organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-{4-[1-(Hydroxyimino)ethyl]phenyl­imino­methyl}-6-methoxyphenol mono­hydrate

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bSchool of Environmental Science and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@126.com

(Received 3 October 2009; accepted 13 October 2009; online 17 October 2009)

In the title compound, C16H16N2O3·H2O, the benzene rings are nearly coplanar with each other, forming a dihedral angle of 4.46 (3)°. There is a strong intra­molecular O—H⋯N hydrogen bond which results in a six-membered ring. In the crystal, the mol­ecules are connected into a three-dimensional network via O—H⋯O and O—H⋯N inter­molecular hydrogen bonds, forming a centrosymmetric ring along the b axis with graph-set motif R44(10). In addition, the short distances between the centroids of six-membered rings [3.555 (1) Å], indicate the existence of ππ stacking inter­actions, which may stabilize the crystal structure.

Related literature

For background to oximes, see: Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]); Dong et al. (2008[Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008). Acta Cryst. E64, o1405.], 2009[Dong, W-K., Zhao, C.-Y., Sun, Y.-X., Tang, X.-L. & He, X.-N. (2009). Inorg. Chem. Commun. 12, 234-236.]); Zhao et al. (2009[Zhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3·H2O

  • Mr = 302.32

  • Triclinic, [P \overline 1]

  • a = 8.1030 (14) Å

  • b = 8.3273 (15) Å

  • c = 12.4392 (16) Å

  • α = 72.095 (1)°

  • β = 80.012 (2)°

  • γ = 69.454 (1)°

  • V = 745.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.45 × 0.33 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.987

  • 3912 measured reflections

  • 2586 independent reflections

  • 1202 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.149

  • S = 1.02

  • 2586 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.84 2.656 (3) 176
O2—H2⋯N2 0.82 1.86 2.589 (3) 147
O4—H4A⋯O2ii 0.85 2.07 2.885 (3) 161
O4—H4B⋯N1iii 0.85 2.15 2.945 (3) 156
Symmetry codes: (i) x+1, y-1, z-1; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). In continuation of our study (Zhao et al., 2009; Dong et al., 2008; Dong et al., 2009) on oxime-type compounds, herein, we report the synthesis and crystal structure of the title compound (I).

The asymmetric unit of the title compound (Fig. 1), which is a potential bidentate oxime-type ligand, contains one (E)-4-[1-(hydroxyimino)ethyl]-N-(2-hydroxy-3-methoxybenzylidene)aniline and one water molecule. The bond lengths and angles in the molecule are within normal ranges (Allen et al., 1987). Two benzene rings (C3—C8 and C10—C15) are nearly coplanar with each other, making a dihedral angle of 4.46 (3)°. The torsion angles O1—N1—C2—C3 and C6—N2—C9—C10 are -178.7 (2) and -178.9 (2)°, respectively.

In the title compound, a strong intramolecular O—H···N hydrogen bond forms a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The molecules of (I) are connected into a three-dimensional hydrogen-bonded network via O—H···O and O—H···N hydrogen bonds, thus generating double layers, the junction between them is ensured by intermolecular O4—H4B···N1, O1—H1···O4 hydrogen bonds which can be described by the graph-set motif of R44(10) (Bernstein et al., 1995) and O4—H4A···O2 hydrogen bonds (Table 1, Fig. 2) via a water molecule (H2O, (O4)), forming a centrosymmetric ring along the b axis. In addition, short distances between the centroids of six-membered rings [3.555 (1) Å], shows the existence of π···π stacking interactions which may stabilize the crystal structure (Fig. 2).

Related literature top

For background to oximes, see: Chaudhuri (2003); Dong et al. (2008, 2009); Zhao et al. (2009). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

To a pale-yellow solution of 2-hydroxy-3-methoxybenzaldehyde (152.2 mg, 1.00 mmol) in ethanol (3 ml) was added a colorless solution of 1-(p-aminophenyl)ethanone oxime (143.5 mg, 0.96 mmol) in ethanol (3 ml). The mixture was stirred at 328–333 K for 13 h. On cooling the mixture to room temperature, a red precipitate was formed which was filtered under reduced pressure and washed successively with ethanol (2 ml) and n-hexane (6 ml). The product was dried under vacuum and purified with recrystallization from ethanol to yield the title compound. Red block-like single crystals suitable for X-ray diffraction studies were obtained after two weeks by slow evaporation from an acetone solution of the title compound at room temperature.

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.93 Å (CH), O—H = 0.82 Å for (OH) and 0.85 Å (H2O). The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.

Structure description top

Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). In continuation of our study (Zhao et al., 2009; Dong et al., 2008; Dong et al., 2009) on oxime-type compounds, herein, we report the synthesis and crystal structure of the title compound (I).

The asymmetric unit of the title compound (Fig. 1), which is a potential bidentate oxime-type ligand, contains one (E)-4-[1-(hydroxyimino)ethyl]-N-(2-hydroxy-3-methoxybenzylidene)aniline and one water molecule. The bond lengths and angles in the molecule are within normal ranges (Allen et al., 1987). Two benzene rings (C3—C8 and C10—C15) are nearly coplanar with each other, making a dihedral angle of 4.46 (3)°. The torsion angles O1—N1—C2—C3 and C6—N2—C9—C10 are -178.7 (2) and -178.9 (2)°, respectively.

In the title compound, a strong intramolecular O—H···N hydrogen bond forms a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The molecules of (I) are connected into a three-dimensional hydrogen-bonded network via O—H···O and O—H···N hydrogen bonds, thus generating double layers, the junction between them is ensured by intermolecular O4—H4B···N1, O1—H1···O4 hydrogen bonds which can be described by the graph-set motif of R44(10) (Bernstein et al., 1995) and O4—H4A···O2 hydrogen bonds (Table 1, Fig. 2) via a water molecule (H2O, (O4)), forming a centrosymmetric ring along the b axis. In addition, short distances between the centroids of six-membered rings [3.555 (1) Å], shows the existence of π···π stacking interactions which may stabilize the crystal structure (Fig. 2).

For background to oximes, see: Chaudhuri (2003); Dong et al. (2008, 2009); Zhao et al. (2009). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT(Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing interactions in the title compound, showing the intra- and intermolecular hydrogen bonds as well as π···π stacking; H atoms not involved in hydrogen bonding have been omitted for clarity.
(E)-2-{4-[1-(Hydroxyimino)ethyl]phenyliminomethyl}-6-methoxyphenol monohydrate top
Crystal data top
C16H16N2O3·H2OZ = 2
Mr = 302.32F(000) = 320
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Melting point = 462–464 K
a = 8.1030 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3273 (15) ÅCell parameters from 714 reflections
c = 12.4392 (16) Åθ = 2.7–24.1°
α = 72.095 (1)°µ = 0.10 mm1
β = 80.012 (2)°T = 298 K
γ = 69.454 (1)°Block-like, red
V = 745.9 (2) Å30.45 × 0.33 × 0.13 mm
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
2586 independent reflections
Radiation source: fine-focus sealed tube1202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ & ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 69
Tmin = 0.957, Tmax = 0.987k = 89
3912 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
2586 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H16N2O3·H2Oγ = 69.454 (1)°
Mr = 302.32V = 745.9 (2) Å3
Triclinic, P1Z = 2
a = 8.1030 (14) ÅMo Kα radiation
b = 8.3273 (15) ŵ = 0.10 mm1
c = 12.4392 (16) ÅT = 298 K
α = 72.095 (1)°0.45 × 0.33 × 0.13 mm
β = 80.012 (2)°
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
2586 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1202 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.987Rint = 0.032
3912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2586 reflectionsΔρmin = 0.22 e Å3
200 parameters
Special details top

Experimental. Yield (164.9 mg) 60.69%. m. p. 462–464 K. Anal. Calcd. for C16H18N2O4: C, 63.56; H, 6.00; N, 9.27. Found: C, 63.40; H, 5.89; N, 9.35.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7058 (3)0.0828 (3)0.08266 (19)0.0465 (7)
N20.2416 (3)0.2204 (3)0.49248 (18)0.0434 (7)
O10.7764 (3)0.1760 (3)0.00028 (16)0.0581 (7)
H10.85340.13820.04020.087*
O20.0132 (3)0.2394 (3)0.66543 (16)0.0557 (6)
H20.07420.19760.61450.084*
O30.1419 (3)0.3878 (3)0.83000 (16)0.0588 (7)
O40.0191 (3)0.9607 (3)0.87286 (16)0.0640 (7)
H4A0.00951.04900.81520.077*
H4B0.09370.97630.90570.077*
C10.5205 (4)0.2745 (4)0.1335 (3)0.0639 (10)
H1A0.45680.23000.06650.096*
H1B0.44440.30840.19840.096*
H1C0.62080.37620.12670.096*
C20.5816 (4)0.1332 (4)0.1469 (2)0.0410 (8)
C30.4953 (4)0.0402 (4)0.2358 (2)0.0398 (8)
C40.5415 (4)0.0994 (5)0.2463 (3)0.0587 (10)
H40.62880.13560.19570.070*
C50.4632 (4)0.1858 (4)0.3285 (3)0.0582 (10)
H50.49940.27780.33290.070*
C60.3319 (4)0.1393 (4)0.4047 (2)0.0422 (8)
C70.2842 (4)0.0012 (4)0.3959 (2)0.0517 (9)
H70.19680.03420.44680.062*
C80.3632 (4)0.0859 (4)0.3131 (2)0.0517 (9)
H80.32680.17800.30910.062*
C90.2666 (4)0.3593 (4)0.5021 (2)0.0464 (8)
H90.34400.40820.44910.056*
C100.1800 (4)0.4421 (4)0.5912 (2)0.0429 (8)
C110.0578 (4)0.3787 (4)0.6698 (2)0.0408 (8)
C120.0257 (4)0.4610 (4)0.7574 (2)0.0432 (8)
C130.0148 (4)0.6037 (4)0.7638 (2)0.0491 (8)
H130.03850.65740.82200.059*
C140.1346 (4)0.6693 (4)0.6846 (3)0.0589 (10)
H140.15980.76740.68940.071*
C150.2161 (4)0.5905 (4)0.5991 (3)0.0561 (9)
H150.29580.63590.54610.067*
C160.2143 (4)0.4549 (5)0.9261 (2)0.0670 (11)
H16A0.12020.44800.96650.100*
H16B0.28440.38530.97490.100*
H16C0.28720.57660.90170.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0498 (17)0.0535 (18)0.0406 (14)0.0166 (14)0.0027 (13)0.0219 (14)
N20.0459 (17)0.0426 (17)0.0378 (14)0.0102 (13)0.0004 (12)0.0117 (13)
O10.0661 (16)0.0676 (17)0.0528 (13)0.0311 (13)0.0165 (11)0.0330 (12)
O20.0715 (16)0.0571 (15)0.0516 (13)0.0332 (13)0.0125 (11)0.0271 (12)
O30.0683 (16)0.0705 (17)0.0538 (14)0.0367 (13)0.0183 (12)0.0349 (13)
O40.0766 (17)0.0707 (17)0.0532 (13)0.0408 (14)0.0019 (12)0.0119 (12)
C10.068 (2)0.067 (3)0.071 (2)0.032 (2)0.0146 (19)0.035 (2)
C20.043 (2)0.043 (2)0.0394 (18)0.0172 (17)0.0020 (15)0.0110 (15)
C30.041 (2)0.041 (2)0.0370 (17)0.0125 (16)0.0042 (14)0.0102 (15)
C40.061 (2)0.073 (3)0.057 (2)0.039 (2)0.0220 (18)0.031 (2)
C50.054 (2)0.074 (3)0.065 (2)0.035 (2)0.0180 (18)0.040 (2)
C60.044 (2)0.043 (2)0.0387 (18)0.0133 (17)0.0002 (15)0.0108 (16)
C70.055 (2)0.048 (2)0.0474 (19)0.0219 (18)0.0168 (16)0.0121 (17)
C80.054 (2)0.047 (2)0.056 (2)0.0234 (18)0.0096 (17)0.0158 (18)
C90.044 (2)0.042 (2)0.0442 (18)0.0100 (17)0.0051 (15)0.0078 (16)
C100.040 (2)0.043 (2)0.0417 (18)0.0108 (17)0.0001 (15)0.0104 (16)
C110.047 (2)0.038 (2)0.0411 (18)0.0146 (16)0.0057 (15)0.0128 (15)
C120.041 (2)0.045 (2)0.0449 (18)0.0146 (17)0.0033 (15)0.0132 (16)
C130.052 (2)0.047 (2)0.053 (2)0.0151 (18)0.0034 (17)0.0207 (17)
C140.065 (2)0.049 (2)0.072 (2)0.024 (2)0.002 (2)0.025 (2)
C150.060 (2)0.044 (2)0.064 (2)0.0242 (19)0.0098 (18)0.0135 (18)
C160.075 (3)0.086 (3)0.052 (2)0.034 (2)0.0175 (18)0.036 (2)
Geometric parameters (Å, º) top
N1—C21.281 (3)C5—C61.377 (4)
N1—O11.398 (3)C5—H50.9300
N2—C91.285 (3)C6—C71.375 (4)
N2—C61.418 (3)C7—C81.378 (4)
O1—H10.8200C7—H70.9300
O2—C111.349 (3)C8—H80.9300
O2—H20.8200C9—C101.434 (4)
O3—C121.357 (3)C9—H90.9300
O3—C161.422 (3)C10—C111.388 (4)
O4—H4A0.8500C10—C151.400 (4)
O4—H4B0.8500C11—C121.412 (4)
C1—C21.489 (4)C12—C131.367 (4)
C1—H1A0.9600C13—C141.386 (4)
C1—H1B0.9600C13—H130.9300
C1—H1C0.9600C14—C151.371 (4)
C2—C31.480 (4)C14—H140.9300
C3—C81.386 (4)C15—H150.9300
C3—C41.388 (4)C16—H16A0.9600
C4—C51.369 (4)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
C2—N1—O1112.3 (2)C7—C8—C3121.9 (3)
C9—N2—C6121.4 (3)C7—C8—H8119.1
N1—O1—H1109.5C3—C8—H8119.1
C11—O2—H2109.5N2—C9—C10122.7 (3)
C12—O3—C16117.0 (2)N2—C9—H9118.6
H4A—O4—H4B107.7C10—C9—H9118.6
C2—C1—H1A109.5C11—C10—C15119.0 (3)
C2—C1—H1B109.5C11—C10—C9120.9 (3)
H1A—C1—H1B109.5C15—C10—C9120.1 (3)
C2—C1—H1C109.5O2—C11—C10122.1 (3)
H1A—C1—H1C109.5O2—C11—C12117.6 (3)
H1B—C1—H1C109.5C10—C11—C12120.2 (3)
N1—C2—C3116.7 (3)O3—C12—C13125.3 (3)
N1—C2—C1123.0 (3)O3—C12—C11115.4 (3)
C3—C2—C1120.3 (3)C13—C12—C11119.3 (3)
C8—C3—C4115.9 (3)C12—C13—C14120.7 (3)
C8—C3—C2122.4 (3)C12—C13—H13119.6
C4—C3—C2121.8 (3)C14—C13—H13119.6
C5—C4—C3122.3 (3)C15—C14—C13120.4 (3)
C5—C4—H4118.9C15—C14—H14119.8
C3—C4—H4118.9C13—C14—H14119.8
C4—C5—C6121.3 (3)C14—C15—C10120.3 (3)
C4—C5—H5119.4C14—C15—H15119.8
C6—C5—H5119.4C10—C15—H15119.8
C7—C6—C5117.3 (3)O3—C16—H16A109.5
C7—C6—N2116.8 (3)O3—C16—H16B109.5
C5—C6—N2125.9 (3)H16A—C16—H16B109.5
C6—C7—C8121.3 (3)O3—C16—H16C109.5
C6—C7—H7119.3H16A—C16—H16C109.5
C8—C7—H7119.3H16B—C16—H16C109.5
O1—N1—C2—C3178.9 (2)N2—C9—C10—C112.6 (4)
O1—N1—C2—C10.4 (4)N2—C9—C10—C15178.3 (3)
N1—C2—C3—C8177.9 (3)C15—C10—C11—O2178.2 (3)
C1—C2—C3—C83.6 (4)C9—C10—C11—O20.9 (4)
N1—C2—C3—C42.5 (4)C15—C10—C11—C121.2 (4)
C1—C2—C3—C4176.0 (3)C9—C10—C11—C12179.7 (3)
C8—C3—C4—C50.7 (5)C16—O3—C12—C136.2 (4)
C2—C3—C4—C5179.7 (3)C16—O3—C12—C11173.5 (2)
C3—C4—C5—C60.8 (5)O2—C11—C12—O31.0 (4)
C4—C5—C6—C70.8 (5)C10—C11—C12—O3179.6 (2)
C4—C5—C6—N2179.6 (3)O2—C11—C12—C13179.3 (3)
C9—N2—C6—C7174.4 (3)C10—C11—C12—C130.1 (4)
C9—N2—C6—C56.0 (5)O3—C12—C13—C14179.4 (3)
C5—C6—C7—C80.7 (5)C11—C12—C13—C140.9 (5)
N2—C6—C7—C8179.6 (3)C12—C13—C14—C150.8 (5)
C6—C7—C8—C30.7 (5)C13—C14—C15—C100.4 (5)
C4—C3—C8—C70.6 (5)C11—C10—C15—C141.4 (5)
C2—C3—C8—C7179.7 (3)C9—C10—C15—C14179.5 (3)
C6—N2—C9—C10178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.842.656 (3)176
O2—H2···N20.821.862.589 (3)147
O4—H4A···O2ii0.852.072.885 (3)161
O4—H4B···N1iii0.852.152.945 (3)156
Symmetry codes: (i) x+1, y1, z1; (ii) x, y+1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H16N2O3·H2O
Mr302.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.1030 (14), 8.3273 (15), 12.4392 (16)
α, β, γ (°)72.095 (1), 80.012 (2), 69.454 (1)
V3)745.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.33 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
3912, 2586, 1202
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.149, 1.02
No. of reflections2586
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: SMART (Siemens, 1996), SAINT(Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.842.656 (3)175.9
O2—H2···N20.8201.8632.589 (3)146.87
O4—H4A···O2ii0.852.072.885 (3)160.5
O4—H4B···N1iii0.852.152.945 (3)155.8
Symmetry codes: (i) x+1, y1, z1; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (0904–11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationDong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008). Acta Cryst. E64, o1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W-K., Zhao, C.-Y., Sun, Y.-X., Tang, X.-L. & He, X.-N. (2009). Inorg. Chem. Commun. 12, 234–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds