organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Meth­oxy­meth­yl)adamantan-2-yl 2-methyl­acrylate

aState Key Laboratory of Fine Chemicals, Dalian Unversity of Technology, PO Box 90, Zhongshan Road 158, Dalian 116012, People's Republic of China
*Correspondence e-mail: mengqw@chem.dlut.edu.cn

(Received 8 September 2009; accepted 16 October 2009; online 23 October 2009)

The title compound, C16H24O3, has a cage-type mol­ecular structure and is of inter­est with respect to its photochemical properties. The structure displays non-classical inter­molecular C—H⋯O hydrogen bonding, which links the mol­ecules into a three-dimensional network.

Related literature

For the synthesis of the title compound and its analogues, see: Hui et al. (2007[Hui, C., Meng, Q.-W., Gong, B. & Qu, J.-P. (2007). Ganguang Kexue Yu Guang Huaxue, 25, 357-363.]); Isobe et al. (2007[Isobe, T., Kadota, M., Arai, Y. & Suzuki, M. (2007). Jpn Patent JP2007022918.]); Kikugawa (2009[Kikugawa, T. (2009). Jpn Patent JP2008088152.]); Sasaki et al. (2007[Sasaki, M., Nishimura, Y. & &Akamatsu, J. (2007). Jpn Patent JP2007277118.]); Takahashi et al. (2006[Takahashi, T., Kawaragi, Y. & Ichikawa, S. (2006). Jpn Patent JP2006022023.]). For related photoresist preparations, see: Chen et al. (2009[Chen, K.-J., Huang, W.-S., Li, W.-K. & Varanasi, P. R. (2009). US Patent US2009130590.]); Fedynyshyn (2009[Fedynyshyn, T. H. (2009). US Patent US2009068589.]); Okago et al. (2009[Okago, Y., Cho, Y.-H. & Kusaka, H. (2009). Jpn Patent JP2009114381.]); Padmanaban et al. (2009[Padmanaban, M., Chakrapani, S. & Lin, G.-Y. (2009). US Patent US2009042148.]); Yoo et al. (2009[Yoo, G. U., Park, H. U. & Kim, S. T. (2009). KR Patent KR2009008039.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24O3

  • Mr = 264.35

  • Monoclinic, P 21 /c

  • a = 14.1385 (12) Å

  • b = 7.5265 (7) Å

  • c = 13.9712 (12) Å

  • β = 102.461 (6)°

  • V = 1451.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: none

  • 9914 measured reflections

  • 3701 independent reflections

  • 2096 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.159

  • S = 1.03

  • 3701 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.93 2.58 3.499 (2) 171
Symmetry code: (i) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The photoresist is the key material for the preparation of integrated circuit plates. With the development of integrated circuit, the quest for high performance of the photoresist is changing. From 1993 till now, 193 nm photoresist is always being a research hot spot. As the important monomers of polymer matrix for 193 nm photoresist, adamant-2-yl methacrylates are potential and the design of such compounds has received significant attention (Chen et al., 2009; Fedynyshyn, 2009; Hui et al., 2007; Isobe et al., 2007; Kikugawa, 2009; Okago et al., 2009; Padmanaban et al., 2009; Sasaki et al., 2007; Takahashi et al., 2006; Yoo et al. 2009).

As a part of studying the effect of side chain substitution on the structures of adamant-2-yl methacrylates, the crystal structure of 2-methyl-acrylic acid 2-methoxymethyl-adamantan-2-yl ester has been determined. The title compound is prepared via three steps including Grignard reaction, etherafication and esterification (Fig. 1). The conformation of the CO and CC bonds of the methacrylic group are syn to each other but not coplanar (Fig.2). The torsion angle O1–C9–C12C16 is equal to 9.4 (3)°. The geometry of the molecule as well as 1.1996 (19)Å, 1.478 (2)Å and 1.340 (2)Å distances of O1–C9, C9–C12 and C12C16 bonds, indicate no obvious delocalization of the electron pairs of CO and CC within the methacrylic group. The non-classical C16–H16A···O2i intermolecular hydrogen bonds link the molecules into a three-dimensional network (Table 1, Fig. 3). Symmetry code (i): x, -y+5/2, z-1/2.

Related literature top

For the synthesis of the title compound and its analogues, see: Hui et al. (2007); Isobe et al. (2007); Kikugawa (2009); Sasaki et al. (2007); Takahashi et al. (2006). For related photoresist preparation, see: Chen et al. (2009); Fedynyshyn (2009); Okago et al. (2009); Padmanaban et al. (2009); Yoo et al. (2009).

Experimental top

The synthesis of title compound was shown in Fig.1. The crude product was recrystalized by petroleum ether in the yield of 60%. 1H-NMR (CDCl3, 400 MHz): 1.58-2.53 (14H, m), 1.95 (3H, s), 3.35 (3H, s), 4.08 (2H, s), 5.52 (1H, s), 6.10 (1H, s); Elemental analysis (%) Calcd (Found): C: 72.25 (72.69), H: 9.16 (9.15), O: 18.40 (18.16).

Refinement top

All H atoms attached to C atoms were treated as riding, with C–H = 0.9700Å for ethylene group, with C–H = 0.9700Å for methylene group, C–H = 0.9800Å for methyne group and C–H = 0.9600Å for methyl group with Uiso(H) = 1.2Ueq(C) of the carrier atoms to which they are attached and Uiso(H) = 1.5Ueq(C) for the methyl groups.

Structure description top

The photoresist is the key material for the preparation of integrated circuit plates. With the development of integrated circuit, the quest for high performance of the photoresist is changing. From 1993 till now, 193 nm photoresist is always being a research hot spot. As the important monomers of polymer matrix for 193 nm photoresist, adamant-2-yl methacrylates are potential and the design of such compounds has received significant attention (Chen et al., 2009; Fedynyshyn, 2009; Hui et al., 2007; Isobe et al., 2007; Kikugawa, 2009; Okago et al., 2009; Padmanaban et al., 2009; Sasaki et al., 2007; Takahashi et al., 2006; Yoo et al. 2009).

As a part of studying the effect of side chain substitution on the structures of adamant-2-yl methacrylates, the crystal structure of 2-methyl-acrylic acid 2-methoxymethyl-adamantan-2-yl ester has been determined. The title compound is prepared via three steps including Grignard reaction, etherafication and esterification (Fig. 1). The conformation of the CO and CC bonds of the methacrylic group are syn to each other but not coplanar (Fig.2). The torsion angle O1–C9–C12C16 is equal to 9.4 (3)°. The geometry of the molecule as well as 1.1996 (19)Å, 1.478 (2)Å and 1.340 (2)Å distances of O1–C9, C9–C12 and C12C16 bonds, indicate no obvious delocalization of the electron pairs of CO and CC within the methacrylic group. The non-classical C16–H16A···O2i intermolecular hydrogen bonds link the molecules into a three-dimensional network (Table 1, Fig. 3). Symmetry code (i): x, -y+5/2, z-1/2.

For the synthesis of the title compound and its analogues, see: Hui et al. (2007); Isobe et al. (2007); Kikugawa (2009); Sasaki et al. (2007); Takahashi et al. (2006). For related photoresist preparation, see: Chen et al. (2009); Fedynyshyn (2009); Okago et al. (2009); Padmanaban et al. (2009); Yoo et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthesis path of title compound.
[Figure 2] Fig. 2. The molecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 3] Fig. 3. Molecular packing in the crystal. Hydrogen bonds are shown as dashed lines.
2-(Methoxymethyl)adamantan-2-yl 2-methylacrylate top
Crystal data top
C16H24O3F(000) = 576
Mr = 264.35Dx = 1.210 Mg m3
Monoclinic, P21/cMelting point: 318 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.1385 (12) ÅCell parameters from 2653 reflections
b = 7.5265 (7) Åθ = 3.0–25.0°
c = 13.9712 (12) ŵ = 0.08 mm1
β = 102.461 (6)°T = 298 K
V = 1451.7 (2) Å3Block, colourless
Z = 40.40 × 0.35 × 0.30 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2096 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.7°, θmin = 1.5°
φ and ω scansh = 1918
9914 measured reflectionsk = 610
3701 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0765P)2 + 0.0779P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3701 reflectionsΔρmax = 0.15 e Å3
173 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (4)
Crystal data top
C16H24O3V = 1451.7 (2) Å3
Mr = 264.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1385 (12) ŵ = 0.08 mm1
b = 7.5265 (7) ÅT = 298 K
c = 13.9712 (12) Å0.40 × 0.35 × 0.30 mm
β = 102.461 (6)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2096 reflections with I > 2σ(I)
9914 measured reflectionsRint = 0.025
3701 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
3701 reflectionsΔρmin = 0.13 e Å3
173 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.72029 (7)1.00159 (13)0.70066 (7)0.0492 (3)
C20.73378 (10)0.86448 (19)0.77704 (10)0.0475 (4)
C30.78456 (12)0.7003 (2)0.74679 (11)0.0523 (4)
H3A0.74190.64150.69120.063*
C40.87843 (11)0.7558 (2)0.71813 (11)0.0564 (4)
H4A0.90960.65230.69740.068*
H4B0.86410.83830.66360.068*
O20.59138 (8)0.97066 (16)0.82779 (9)0.0729 (4)
C60.80243 (11)0.9541 (2)0.86316 (11)0.0530 (4)
H6A0.77131.06040.88270.064*
C70.94636 (12)0.8433 (2)0.80430 (11)0.0614 (5)
H7A1.00640.87810.78510.074*
O10.63265 (9)0.83342 (17)0.58041 (9)0.0746 (4)
C90.67070 (11)0.9716 (2)0.60916 (12)0.0518 (4)
C100.63535 (12)0.8197 (2)0.79806 (13)0.0612 (5)
H10A0.59390.77080.73950.073*
H10B0.64320.73030.84910.073*
C110.89683 (12)1.0069 (2)0.83410 (12)0.0593 (5)
H11A0.88311.09020.77990.071*
H11B0.93951.06490.88890.071*
C120.66997 (12)1.1315 (2)0.54756 (11)0.0563 (4)
C130.87610 (14)0.6618 (3)0.91968 (12)0.0724 (6)
H13A0.89090.57920.97510.087*
C140.96933 (13)0.7145 (3)0.88993 (13)0.0743 (6)
H14A1.00090.60960.87120.089*
H14B1.01300.77010.94480.089*
C150.80964 (14)0.5713 (2)0.83353 (13)0.0682 (5)
H15A0.75070.53320.85250.082*
H15B0.84140.46700.81440.082*
C160.61220 (14)1.1289 (3)0.45791 (13)0.0762 (6)
H16A0.60881.22770.41730.091*
H16B0.57551.02850.43630.091*
C170.82633 (15)0.8258 (3)0.94946 (12)0.0694 (5)
H17A0.86860.88351.00460.083*
H17B0.76730.79130.96930.083*
C180.72945 (16)1.2843 (3)0.58613 (15)0.0865 (6)
H18A0.72061.37670.53760.130*
H18B0.79641.24980.60230.130*
H18C0.71051.32730.64390.130*
C190.50466 (14)0.9249 (3)0.85691 (17)0.0884 (7)
H19A0.47571.03010.87690.133*
H19B0.51890.84280.91070.133*
H19C0.46050.87090.80290.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0590 (6)0.0445 (6)0.0440 (6)0.0045 (5)0.0108 (5)0.0001 (5)
C20.0569 (9)0.0424 (9)0.0452 (8)0.0030 (7)0.0152 (7)0.0032 (6)
C30.0641 (9)0.0441 (9)0.0484 (9)0.0007 (7)0.0116 (7)0.0037 (7)
C40.0652 (10)0.0590 (10)0.0477 (9)0.0097 (8)0.0180 (8)0.0025 (7)
O20.0659 (8)0.0589 (8)0.1038 (10)0.0058 (6)0.0402 (7)0.0083 (7)
C60.0657 (10)0.0538 (10)0.0410 (8)0.0004 (8)0.0148 (7)0.0064 (7)
C70.0559 (10)0.0743 (12)0.0550 (10)0.0008 (8)0.0138 (8)0.0043 (8)
O10.0801 (9)0.0617 (8)0.0703 (8)0.0072 (6)0.0098 (6)0.0078 (6)
C90.0494 (9)0.0534 (10)0.0508 (9)0.0042 (8)0.0069 (7)0.0043 (8)
C100.0634 (10)0.0510 (10)0.0750 (11)0.0036 (8)0.0278 (9)0.0027 (8)
C110.0613 (10)0.0633 (11)0.0509 (9)0.0100 (8)0.0070 (8)0.0099 (8)
C120.0599 (10)0.0617 (11)0.0497 (9)0.0121 (8)0.0171 (8)0.0040 (8)
C130.0928 (14)0.0767 (13)0.0481 (10)0.0222 (11)0.0158 (10)0.0158 (9)
C140.0721 (12)0.0890 (14)0.0571 (10)0.0170 (10)0.0038 (9)0.0038 (10)
C150.0838 (12)0.0502 (10)0.0742 (12)0.0096 (9)0.0252 (10)0.0105 (9)
C160.0827 (13)0.0820 (14)0.0611 (11)0.0171 (11)0.0097 (10)0.0073 (10)
C170.0880 (13)0.0784 (13)0.0442 (9)0.0110 (10)0.0197 (9)0.0033 (9)
C180.1140 (17)0.0687 (13)0.0771 (13)0.0163 (12)0.0210 (12)0.0151 (11)
C190.0695 (12)0.0876 (15)0.1194 (17)0.0119 (11)0.0458 (12)0.0176 (13)
Geometric parameters (Å, º) top
O3—C91.3379 (19)C11—H11A0.9700
O3—C21.4671 (17)C11—H11B0.9700
C2—C101.521 (2)C12—C161.340 (2)
C2—C61.530 (2)C12—C181.458 (2)
C2—C31.534 (2)C13—C141.518 (3)
C3—C41.525 (2)C13—C151.519 (3)
C3—C151.534 (2)C13—C171.523 (2)
C3—H3A0.9800C13—H13A0.9800
C4—C71.518 (2)C14—H14A0.9700
C4—H4A0.9700C14—H14B0.9700
C4—H4B0.9700C15—H15A0.9700
O2—C101.4004 (19)C15—H15B0.9700
O2—C191.4150 (19)C16—H16A0.9300
C6—C171.524 (2)C16—H16B0.9300
C6—C111.529 (2)C17—H17A0.9700
C6—H6A0.9800C17—H17B0.9700
C7—C111.519 (2)C18—H18A0.9600
C7—C141.520 (2)C18—H18B0.9600
C7—H7A0.9800C18—H18C0.9600
O1—C91.1996 (19)C19—H19A0.9600
C9—C121.478 (2)C19—H19B0.9600
C10—H10A0.9700C19—H19C0.9600
C10—H10B0.9700
C9—O3—C2122.37 (12)C6—C11—H11B109.7
O3—C2—C10108.39 (12)H11A—C11—H11B108.2
O3—C2—C6102.87 (11)C16—C12—C18122.91 (18)
C10—C2—C6113.42 (12)C16—C12—C9117.33 (17)
O3—C2—C3111.18 (11)C18—C12—C9119.75 (15)
C10—C2—C3112.16 (13)C14—C13—C15108.99 (13)
C6—C2—C3108.46 (12)C14—C13—C17110.06 (17)
C4—C3—C2109.71 (13)C15—C13—C17109.69 (15)
C4—C3—C15108.37 (13)C14—C13—H13A109.4
C2—C3—C15109.55 (12)C15—C13—H13A109.4
C4—C3—H3A109.7C17—C13—H13A109.4
C2—C3—H3A109.7C13—C14—C7109.36 (14)
C15—C3—H3A109.7C13—C14—H14A109.8
C7—C4—C3110.37 (12)C7—C14—H14A109.8
C7—C4—H4A109.6C13—C14—H14B109.8
C3—C4—H4A109.6C7—C14—H14B109.8
C7—C4—H4B109.6H14A—C14—H14B108.3
C3—C4—H4B109.6C13—C15—C3109.86 (15)
H4A—C4—H4B108.1C13—C15—H15A109.7
C10—O2—C19110.83 (14)C3—C15—H15A109.7
C17—C6—C11108.51 (14)C13—C15—H15B109.7
C17—C6—C2109.73 (14)C3—C15—H15B109.7
C11—C6—C2110.36 (11)H15A—C15—H15B108.2
C17—C6—H6A109.4C12—C16—H16A120.0
C11—C6—H6A109.4C12—C16—H16B120.0
C2—C6—H6A109.4H16A—C16—H16B120.0
C4—C7—C11108.58 (13)C13—C17—C6109.51 (12)
C4—C7—C14109.81 (15)C13—C17—H17A109.8
C11—C7—C14109.53 (13)C6—C17—H17A109.8
C4—C7—H7A109.6C13—C17—H17B109.8
C11—C7—H7A109.6C6—C17—H17B109.8
C14—C7—H7A109.6H17A—C17—H17B108.2
O1—C9—O3124.81 (15)C12—C18—H18A109.5
O1—C9—C12124.37 (16)C12—C18—H18B109.5
O3—C9—C12110.82 (14)H18A—C18—H18B109.5
O2—C10—C2111.15 (13)C12—C18—H18C109.5
O2—C10—H10A109.4H18A—C18—H18C109.5
C2—C10—H10A109.4H18B—C18—H18C109.5
O2—C10—H10B109.4O2—C19—H19A109.5
C2—C10—H10B109.4O2—C19—H19B109.5
H10A—C10—H10B108.0H19A—C19—H19B109.5
C7—C11—C6110.02 (14)O2—C19—H19C109.5
C7—C11—H11A109.7H19A—C19—H19C109.5
C6—C11—H11A109.7H19B—C19—H19C109.5
C7—C11—H11B109.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.583.499 (2)171
Symmetry code: (i) x, y+5/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H24O3
Mr264.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.1385 (12), 7.5265 (7), 13.9712 (12)
β (°) 102.461 (6)
V3)1451.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9914, 3701, 2096
Rint0.025
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.159, 1.03
No. of reflections3701
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.5783.499 (2)171
Symmetry code: (i) x, y+5/2, z1/2.
 

Acknowledgements

We thank Dr Yanhui Chen for his help with the refinement.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, K.-J., Huang, W.-S., Li, W.-K. & Varanasi, P. R. (2009). US Patent US2009130590.  Google Scholar
First citationFedynyshyn, T. H. (2009). US Patent US2009068589.  Google Scholar
First citationHui, C., Meng, Q.-W., Gong, B. & Qu, J.-P. (2007). Ganguang Kexue Yu Guang Huaxue, 25, 357–363.  CAS Google Scholar
First citationIsobe, T., Kadota, M., Arai, Y. & Suzuki, M. (2007). Jpn Patent JP2007022918.  Google Scholar
First citationKikugawa, T. (2009). Jpn Patent JP2008088152.  Google Scholar
First citationOkago, Y., Cho, Y.-H. & Kusaka, H. (2009). Jpn Patent JP2009114381.  Google Scholar
First citationPadmanaban, M., Chakrapani, S. & Lin, G.-Y. (2009). US Patent US2009042148.  Google Scholar
First citationSasaki, M., Nishimura, Y. & &Akamatsu, J. (2007). Jpn Patent JP2007277118.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, T., Kawaragi, Y. & Ichikawa, S. (2006). Jpn Patent JP2006022023.  Google Scholar
First citationYoo, G. U., Park, H. U. & Kim, S. T. (2009). KR Patent KR2009008039.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds