No. of measured, independent and
observed [I > 2σ(I)] reflections
10065, 3801, 3530
Rint0.027
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.078, 1.13
No. of reflections3801
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.45

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
C1—Sb12.103 (5)N2—Sb13.326 (5)
C1A—Sb12.188 (5)Sb1—Cl12.5759 (18)
N1—Sb12.454 (3)
C1—Sb1—C1A2.6 (3)C1—Sb1—Cl191.9 (2)
C10—Sb1—C1A98.77 (18)C10—Sb1—Cl187.61 (10)
C1—Sb1—N173.2 (2)C1A—Sb1—Cl190.3 (2)
C10—Sb1—N189.75 (12)N1—Sb1—Cl1164.43 (8)
C1A—Sb1—N175.0 (2)N2—Sb1—Cl1110.65 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl10.932.653.291 (7)127
C6A—H6A···Cl10.932.743.353 (7)125
 

Acknowledgements

We thank Dr Albert Soran for the crystal selection and measurement and Dr Richard A. Varga for helpful suggestions regarding the disorder refinement. This work was supported by the National University Research Council (CNCSIS) of Romania (research project PNII-ID 2052/2009). MO thanks Babeş-Bolyai University for a research fellowship (14/01.10.2008).

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreunig, H. J., Ghesner, I., Ghesner, M. E. & Lork, E. (2003). Inorg. Chem. 42, 1751–1757.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarmalt, C. J., Cowley, A. H., Culp, R. D., Jones, R. A., Kamepalli, S. & Norman, N. C. (1997). Inorg. Chem. 36, 2770–2776.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKamepalli, S., Carmalt, C. J., Culp, R. D., Cowley, A. H., Jones, R. A. & Norman, N. C. (1996). Inorg. Chem. 35, 6179–6183.  CSD CrossRef CAS Web of Science Google Scholar
First citationOpris, L. M., Preda, A. M., Varga, R. A., Breunig, H. J. & Silvestru, C. (2009). Eur. J. Inorg. Chem. pp. 1187–1193.  Web of Science CSD CrossRef Google Scholar
First citationOpris, L. M., Silvestru, A., Silvestru, C., Breunig, H. J. & Lork, E. (2003). Dalton Trans. pp. 4367–4374.  Web of Science CSD CrossRef Google Scholar
First citationOpris, L. M., Silvestru, A., Silvestru, C., Breunig, H. J. & Lork, E. (2004). Dalton Trans. pp. 3575–3585.  Web of Science CSD CrossRef Google Scholar
First citationSharma, P., Castillo, D., Rosas, N., Cabrera, A., Gomez, E., Toscano, A., Lara, F., Hernández, S. & Espinosa, G. (2004). J. Organomet. Chem. 689, 2593–2600.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokunaga, T., Seki, H., Yasuike, S., Ikoma, M., Kurita, J. & Yamaguchi, K. (2000a). Tetrahedron, 56, 8833–8839.  Web of Science CSD CrossRef CAS Google Scholar
First citationTokunaga, T., Seki, H., Yasuike, S., Ikoma, M., Kurita, J. & Yamaguchi, K. (2000b). Tetrahedron Lett. 41, 1031–1034.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds