organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetohydrazide

aChemical and Environmental Engineering Department, Hu Bei University of Technology, Wuhan 430068, People's Republic of China
*Correspondence e-mail: zhoubaohan@126.com

(Received 7 July 2009; accepted 15 October 2009; online 23 October 2009)

In the title compound, C2H6N2O, a hydrazine derivative, the asymmetric unit contains two mol­ecules with similar geom­etries. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background to hydrazine and its derivatives, see: Gagnon et al. (1951[Gagnon, P. E., Nolin, B. & Jones, R. N. (1951). Can. J. Chem. 29, 843-847.]); Hermanson (1996[Hermanson, G. T. (1996). Bioconjugate Techniques. San Diego: Academic Press.]); Lumley-Woodyear et al. (1996[Lumley-Woodyear, T. D., Campbell, C. N. & Heller, A. (1996). J. Am. Chem. Soc. 118, 5504-5505.]); Raddatz et al. (2002[Raddatz, S., Mueller-Ibeler, J., Kluge, J., Wab, L., Burdinski, G., Havens, J. R., Onofrey, T. J., Wang, D. G. & Schweitzer, M. (2002). Nucleic Acid Res. 21, 4793-4802.]).

[Scheme 1]

Experimental

Crystal data
  • C2H6N2O

  • Mr = 74.09

  • Monoclinic, P 21 /n

  • a = 9.5636 (7) Å

  • b = 8.7642 (6) Å

  • c = 10.4282 (7) Å

  • β = 110.886 (1)°

  • V = 816.63 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.990

  • 4189 measured reflections

  • 1762 independent reflections

  • 1604 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.151

  • S = 1.15

  • 1762 reflections

  • 112 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O2 0.863 (9) 2.052 (10) 2.8971 (17) 166.0 (19)
N4—H4B⋯N2i 0.865 (9) 2.342 (12) 3.160 (2) 157.9 (19)
N4—H4A⋯O1ii 0.868 (9) 2.216 (11) 3.061 (2) 164.2 (19)
N3—H3D⋯O1iii 0.857 (9) 2.018 (10) 2.8599 (17) 167.1 (19)
N2—H2B⋯O2iv 0.867 (10) 2.255 (13) 3.065 (2) 155 (2)
N2—H2A⋯O2v 0.863 (10) 2.400 (15) 3.152 (2) 145.7 (19)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazide and its derivatives were used as versatile synthons. For example, substituted pyrazolones can be prepared by treatment of corresponding hydrazide with strong alkalies (Gagnon et al., 1951). What's more, hydrazides are reactive functional groups routinely used in protein and carbohydrate chemistry (Raddatz et al., 2002; Hermanson, 1996). It is reported that oligonucleotides can be modified with hydrazide (Lumley-Woodyear et al., 1996). Acethydrazide is an important organic intermediate mainly for synthesis of nifuratrone in the pharmaceutical industry. Here we report the structure of the title compound (Fig. 1). Asymmetric unit contains two molecules with the same geometry. The crystal packing is stabilized by intermolecular classical N—H···O hydrogen bonds (Table 1).

Related literature top

For general background to hydrazide and its derivatives, see: Gagnon et al. (1951); Hermanson (1996); Lumley-Woodyear et al. (1996); Raddatz et al. (2002).

Experimental top

Acethydrazide, prepared from ethyl acetate and 85% hydrazine was synthesized in 40% isolated yield. Crystals of acethydrazide suitable for X–ray data collection were obtained by cooled the reaction solution from 353 K to 293 K for overnight.

Refinement top

All H atoms of methyl groups were positioned geometrically with C—H = 0.96Å and Uiso(H) = 1.5Uiso(C). H atoms of amino–groups were found from the difference maps and refined with Uiso(H) = 1.2Uiso(N).

Structure description top

Hydrazide and its derivatives were used as versatile synthons. For example, substituted pyrazolones can be prepared by treatment of corresponding hydrazide with strong alkalies (Gagnon et al., 1951). What's more, hydrazides are reactive functional groups routinely used in protein and carbohydrate chemistry (Raddatz et al., 2002; Hermanson, 1996). It is reported that oligonucleotides can be modified with hydrazide (Lumley-Woodyear et al., 1996). Acethydrazide is an important organic intermediate mainly for synthesis of nifuratrone in the pharmaceutical industry. Here we report the structure of the title compound (Fig. 1). Asymmetric unit contains two molecules with the same geometry. The crystal packing is stabilized by intermolecular classical N—H···O hydrogen bonds (Table 1).

For general background to hydrazide and its derivatives, see: Gagnon et al. (1951); Hermanson (1996); Lumley-Woodyear et al. (1996); Raddatz et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit showing the atom–labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Acetohydrazide top
Crystal data top
C2H6N2OF(000) = 320
Mr = 74.09Dx = 1.205 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2153 reflections
a = 9.5636 (7) Åθ = 2.5–28.0°
b = 8.7642 (6) ŵ = 0.10 mm1
c = 10.4282 (7) ÅT = 298 K
β = 110.886 (1)°Block, colourless
V = 816.63 (10) Å30.20 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker SMART 4K CCD
diffractometer
1762 independent reflections
Radiation source: fine-focus sealed tube1604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
φ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1012
Tmin = 0.971, Tmax = 0.990k = 119
4189 measured reflectionsl = 1310
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.061P)2 + 0.1265P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
1762 reflectionsΔρmax = 0.19 e Å3
112 parametersΔρmin = 0.19 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.17 (2)
Crystal data top
C2H6N2OV = 816.63 (10) Å3
Mr = 74.09Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.5636 (7) ŵ = 0.10 mm1
b = 8.7642 (6) ÅT = 298 K
c = 10.4282 (7) Å0.20 × 0.15 × 0.10 mm
β = 110.886 (1)°
Data collection top
Bruker SMART 4K CCD
diffractometer
1762 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1604 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.990Rint = 0.097
4189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0566 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.19 e Å3
1762 reflectionsΔρmin = 0.19 e Å3
112 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8855 (2)0.2274 (2)0.0022 (2)0.0608 (5)
H1A0.94810.31410.00570.091*
H1B0.78350.26030.02270.091*
H1C0.89320.15620.06490.091*
C20.93450 (16)0.15234 (18)0.13942 (17)0.0434 (4)
C30.4604 (2)0.0155 (2)0.1911 (2)0.0646 (5)
H3A0.45980.05260.11880.097*
H3B0.38360.01420.22540.097*
H3C0.55610.01110.26400.097*
C40.43160 (16)0.17510 (19)0.13651 (16)0.0443 (4)
N10.83138 (14)0.13848 (17)0.19703 (16)0.0501 (4)
H1D0.7430 (14)0.176 (2)0.1567 (19)0.060*
N20.86280 (16)0.0740 (2)0.32791 (17)0.0575 (5)
H2A0.9337 (19)0.128 (2)0.3837 (19)0.069*
H2B0.893 (2)0.0180 (14)0.321 (2)0.069*
N30.30038 (14)0.23464 (17)0.12609 (15)0.0490 (4)
H3D0.2363 (18)0.182 (2)0.148 (2)0.059*
N40.25433 (16)0.38388 (19)0.07867 (18)0.0550 (4)
H4B0.257 (2)0.398 (2)0.0025 (13)0.066*
H4A0.3202 (19)0.443 (2)0.1362 (18)0.066*
O11.06315 (12)0.10511 (15)0.19701 (13)0.0578 (4)
O20.52482 (11)0.24591 (14)0.10257 (13)0.0560 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0487 (9)0.0676 (12)0.0619 (11)0.0009 (8)0.0147 (8)0.0087 (9)
C20.0331 (7)0.0403 (8)0.0566 (9)0.0026 (6)0.0158 (6)0.0024 (7)
C30.0511 (10)0.0578 (11)0.0859 (14)0.0015 (9)0.0256 (10)0.0131 (10)
C40.0338 (7)0.0516 (9)0.0478 (8)0.0028 (6)0.0149 (6)0.0019 (7)
N10.0330 (7)0.0591 (9)0.0590 (9)0.0061 (6)0.0174 (6)0.0051 (7)
N20.0446 (8)0.0717 (11)0.0612 (10)0.0017 (7)0.0252 (7)0.0019 (8)
N30.0350 (7)0.0567 (9)0.0605 (9)0.0027 (6)0.0234 (6)0.0018 (7)
N40.0385 (7)0.0613 (10)0.0690 (10)0.0052 (6)0.0237 (7)0.0025 (8)
O10.0343 (6)0.0723 (9)0.0706 (8)0.0085 (5)0.0233 (6)0.0194 (6)
O20.0369 (6)0.0574 (7)0.0806 (9)0.0047 (5)0.0292 (6)0.0124 (6)
Geometric parameters (Å, º) top
C1—C21.491 (2)C4—O21.2370 (18)
C1—H1A0.9600C4—N31.327 (2)
C1—H1B0.9600N1—N21.407 (2)
C1—H1C0.9600N1—H1D0.863 (9)
C2—O11.2324 (18)N2—H2A0.863 (10)
C2—N11.331 (2)N2—H2B0.867 (10)
C3—C41.498 (3)N3—N41.412 (2)
C3—H3A0.9600N3—H3D0.857 (9)
C3—H3B0.9600N4—H4B0.865 (9)
C3—H3C0.9600N4—H4A0.868 (9)
C2—C1—H1A109.5O2—C4—N3122.42 (16)
C2—C1—H1B109.5O2—C4—C3121.57 (14)
H1A—C1—H1B109.5N3—C4—C3116.01 (14)
C2—C1—H1C109.5C2—N1—N2122.56 (13)
H1A—C1—H1C109.5C2—N1—H1D120.0 (14)
H1B—C1—H1C109.5N2—N1—H1D117.3 (14)
O1—C2—N1121.40 (16)N1—N2—H2A106.0 (15)
O1—C2—C1122.26 (15)N1—N2—H2B104.9 (16)
N1—C2—C1116.34 (14)H2A—N2—H2B111 (2)
C4—C3—H3A109.5C4—N3—N4124.09 (14)
C4—C3—H3B109.5C4—N3—H3D120.8 (14)
H3A—C3—H3B109.5N4—N3—H3D115.1 (14)
C4—C3—H3C109.5N3—N4—H4B110.9 (14)
H3A—C3—H3C109.5N3—N4—H4A104.5 (14)
H3B—C3—H3C109.5H4B—N4—H4A109 (2)
O1—C2—N1—N22.0 (3)O2—C4—N3—N41.3 (3)
C1—C2—N1—N2178.17 (16)C3—C4—N3—N4179.13 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O20.86 (1)2.05 (1)2.8971 (17)166 (2)
N4—H4B···N2i0.87 (1)2.34 (1)3.160 (2)158 (2)
N4—H4A···O1ii0.87 (1)2.22 (1)3.061 (2)164 (2)
N3—H3D···O1iii0.86 (1)2.02 (1)2.8599 (17)167 (2)
N2—H2B···O2iv0.87 (1)2.26 (1)3.065 (2)155 (2)
N2—H2A···O2v0.86 (1)2.40 (2)3.152 (2)146 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+3/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC2H6N2O
Mr74.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.5636 (7), 8.7642 (6), 10.4282 (7)
β (°) 110.886 (1)
V3)816.63 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.971, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4189, 1762, 1604
Rint0.097
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.151, 1.15
No. of reflections1762
No. of parameters112
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O20.863 (9)2.052 (10)2.8971 (17)166.0 (19)
N4—H4B···N2i0.865 (9)2.342 (12)3.160 (2)157.9 (19)
N4—H4A···O1ii0.868 (9)2.216 (11)3.061 (2)164.2 (19)
N3—H3D···O1iii0.857 (9)2.018 (10)2.8599 (17)167.1 (19)
N2—H2B···O2iv0.867 (10)2.255 (13)3.065 (2)155 (2)
N2—H2A···O2v0.863 (10)2.400 (15)3.152 (2)145.7 (19)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+3/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author thanks Professor An–Xin Wu (Central China Normal University, Wuhan, China) for helpful discussions, and Dr Xiang–Gao Meng (Central China Normal University, Wuhan, China) for the X–ray data collection.

References

First citationBruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGagnon, P. E., Nolin, B. & Jones, R. N. (1951). Can. J. Chem. 29, 843–847.  CrossRef CAS Web of Science Google Scholar
First citationHermanson, G. T. (1996). Bioconjugate Techniques. San Diego: Academic Press.  Google Scholar
First citationLumley-Woodyear, T. D., Campbell, C. N. & Heller, A. (1996). J. Am. Chem. Soc. 118, 5504–5505.  Google Scholar
First citationRaddatz, S., Mueller–Ibeler, J., Kluge, J., Wab, L., Burdinski, G., Havens, J. R., Onofrey, T. J., Wang, D. G. & Schweitzer, M. (2002). Nucleic Acid Res. 21, 4793–4802.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds