metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-1,2-Di-4-pyridylethyl­ene-κ2N:N′)bis­­[bis­­(N,N-di­methyl­di­thio­carbamato-κ2S,S′)zinc(II)]

aChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 October 2009; accepted 24 October 2009; online 31 October 2009)

The dinuclear title compound, [Zn2(C3H6NS2)4(C12H10N2)], features two five-coordinate Zn atoms, one with an NS4 coordination geometry distorted towards a trigonal-bipyramidal arrangement, and the other distorted towards a square pyramid. In the crystal, mol­ecules are connected into supra­molecular zigzag chains via C—H⋯S contacts. Chains are connected via C—H⋯π interactions, consolidating the crystal packing.

Related literature

For background to supra­molecular polymers of zinc 1,1-dithiol­ates, see: Lai et al. (2002[Lai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596-600.]); Chen et al. (2006[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]); Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]). For a related structure and the synthesis, see: Lai & Tiekink (2003[Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251-252.]). For additional geometrical analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C3H6NS2)4(C12H10N2)]

  • Mr = 793.79

  • Monoclinic, P 21 /c

  • a = 13.061 (4) Å

  • b = 15.904 (4) Å

  • c = 17.658 (5) Å

  • β = 108.443 (4)°

  • V = 3479.7 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 98 K

  • 0.40 × 0.08 × 0.06 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.645, Tmax = 1.000

  • 23158 measured reflections

  • 7142 independent reflections

  • 6509 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.155

  • S = 1.22

  • 7142 reflections

  • 369 parameters

  • H-atom parameters constrained

  • Δρmax = 1.51 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯S6i 0.95 2.81 3.636 (5) 146
C18—H18⋯Cg1ii 0.95 2.76 3.589 (5) 146
C24—H24b⋯Cg2iii 0.98 2.93 3.638 (7) 130
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 is the centroid of the Zn, S1, S2, C1 chelate ring and Cg2 is the centroid of the N3, C7–C11 ring.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compared to their xanthates (-S2COR) and dithiophosphates [-S2P(OR)2], crystal engineering studies of zinc(II) dithiocarbamates (-S2CNR2) are less well developed (Lai et al., 2002; Chen et al., 2006; Benson et al. 2007). This is likely due to the stronger chelating ability of the dithiocarbamate ligand which tends to preclude incorporation of multiple bridging ligands within the Zn atom coordination sphere. This principle is exemplified in the title compound, (I), Fig. 1, where each Zn atom is five coordinate within a NS4 donor set. The dithiocarbamate ligands are chelating but form disparate Zn—S bond distances ranging from 2.3204 (15) to 2.6650 (16) Å. The coordination geometries for the Zn1 and Zn2 atoms are distorted towards trigonal bipyramidal (TP) and square pyramidal (SP), respectively. This is quantified by the values of τ = 0.58 and 0.39, respectively, compared with the ideal values of 0.0 and 1.0 for SP and TP, respectively (Addison et al., 1984).

The most closely related structure available for comparison is the diethyldithiocarbamate analogue of (I) which was co-crystallized with a trans-1,2-bis(4-pyridyl)ethylene molecule (Lai & Tiekink, 2003). Here, the range of Zn—S bond distances was considerably narrower, i.e. 2.4100 (10) to 2.4914 (11) Å, and the coordination geometry was close to SP (τ = 0.13).

Molecules of (I) are connected by C—H···S interactions, Table 1, to form supramolecular zigzag chains that pack in the ab plane, Table 1 and Fig. 2. Chains are connected via C—H···π interactions to consolidate the crystal packing, Table 1 and Fig. 3.

Related literature top

For background to supramolecular polymers of zinc 1,1-dithiolates, see: Lai et al. (2002); Chen et al. (2006); Benson et al. (2007). For a related structure and the synthesis, see: Lai & Tiekink (2003). For additional geometrical analysis, see: Addison et al. (1984). Cg1 is the centroid of the Zn, S1, S2, C1 chelate ring and

Cg2 is the centroid of the N3, C7–C11 ring.

Experimental top

Compound (I) was prepared by following a standard literature procedure (Lai & Tiekink, 2003). and recrystallized from the slow evaporation of a chloroform/acetonitrile (3:1) solution of (I); m. pt. 555–557 K.

Refinement top

The H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.51 and 0.73 e Å-3, respectively, were located 1.81 Å and 1.17 Å from the S5 and Zn2 atoms, respectively.

Structure description top

Compared to their xanthates (-S2COR) and dithiophosphates [-S2P(OR)2], crystal engineering studies of zinc(II) dithiocarbamates (-S2CNR2) are less well developed (Lai et al., 2002; Chen et al., 2006; Benson et al. 2007). This is likely due to the stronger chelating ability of the dithiocarbamate ligand which tends to preclude incorporation of multiple bridging ligands within the Zn atom coordination sphere. This principle is exemplified in the title compound, (I), Fig. 1, where each Zn atom is five coordinate within a NS4 donor set. The dithiocarbamate ligands are chelating but form disparate Zn—S bond distances ranging from 2.3204 (15) to 2.6650 (16) Å. The coordination geometries for the Zn1 and Zn2 atoms are distorted towards trigonal bipyramidal (TP) and square pyramidal (SP), respectively. This is quantified by the values of τ = 0.58 and 0.39, respectively, compared with the ideal values of 0.0 and 1.0 for SP and TP, respectively (Addison et al., 1984).

The most closely related structure available for comparison is the diethyldithiocarbamate analogue of (I) which was co-crystallized with a trans-1,2-bis(4-pyridyl)ethylene molecule (Lai & Tiekink, 2003). Here, the range of Zn—S bond distances was considerably narrower, i.e. 2.4100 (10) to 2.4914 (11) Å, and the coordination geometry was close to SP (τ = 0.13).

Molecules of (I) are connected by C—H···S interactions, Table 1, to form supramolecular zigzag chains that pack in the ab plane, Table 1 and Fig. 2. Chains are connected via C—H···π interactions to consolidate the crystal packing, Table 1 and Fig. 3.

For background to supramolecular polymers of zinc 1,1-dithiolates, see: Lai et al. (2002); Chen et al. (2006); Benson et al. (2007). For a related structure and the synthesis, see: Lai & Tiekink (2003). For additional geometrical analysis, see: Addison et al. (1984). Cg1 is the centroid of the Zn, S1, S2, C1 chelate ring and

Cg2 is the centroid of the N3, C7–C11 ring.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) & DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the crystallographic numbering scheme. Displacement ellipsoids are shown at the 70% probability level.
[Figure 2] Fig. 2. Supramolecular chain in (I) mediated by C—H···S interactions (orange dashed lines).
[Figure 3] Fig. 3. Unit-cell contents for (I) viewed in projection down the b axis.
(µ-1,2-Di-4-pyridylethylene-κ2N:N')bis[bis(N,N- dimethyldithiocarbamato-κ2S,S')zinc(II)] top
Crystal data top
[Zn2(C3H6NS2)4(C12H10N2)]F(000) = 1632
Mr = 793.79Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 17793 reflections
a = 13.061 (4) Åθ = 2.1–40.7°
b = 15.904 (4) ŵ = 1.88 mm1
c = 17.658 (5) ÅT = 98 K
β = 108.443 (4)°Prism, pale-yellow
V = 3479.7 (16) Å30.40 × 0.08 × 0.06 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
7142 independent reflections
Radiation source: fine-focus sealed tube6509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1416
Tmin = 0.645, Tmax = 1k = 1919
23158 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0348P)2 + 22.73P]
where P = (Fo2 + 2Fc2)/3
7142 reflections(Δ/σ)max = 0.001
369 parametersΔρmax = 1.51 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Zn2(C3H6NS2)4(C12H10N2)]V = 3479.7 (16) Å3
Mr = 793.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.061 (4) ŵ = 1.88 mm1
b = 15.904 (4) ÅT = 98 K
c = 17.658 (5) Å0.40 × 0.08 × 0.06 mm
β = 108.443 (4)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
7142 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6509 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 1Rint = 0.048
23158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0348P)2 + 22.73P]
where P = (Fo2 + 2Fc2)/3
7142 reflectionsΔρmax = 1.51 e Å3
369 parametersΔρmin = 0.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.20505 (5)0.06078 (4)0.25194 (4)0.01739 (16)
Zn20.28728 (5)0.32085 (4)0.25404 (3)0.01633 (15)
S11.36946 (11)0.05320 (9)0.35297 (8)0.0220 (3)
S21.19681 (11)0.16805 (9)0.36581 (8)0.0231 (3)
S31.13226 (12)0.14634 (9)0.13829 (8)0.0249 (3)
S41.23185 (12)0.02060 (10)0.13722 (9)0.0270 (3)
S50.12699 (11)0.30053 (9)0.14792 (8)0.0217 (3)
S60.29923 (11)0.41474 (9)0.13505 (8)0.0219 (3)
S70.36844 (12)0.41455 (8)0.36276 (8)0.0212 (3)
S80.24259 (12)0.26126 (9)0.37027 (8)0.0235 (3)
N11.3939 (4)0.1618 (3)0.4724 (3)0.0263 (11)
N21.1227 (4)0.0632 (4)0.0052 (3)0.0313 (12)
N31.0784 (3)0.0114 (3)0.2611 (2)0.0162 (9)
N40.4200 (3)0.2477 (3)0.2579 (3)0.0166 (9)
N50.1104 (4)0.3966 (3)0.0203 (3)0.0297 (11)
N60.3653 (4)0.3445 (3)0.4985 (3)0.0268 (11)
C11.3264 (5)0.1315 (3)0.4054 (3)0.0215 (11)
C21.3594 (6)0.2265 (5)0.5182 (4)0.0422 (17)
H2A1.30480.20310.53950.063*
H2B1.42170.24560.56230.063*
H2C1.32870.27430.48320.063*
C31.5023 (5)0.1256 (5)0.5090 (4)0.0394 (16)
H3A1.53450.11250.46720.059*
H3B1.54800.16630.54640.059*
H3C1.49660.07400.53770.059*
C41.1581 (5)0.0622 (4)0.0845 (3)0.0237 (12)
C51.0612 (7)0.1339 (5)0.0405 (4)0.0448 (18)
H5A1.11100.17490.05110.067*
H5B1.01180.11320.09120.067*
H5C1.01960.16080.00970.067*
C61.1407 (6)0.0060 (5)0.0437 (4)0.0405 (17)
H6A1.16870.05490.00960.061*
H6B1.07230.02090.08420.061*
H6C1.19300.01130.07000.061*
C70.9896 (4)0.0291 (3)0.2653 (3)0.0205 (11)
H70.99060.08880.26790.025*
C80.8978 (4)0.0128 (3)0.2659 (3)0.0195 (11)
H80.83690.01810.26890.023*
C90.8936 (4)0.1001 (3)0.2622 (3)0.0155 (10)
C100.9858 (4)0.1419 (3)0.2589 (3)0.0187 (10)
H100.98730.20150.25760.022*
C111.0749 (4)0.0960 (3)0.2577 (3)0.0172 (10)
H111.13660.12550.25440.021*
C120.7970 (4)0.1474 (3)0.2610 (3)0.0171 (10)
H120.80010.20700.25810.020*
C130.7048 (4)0.1132 (3)0.2637 (3)0.0203 (11)
H130.70210.05360.26720.024*
C140.6081 (4)0.1601 (3)0.2616 (3)0.0188 (11)
C150.5180 (4)0.1187 (3)0.2703 (3)0.0206 (11)
H150.51950.05950.27770.025*
C160.4266 (4)0.1642 (3)0.2681 (3)0.0200 (11)
H160.36610.13500.27410.024*
C170.5068 (4)0.2883 (3)0.2503 (4)0.0221 (11)
H170.50320.34770.24370.027*
C180.6004 (4)0.2477 (3)0.2516 (3)0.0202 (11)
H180.65950.27880.24570.024*
C190.3290 (4)0.3405 (3)0.4199 (3)0.0202 (11)
C200.3321 (7)0.2847 (4)0.5497 (4)0.0415 (18)
H20A0.27950.24510.51630.062*
H20B0.29930.31540.58430.062*
H20C0.39540.25370.58270.062*
C210.4428 (6)0.4077 (4)0.5421 (4)0.0378 (16)
H21A0.47860.43280.50640.057*
H21B0.49690.38110.58740.057*
H21C0.40490.45160.56170.057*
C220.1729 (4)0.3733 (3)0.0934 (3)0.0198 (11)
C230.0051 (6)0.3582 (5)0.0177 (4)0.0414 (17)
H23A0.01440.30560.04380.062*
H23B0.04010.39690.05770.062*
H23C0.02980.34630.02280.062*
C240.1514 (6)0.4526 (5)0.0292 (4)0.0407 (17)
H24A0.19890.49480.00470.061*
H24B0.09070.48070.06850.061*
H24C0.19200.41970.05710.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0141 (3)0.0210 (3)0.0169 (3)0.0026 (2)0.0046 (2)0.0017 (2)
Zn20.0149 (3)0.0178 (3)0.0163 (3)0.0025 (2)0.0051 (2)0.0006 (2)
S10.0173 (6)0.0239 (7)0.0221 (7)0.0011 (5)0.0025 (5)0.0001 (5)
S20.0225 (7)0.0234 (7)0.0220 (7)0.0002 (5)0.0050 (5)0.0024 (5)
S30.0322 (8)0.0199 (7)0.0203 (7)0.0009 (6)0.0049 (6)0.0016 (5)
S40.0298 (8)0.0309 (8)0.0222 (7)0.0065 (6)0.0110 (6)0.0001 (6)
S50.0188 (7)0.0251 (7)0.0195 (7)0.0007 (5)0.0038 (5)0.0004 (5)
S60.0241 (7)0.0219 (7)0.0198 (7)0.0013 (5)0.0071 (5)0.0004 (5)
S70.0290 (7)0.0187 (6)0.0175 (6)0.0041 (5)0.0097 (5)0.0004 (5)
S80.0244 (7)0.0258 (7)0.0224 (7)0.0087 (6)0.0102 (6)0.0022 (5)
N10.025 (3)0.027 (3)0.022 (2)0.001 (2)0.000 (2)0.000 (2)
N20.034 (3)0.038 (3)0.019 (2)0.007 (2)0.005 (2)0.002 (2)
N30.013 (2)0.019 (2)0.015 (2)0.0025 (17)0.0028 (16)0.0002 (17)
N40.017 (2)0.014 (2)0.019 (2)0.0017 (17)0.0058 (17)0.0012 (17)
N50.032 (3)0.034 (3)0.019 (2)0.001 (2)0.002 (2)0.002 (2)
N60.039 (3)0.027 (3)0.014 (2)0.012 (2)0.008 (2)0.0019 (19)
C10.026 (3)0.021 (3)0.017 (3)0.002 (2)0.006 (2)0.001 (2)
C20.047 (4)0.045 (4)0.025 (3)0.005 (3)0.001 (3)0.012 (3)
C30.029 (3)0.047 (4)0.031 (3)0.008 (3)0.008 (3)0.004 (3)
C40.022 (3)0.031 (3)0.017 (3)0.006 (2)0.006 (2)0.001 (2)
C50.060 (5)0.046 (4)0.021 (3)0.000 (4)0.003 (3)0.007 (3)
C60.043 (4)0.056 (5)0.022 (3)0.000 (3)0.010 (3)0.008 (3)
C70.019 (3)0.018 (3)0.027 (3)0.004 (2)0.011 (2)0.003 (2)
C80.018 (3)0.015 (2)0.026 (3)0.002 (2)0.008 (2)0.001 (2)
C90.019 (3)0.014 (2)0.013 (2)0.0002 (19)0.0041 (19)0.0012 (18)
C100.019 (3)0.013 (2)0.025 (3)0.001 (2)0.007 (2)0.002 (2)
C110.014 (2)0.014 (2)0.023 (3)0.0008 (19)0.006 (2)0.000 (2)
C120.017 (3)0.014 (2)0.021 (3)0.0019 (19)0.006 (2)0.0005 (19)
C130.020 (3)0.014 (2)0.027 (3)0.000 (2)0.008 (2)0.006 (2)
C140.017 (3)0.018 (3)0.020 (3)0.000 (2)0.004 (2)0.002 (2)
C150.021 (3)0.017 (3)0.025 (3)0.002 (2)0.009 (2)0.005 (2)
C160.022 (3)0.017 (3)0.022 (3)0.003 (2)0.009 (2)0.001 (2)
C170.018 (3)0.013 (2)0.036 (3)0.002 (2)0.010 (2)0.000 (2)
C180.020 (3)0.014 (2)0.028 (3)0.003 (2)0.010 (2)0.002 (2)
C190.021 (3)0.020 (3)0.022 (3)0.001 (2)0.009 (2)0.001 (2)
C200.072 (5)0.031 (3)0.026 (3)0.019 (3)0.022 (3)0.005 (3)
C210.052 (4)0.040 (4)0.020 (3)0.018 (3)0.010 (3)0.005 (3)
C220.021 (3)0.021 (3)0.016 (3)0.005 (2)0.004 (2)0.002 (2)
C230.037 (4)0.053 (4)0.022 (3)0.002 (3)0.007 (3)0.008 (3)
C240.048 (4)0.045 (4)0.025 (3)0.001 (3)0.005 (3)0.011 (3)
Geometric parameters (Å, º) top
Zn1—N32.061 (4)C5—H5A0.9800
Zn1—S12.3204 (15)C5—H5B0.9800
Zn1—S32.3613 (16)C5—H5C0.9800
Zn1—S42.5200 (16)C6—H6A0.9800
Zn1—S22.6650 (16)C6—H6B0.9800
Zn2—N42.071 (4)C6—H6C0.9800
Zn2—S52.3488 (15)C7—C81.376 (7)
Zn2—S72.3964 (15)C7—H70.9500
Zn2—S82.4918 (16)C8—C91.391 (7)
Zn2—S62.6223 (16)C8—H80.9500
S1—C11.746 (6)C9—C101.391 (7)
S2—C11.716 (6)C9—C121.463 (7)
S3—C41.736 (6)C10—C111.380 (7)
S4—C41.721 (6)C10—H100.9500
S5—C221.730 (6)C11—H110.9500
S6—C221.711 (6)C12—C131.336 (7)
S7—C191.732 (6)C12—H120.9500
S8—C191.733 (6)C13—C141.458 (7)
N1—C11.323 (7)C13—H130.9500
N1—C21.466 (8)C14—C151.399 (7)
N1—C31.475 (8)C14—C181.403 (7)
N2—C41.328 (7)C15—C161.387 (8)
N2—C61.463 (9)C15—H150.9500
N2—C51.466 (9)C16—H160.9500
N3—C111.348 (7)C17—C181.377 (8)
N3—C71.348 (7)C17—H170.9500
N4—C161.339 (7)C18—H180.9500
N4—C171.349 (7)C20—H20A0.9800
N5—C221.343 (7)C20—H20B0.9800
N5—C231.460 (8)C20—H20C0.9800
N5—C241.463 (8)C21—H21A0.9800
N6—C191.319 (7)C21—H21B0.9800
N6—C211.460 (8)C21—H21C0.9800
N6—C201.470 (7)C23—H23A0.9800
C2—H2A0.9800C23—H23B0.9800
C2—H2B0.9800C23—H23C0.9800
C2—H2C0.9800C24—H24A0.9800
C3—H3A0.9800C24—H24B0.9800
C3—H3B0.9800C24—H24C0.9800
C3—H3C0.9800
N3—Zn1—S1118.77 (13)N2—C6—H6B109.5
N3—Zn1—S3105.66 (13)H6A—C6—H6B109.5
S1—Zn1—S3135.17 (6)N2—C6—H6C109.5
N3—Zn1—S495.51 (13)H6A—C6—H6C109.5
S1—Zn1—S4105.14 (6)H6B—C6—H6C109.5
S3—Zn1—S474.56 (6)N3—C7—C8122.5 (5)
N3—Zn1—S294.15 (13)N3—C7—H7118.8
S1—Zn1—S272.64 (5)C8—C7—H7118.8
S3—Zn1—S299.84 (6)C7—C8—C9120.3 (5)
S4—Zn1—S2169.86 (5)C7—C8—H8119.9
N4—Zn2—S5118.30 (13)C9—C8—H8119.9
N4—Zn2—S799.78 (13)C8—C9—C10117.2 (5)
S5—Zn2—S7141.40 (6)C8—C9—C12122.3 (5)
N4—Zn2—S899.85 (13)C10—C9—C12120.5 (5)
S5—Zn2—S8102.88 (6)C11—C10—C9119.6 (5)
S7—Zn2—S874.71 (5)C11—C10—H10120.2
N4—Zn2—S694.87 (12)C9—C10—H10120.2
S5—Zn2—S672.73 (5)N3—C11—C10123.0 (5)
S7—Zn2—S699.46 (5)N3—C11—H11118.5
S8—Zn2—S6164.88 (5)C10—C11—H11118.5
C1—S1—Zn189.75 (19)C13—C12—C9124.9 (5)
C1—S2—Zn179.62 (19)C13—C12—H12117.5
C4—S3—Zn185.7 (2)C9—C12—H12117.5
C4—S4—Zn181.14 (19)C12—C13—C14125.0 (5)
C22—S5—Zn288.47 (19)C12—C13—H13117.5
C22—S6—Zn280.31 (19)C14—C13—H13117.5
C19—S7—Zn284.58 (19)C15—C14—C18116.9 (5)
C19—S8—Zn281.66 (18)C15—C14—C13120.5 (5)
C1—N1—C2121.0 (5)C18—C14—C13122.6 (5)
C1—N1—C3121.7 (5)C16—C15—C14119.8 (5)
C2—N1—C3116.9 (5)C16—C15—H15120.1
C4—N2—C6123.0 (6)C14—C15—H15120.1
C4—N2—C5122.4 (6)N4—C16—C15122.7 (5)
C6—N2—C5114.5 (5)N4—C16—H16118.7
C11—N3—C7117.5 (5)C15—C16—H16118.7
C11—N3—Zn1124.7 (4)N4—C17—C18122.9 (5)
C7—N3—Zn1117.7 (4)N4—C17—H17118.6
C16—N4—C17118.0 (5)C18—C17—H17118.6
C16—N4—Zn2125.4 (4)C17—C18—C14119.8 (5)
C17—N4—Zn2116.6 (4)C17—C18—H18120.1
C22—N5—C23121.7 (5)C14—C18—H18120.1
C22—N5—C24121.0 (5)N6—C19—S7120.3 (4)
C23—N5—C24116.7 (5)N6—C19—S8121.9 (4)
C19—N6—C21123.2 (5)S7—C19—S8117.8 (3)
C19—N6—C20122.5 (5)N6—C20—H20A109.5
C21—N6—C20114.3 (5)N6—C20—H20B109.5
N1—C1—S2122.2 (4)H20A—C20—H20B109.5
N1—C1—S1119.9 (4)N6—C20—H20C109.5
S2—C1—S1117.9 (3)H20A—C20—H20C109.5
N1—C2—H2A109.5H20B—C20—H20C109.5
N1—C2—H2B109.5N6—C21—H21A109.5
H2A—C2—H2B109.5N6—C21—H21B109.5
N1—C2—H2C109.5H21A—C21—H21B109.5
H2A—C2—H2C109.5N6—C21—H21C109.5
H2B—C2—H2C109.5H21A—C21—H21C109.5
N1—C3—H3A109.5H21B—C21—H21C109.5
N1—C3—H3B109.5N5—C22—S6121.2 (4)
H3A—C3—H3B109.5N5—C22—S5120.4 (4)
N1—C3—H3C109.5S6—C22—S5118.4 (3)
H3A—C3—H3C109.5N5—C23—H23A109.5
H3B—C3—H3C109.5N5—C23—H23B109.5
N2—C4—S4121.9 (5)H23A—C23—H23B109.5
N2—C4—S3120.3 (5)N5—C23—H23C109.5
S4—C4—S3117.8 (3)H23A—C23—H23C109.5
N2—C5—H5A109.5H23B—C23—H23C109.5
N2—C5—H5B109.5N5—C24—H24A109.5
H5A—C5—H5B109.5N5—C24—H24B109.5
N2—C5—H5C109.5H24A—C24—H24B109.5
H5A—C5—H5C109.5N5—C24—H24C109.5
H5B—C5—H5C109.5H24A—C24—H24C109.5
N2—C6—H6A109.5H24B—C24—H24C109.5
N3—Zn1—S1—C187.2 (2)Zn1—S2—C1—S13.1 (3)
S3—Zn1—S1—C184.5 (2)Zn1—S1—C1—N1175.1 (5)
S4—Zn1—S1—C1167.63 (19)Zn1—S1—C1—S23.5 (3)
S2—Zn1—S1—C12.06 (18)C6—N2—C4—S41.6 (9)
N3—Zn1—S2—C1121.0 (2)C5—N2—C4—S4179.1 (5)
S1—Zn1—S2—C12.13 (19)C6—N2—C4—S3179.3 (5)
S3—Zn1—S2—C1132.29 (19)C5—N2—C4—S30.1 (9)
S4—Zn1—S2—C176.7 (4)Zn1—S4—C4—N2172.6 (5)
N3—Zn1—S3—C486.0 (2)Zn1—S4—C4—S38.2 (3)
S1—Zn1—S3—C4101.6 (2)Zn1—S3—C4—N2172.1 (5)
S4—Zn1—S3—C45.44 (19)Zn1—S3—C4—S48.7 (3)
S2—Zn1—S3—C4176.78 (19)C11—N3—C7—C80.2 (8)
N3—Zn1—S4—C499.2 (2)Zn1—N3—C7—C8175.4 (4)
S1—Zn1—S4—C4139.0 (2)N3—C7—C8—C90.0 (8)
S3—Zn1—S4—C45.5 (2)C7—C8—C9—C100.8 (8)
S2—Zn1—S4—C463.0 (4)C7—C8—C9—C12178.7 (5)
N4—Zn2—S5—C2288.2 (2)C8—C9—C10—C111.4 (8)
S7—Zn2—S5—C2281.4 (2)C12—C9—C10—C11178.1 (5)
S8—Zn2—S5—C22162.95 (18)C7—N3—C11—C100.4 (8)
S6—Zn2—S5—C222.06 (18)Zn1—N3—C11—C10175.7 (4)
N4—Zn2—S6—C22120.3 (2)C9—C10—C11—N31.3 (8)
S5—Zn2—S6—C222.11 (18)C8—C9—C12—C130.4 (8)
S7—Zn2—S6—C22138.96 (18)C10—C9—C12—C13179.8 (5)
S8—Zn2—S6—C2273.1 (3)C9—C12—C13—C14179.3 (5)
N4—Zn2—S7—C1990.9 (2)C12—C13—C14—C15175.5 (5)
S5—Zn2—S7—C1998.4 (2)C12—C13—C14—C184.0 (9)
S8—Zn2—S7—C196.76 (19)C18—C14—C15—C160.6 (8)
S6—Zn2—S7—C19172.47 (19)C13—C14—C15—C16179.9 (5)
N4—Zn2—S8—C1990.7 (2)C17—N4—C16—C150.7 (8)
S5—Zn2—S8—C19147.03 (19)Zn2—N4—C16—C15179.8 (4)
S7—Zn2—S8—C196.80 (19)C14—C15—C16—N40.0 (8)
S6—Zn2—S8—C1975.8 (3)C16—N4—C17—C180.9 (8)
S1—Zn1—N3—C1166.9 (4)Zn2—N4—C17—C18179.9 (4)
S3—Zn1—N3—C11119.2 (4)N4—C17—C18—C140.4 (9)
S4—Zn1—N3—C1143.7 (4)C15—C14—C18—C170.4 (8)
S2—Zn1—N3—C11139.4 (4)C13—C14—C18—C17179.9 (5)
S1—Zn1—N3—C7117.8 (4)C21—N6—C19—S72.6 (9)
S3—Zn1—N3—C756.1 (4)C20—N6—C19—S7178.3 (5)
S4—Zn1—N3—C7131.6 (4)C21—N6—C19—S8176.5 (5)
S2—Zn1—N3—C745.3 (4)C20—N6—C19—S82.6 (9)
S5—Zn2—N4—C1665.3 (5)Zn2—S7—C19—N6168.5 (5)
S7—Zn2—N4—C16121.2 (4)Zn2—S7—C19—S810.6 (3)
S8—Zn2—N4—C1645.2 (4)Zn2—S8—C19—N6168.9 (5)
S6—Zn2—N4—C16138.3 (4)Zn2—S8—C19—S710.3 (3)
S5—Zn2—N4—C17115.6 (4)C23—N5—C22—S6176.4 (5)
S7—Zn2—N4—C1757.9 (4)C24—N5—C22—S65.4 (8)
S8—Zn2—N4—C17133.9 (4)C23—N5—C22—S53.7 (8)
S6—Zn2—N4—C1742.6 (4)C24—N5—C22—S5174.8 (5)
C2—N1—C1—S22.5 (8)Zn2—S6—C22—N5176.8 (5)
C3—N1—C1—S2175.3 (5)Zn2—S6—C22—S53.1 (3)
C2—N1—C1—S1179.0 (5)Zn2—S5—C22—N5176.4 (5)
C3—N1—C1—S16.2 (8)Zn2—S5—C22—S63.4 (3)
Zn1—S2—C1—N1175.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···S6i0.952.813.636 (5)146
C18—H18···Cg1ii0.952.763.589 (5)146
C24—H24b···Cg2iii0.982.933.638 (7)130
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C3H6NS2)4(C12H10N2)]
Mr793.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)13.061 (4), 15.904 (4), 17.658 (5)
β (°) 108.443 (4)
V3)3479.7 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.40 × 0.08 × 0.06
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.645, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
23158, 7142, 6509
Rint0.048
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.155, 1.22
No. of reflections7142
No. of parameters369
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0348P)2 + 22.73P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.51, 0.73

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) & DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···S6i0.952.813.636 (5)146
C18—H18···Cg1ii0.952.763.589 (5)146
C24—H24b···Cg2iii0.982.933.638 (7)130
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds