organic compounds
Ethyl 2-(4-benzoyl-2,5-dimethylphenoxy)acetate
aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Chemistry, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and cDepartment of Physics, AVK College for Women, Hassan 573 201, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com
The title compound, C19H20O4, was synthesized via a Fries rearrangement of hydroxy benzophenone. The dihedral angle between the least-squares planes of the two benzene rings is 69.04 (11)°. The molecular structure displays an intramolecular non-classical C—H⋯O hydrogen bond.
Related literature
hydroxy benzophenones may obtained from natural products, see: Henry et al. (1999); Vidya et al. (2003); Cuesta-Rubio et al. (2002) and by synthetic methods, see: Hsieh et al. (2003); Revesz et al. (2004); Schlitzer et al. (2002). For their biological activity, see: Jiri et al. (1991); Palomer et al. (2000, 2002); Palaska et al. (2002); Khanum et al. (2004a,b). Benzophenone analogues with nitro substituents exhibit significant in vivo antitumor activity and they have been reported to show activity as immunomodulators, see: Leonard (1997). Nitro benzophenone derivatives show strong cytotoxic activity while the corresponding aminobenzophenone derivatives show weak activity, see: Kumazawa et al. (1997). For the antimicobial activity of benzophenone derivatives, see: Selvi et al. (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536809043190/rk2174sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809043190/rk2174Isup2.hkl
2,5-Dimethyl phenyl benzoate was synthesized from 2,5-dimethyl phenol and benzoyl chloride in presence of 10% sodium hydroxide. 4-Hydroxy-2,5-dimethyl benzophenone was achieved from 2,5-dimethyl phenyl benzoate by Fries rearrangement.
In a typical procedure, a mixture of 4-hydroxy-2,5-dimethylbenzophenone (4.5 g, 0.02 mol) and ethylchloroacetate (2.4 g, 0.02 mol) in dry acetone (60 ml) and anhydrous potassium carbonate (2.8 g, 0.02 mol) was refluxed for 6 h then cooled and the solvent removed under reduced pressure. The residual mass was triturated with ice water to remove potassium carbonate and extracted with ether (3 × 50ml) and the ether layer was washed with 10% sodium hydroxide solution (3 × 30ml) followed by water (3 × 30ml) and then dried over anhydrous sodium sulfate and evaporated to dryness to get crude solid, which on recrystallization with ethanol gave 4-benzoyl-2,5-dimethyl phenoxy ethyl acetate.
M.p. 329 K; IR (Nujol): 1740 (ester, C═O), 1665 cm-1 (C═O). 1H NMR (CDCl3): δ 1.2 (t, J=7 Hz, 3H, CH3 of ester), 2.2-2.3 (d, 6H, 2Ar-CH3), 4.25 (q, J=6 Hz, 2H, CH2 of ester), 4.45 (s, 2H, OCH2), 7.2-7.8 (bm, 7H, Ar–H); Anal. Cal. for C19H20O4: C, 72.61%; H, 6.36%. Found: C, 72.29%; H, 6.15%.
All H atoms were positioned at calculated positions with C–H = 0.93Å for aromatic H, 0.97Å for methylene H and 0.96Å for methyl H, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for other.
Hydroxy benzophenones are achieved from natural products (Henry et al., 1999; Vidya et al., 2003; Cuesta-Rubio et al., 2002) as well as by synthetic methods (Hsieh et al., 2003; Schlitzer et al., 2002; Revesz et al., 2004). The great importance of these substances is essentially due to the diverse biological and chemical properties they acquire. Benzophenone analogues possess a high analgesic (Jiri et al., 1991) efficacy and also endowed with anti-inflammatory property (Palomer et al., 2000; Palomer et al., 2002; Palaska et al., 2002; Khanum et al., 2004a,b).
Benzophenone analogues with nitro substituent exhibit significant in vivo antitumor activity and they have been reported to show activity as immunomodulators (Leonard, 1997). Based on these report, in vitro and in vivo studies of a series of novel nitro- and amino-substituted benzophenones have been investigated as potential anticancer agents. Nitro benzophenone derivative showed strong cytotoxic activity while the corresponding aminobenzophenone derivatives showed weak activity (Kumazawa et al., 1997). Besides benzophenone derivatives endowed with anti-microbial activity, for instance isoprenylated benzophenone, at its lower concentration of 500 to 1000 p.p.m. inhibits aflatoxin production in Aspergillus flavus, relatively greater than inhibition growth of the fungus - Selvi et al., (2003).
The molecular structure of title compound is shown on Fig.1. The dihedral angle between least-squares planes (two phenyl rings) is 69.04 (11)°. The intramolecular non-classical C–H···O hydrogen bond (Table 1) is observed.
For background to hydroxy benzophenones, see: Henry et al. (1999); Vidya et al. (2003); Cuesta-Rubio et al. (2002); Jiri et al. (1991); Palomer et al. (2000, 2002); Palaska et al. (2002); Khanum et al. (2004a,b); Leonard (1997); Kumazawa et al. (1997); Selvi et al. (2003). For related syntheses, see: Hsieh et al. (2003); Revesz et al. (2004); Schlitzer et al. (2002).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C19H20O4 | Z = 2 |
Mr = 312.35 | F(000) = 332 |
Triclinic, P1 | Dx = 1.250 Mg m−3 |
Hall symbol: -P 1 | Melting point: 329 K |
a = 8.148 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.635 (4) Å | Cell parameters from 3391 reflections |
c = 13.029 (7) Å | θ = 1.6–26.4° |
α = 84.054 (8)° | µ = 0.09 mm−1 |
β = 81.176 (8)° | T = 295 K |
γ = 66.559 (7)° | Plate, colourless |
V = 830.2 (7) Å3 | 0.21 × 0.20 × 0.10 mm |
Bruker SMART CCD diffractometer | 3391 independent reflections |
Radiation source: fine-focus sealed tube | 2630 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω and φ scans | θmax = 26.4°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −10→10 |
Tmin = 0.982, Tmax = 0.991 | k = −10→10 |
8847 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.173 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0848P)2 + 0.2822P] where P = (Fo2 + 2Fc2)/3 |
3391 reflections | (Δ/σ)max < 0.001 |
209 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C19H20O4 | γ = 66.559 (7)° |
Mr = 312.35 | V = 830.2 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.148 (4) Å | Mo Kα radiation |
b = 8.635 (4) Å | µ = 0.09 mm−1 |
c = 13.029 (7) Å | T = 295 K |
α = 84.054 (8)° | 0.21 × 0.20 × 0.10 mm |
β = 81.176 (8)° |
Bruker SMART CCD diffractometer | 3391 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2630 reflections with I > 2σ(I) |
Tmin = 0.982, Tmax = 0.991 | Rint = 0.025 |
8847 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.173 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.36 e Å−3 |
3391 reflections | Δρmin = −0.25 e Å−3 |
209 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4354 (3) | 0.82563 (19) | 0.84149 (12) | 0.0691 (5) | |
O2 | 0.14909 (19) | 1.14174 (17) | 0.41431 (11) | 0.0546 (4) | |
O3 | 0.1127 (2) | 1.37122 (19) | 0.24885 (14) | 0.0715 (5) | |
O4 | 0.1339 (2) | 1.16785 (19) | 0.14867 (12) | 0.0662 (5) | |
C1 | 0.4303 (3) | 0.5733 (2) | 0.79154 (15) | 0.0462 (5) | |
C2 | 0.5409 (3) | 0.4695 (3) | 0.86317 (18) | 0.0642 (6) | |
H2 | 0.6073 | 0.5104 | 0.8967 | 0.077* | |
C3 | 0.5525 (4) | 0.3051 (3) | 0.8849 (2) | 0.0760 (7) | |
H3 | 0.6276 | 0.2356 | 0.9324 | 0.091* | |
C4 | 0.4536 (4) | 0.2448 (3) | 0.8364 (2) | 0.0731 (7) | |
H4 | 0.4611 | 0.1347 | 0.8516 | 0.088* | |
C5 | 0.3435 (4) | 0.3461 (3) | 0.7654 (2) | 0.0667 (6) | |
H5 | 0.2761 | 0.3047 | 0.7331 | 0.080* | |
C6 | 0.3327 (3) | 0.5103 (3) | 0.74180 (17) | 0.0537 (5) | |
H6 | 0.2600 | 0.5780 | 0.6927 | 0.064* | |
C7 | 0.4101 (3) | 0.7530 (2) | 0.77353 (15) | 0.0476 (5) | |
C8 | 0.3509 (2) | 0.8461 (2) | 0.67388 (15) | 0.0425 (4) | |
C9 | 0.4344 (2) | 0.7866 (2) | 0.57555 (14) | 0.0413 (4) | |
C10 | 0.3660 (2) | 0.8849 (2) | 0.48841 (14) | 0.0432 (4) | |
H10 | 0.4193 | 0.8466 | 0.4225 | 0.052* | |
C11 | 0.2199 (2) | 1.0389 (2) | 0.49763 (15) | 0.0437 (4) | |
C12 | 0.1369 (2) | 1.1014 (2) | 0.59520 (16) | 0.0449 (4) | |
C13 | 0.2055 (3) | 1.0032 (2) | 0.68133 (15) | 0.0457 (4) | |
H13 | 0.1531 | 1.0430 | 0.7470 | 0.055* | |
C14 | 0.6014 (3) | 0.6268 (2) | 0.56025 (16) | 0.0490 (5) | |
H14A | 0.6369 | 0.6093 | 0.4872 | 0.074* | |
H14B | 0.5765 | 0.5326 | 0.5935 | 0.074* | |
H14C | 0.6970 | 0.6368 | 0.5902 | 0.074* | |
C15 | −0.0212 (3) | 1.2694 (2) | 0.60437 (19) | 0.0596 (6) | |
H15A | −0.0484 | 1.3174 | 0.5362 | 0.089* | |
H15B | 0.0086 | 1.3446 | 0.6403 | 0.089* | |
H15C | −0.1241 | 1.2532 | 0.6425 | 0.089* | |
C16 | 0.2201 (3) | 1.0816 (3) | 0.31397 (16) | 0.0523 (5) | |
H16A | 0.1847 | 0.9904 | 0.3029 | 0.063* | |
H16B | 0.3507 | 1.0388 | 0.3062 | 0.063* | |
C17 | 0.1474 (3) | 1.2266 (3) | 0.23580 (17) | 0.0519 (5) | |
C18 | 0.0828 (4) | 1.2910 (3) | 0.06180 (19) | 0.0752 (7) | |
H18A | 0.1834 | 1.3212 | 0.0322 | 0.090* | |
H18B | −0.0173 | 1.3927 | 0.0856 | 0.090* | |
C19 | 0.0308 (5) | 1.2153 (4) | −0.0163 (2) | 0.0967 (10) | |
H19A | −0.0037 | 1.2947 | −0.0742 | 0.145* | |
H19B | −0.0689 | 1.1860 | 0.0136 | 0.145* | |
H19C | 0.1310 | 1.1153 | −0.0398 | 0.145* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1070 (13) | 0.0530 (9) | 0.0549 (9) | −0.0327 (9) | −0.0290 (9) | −0.0015 (7) |
O2 | 0.0530 (8) | 0.0449 (8) | 0.0511 (8) | −0.0028 (6) | −0.0123 (6) | 0.0043 (6) |
O3 | 0.0911 (12) | 0.0458 (9) | 0.0748 (11) | −0.0189 (8) | −0.0288 (9) | 0.0057 (8) |
O4 | 0.0907 (12) | 0.0566 (9) | 0.0522 (9) | −0.0281 (8) | −0.0194 (8) | 0.0076 (7) |
C1 | 0.0514 (11) | 0.0412 (10) | 0.0429 (10) | −0.0149 (8) | −0.0053 (8) | −0.0019 (8) |
C2 | 0.0795 (16) | 0.0530 (12) | 0.0612 (13) | −0.0237 (11) | −0.0233 (12) | 0.0062 (10) |
C3 | 0.0950 (19) | 0.0504 (13) | 0.0734 (16) | −0.0189 (13) | −0.0212 (14) | 0.0142 (11) |
C4 | 0.0944 (19) | 0.0442 (12) | 0.0723 (16) | −0.0254 (12) | 0.0105 (14) | −0.0030 (11) |
C5 | 0.0800 (16) | 0.0592 (13) | 0.0688 (15) | −0.0373 (12) | 0.0026 (12) | −0.0127 (11) |
C6 | 0.0568 (12) | 0.0522 (11) | 0.0534 (12) | −0.0226 (10) | −0.0058 (9) | −0.0036 (9) |
C7 | 0.0524 (11) | 0.0426 (10) | 0.0468 (11) | −0.0158 (9) | −0.0092 (9) | −0.0043 (8) |
C8 | 0.0451 (10) | 0.0354 (9) | 0.0472 (10) | −0.0142 (8) | −0.0103 (8) | −0.0026 (7) |
C9 | 0.0379 (9) | 0.0346 (9) | 0.0494 (10) | −0.0105 (7) | −0.0088 (8) | −0.0029 (7) |
C10 | 0.0412 (10) | 0.0391 (9) | 0.0437 (10) | −0.0088 (8) | −0.0064 (8) | −0.0038 (8) |
C11 | 0.0412 (9) | 0.0384 (9) | 0.0489 (11) | −0.0118 (8) | −0.0113 (8) | 0.0027 (8) |
C12 | 0.0402 (9) | 0.0350 (9) | 0.0552 (11) | −0.0092 (8) | −0.0066 (8) | −0.0044 (8) |
C13 | 0.0491 (10) | 0.0374 (9) | 0.0473 (10) | −0.0132 (8) | −0.0018 (8) | −0.0084 (8) |
C14 | 0.0439 (10) | 0.0415 (10) | 0.0532 (11) | −0.0060 (8) | −0.0095 (8) | −0.0038 (8) |
C15 | 0.0524 (12) | 0.0397 (10) | 0.0711 (14) | −0.0017 (9) | −0.0052 (10) | −0.0056 (10) |
C16 | 0.0562 (12) | 0.0454 (10) | 0.0509 (12) | −0.0142 (9) | −0.0131 (9) | 0.0035 (9) |
C17 | 0.0492 (11) | 0.0502 (11) | 0.0550 (12) | −0.0166 (9) | −0.0143 (9) | 0.0045 (9) |
C18 | 0.103 (2) | 0.0683 (15) | 0.0531 (13) | −0.0326 (15) | −0.0191 (13) | 0.0145 (11) |
C19 | 0.130 (3) | 0.108 (2) | 0.0701 (18) | −0.061 (2) | −0.0400 (18) | 0.0194 (16) |
O1—C7 | 1.222 (2) | C9—C14 | 1.508 (2) |
O2—C11 | 1.373 (2) | C10—C11 | 1.389 (3) |
O2—C16 | 1.408 (3) | C10—H10 | 0.9300 |
O3—C17 | 1.190 (3) | C11—C12 | 1.397 (3) |
O4—C17 | 1.327 (3) | C12—C13 | 1.382 (3) |
O4—C18 | 1.459 (3) | C12—C15 | 1.510 (3) |
C1—C6 | 1.387 (3) | C13—H13 | 0.9300 |
C1—C2 | 1.389 (3) | C14—H14A | 0.9600 |
C1—C7 | 1.491 (3) | C14—H14B | 0.9600 |
C2—C3 | 1.387 (3) | C14—H14C | 0.9600 |
C2—H2 | 0.9300 | C15—H15A | 0.9600 |
C3—C4 | 1.370 (4) | C15—H15B | 0.9600 |
C3—H3 | 0.9300 | C15—H15C | 0.9600 |
C4—C5 | 1.375 (4) | C16—C17 | 1.512 (3) |
C4—H4 | 0.9300 | C16—H16A | 0.9700 |
C5—C6 | 1.390 (3) | C16—H16B | 0.9700 |
C5—H5 | 0.9300 | C18—C19 | 1.461 (4) |
C6—H6 | 0.9300 | C18—H18A | 0.9700 |
C7—C8 | 1.494 (3) | C18—H18B | 0.9700 |
C8—C9 | 1.400 (3) | C19—H19A | 0.9600 |
C8—C13 | 1.402 (3) | C19—H19B | 0.9600 |
C9—C10 | 1.392 (3) | C19—H19C | 0.9600 |
C11—O2—C16 | 117.92 (15) | C11—C12—C15 | 120.57 (18) |
C17—O4—C18 | 116.19 (18) | C12—C13—C8 | 122.77 (18) |
C6—C1—C2 | 119.25 (19) | C12—C13—H13 | 118.6 |
C6—C1—C7 | 120.90 (18) | C8—C13—H13 | 118.6 |
C2—C1—C7 | 119.76 (18) | C9—C14—H14A | 109.5 |
C3—C2—C1 | 120.2 (2) | C9—C14—H14B | 109.5 |
C3—C2—H2 | 119.9 | H14A—C14—H14B | 109.5 |
C1—C2—H2 | 119.9 | C9—C14—H14C | 109.5 |
C4—C3—C2 | 120.1 (2) | H14A—C14—H14C | 109.5 |
C4—C3—H3 | 119.9 | H14B—C14—H14C | 109.5 |
C2—C3—H3 | 119.9 | C12—C15—H15A | 109.5 |
C3—C4—C5 | 120.3 (2) | C12—C15—H15B | 109.5 |
C3—C4—H4 | 119.8 | H15A—C15—H15B | 109.5 |
C5—C4—H4 | 119.8 | C12—C15—H15C | 109.5 |
C4—C5—C6 | 120.1 (2) | H15A—C15—H15C | 109.5 |
C4—C5—H5 | 119.9 | H15B—C15—H15C | 109.5 |
C6—C5—H5 | 119.9 | O2—C16—C17 | 108.12 (16) |
C1—C6—C5 | 120.0 (2) | O2—C16—H16A | 110.1 |
C1—C6—H6 | 120.0 | C17—C16—H16A | 110.1 |
C5—C6—H6 | 120.0 | O2—C16—H16B | 110.1 |
O1—C7—C1 | 120.15 (18) | C17—C16—H16B | 110.1 |
O1—C7—C8 | 120.08 (17) | H16A—C16—H16B | 108.4 |
C1—C7—C8 | 119.71 (16) | O3—C17—O4 | 124.87 (19) |
C9—C8—C13 | 119.31 (17) | O3—C17—C16 | 125.4 (2) |
C9—C8—C7 | 123.67 (16) | O4—C17—C16 | 109.72 (18) |
C13—C8—C7 | 117.01 (17) | O4—C18—C19 | 108.2 (2) |
C10—C9—C8 | 118.21 (16) | O4—C18—H18A | 110.1 |
C10—C9—C14 | 118.84 (17) | C19—C18—H18A | 110.1 |
C8—C9—C14 | 122.83 (16) | O4—C18—H18B | 110.1 |
C11—C10—C9 | 121.49 (17) | C19—C18—H18B | 110.1 |
C11—C10—H10 | 119.3 | H18A—C18—H18B | 108.4 |
C9—C10—H10 | 119.3 | C18—C19—H19A | 109.5 |
O2—C11—C10 | 123.79 (17) | C18—C19—H19B | 109.5 |
O2—C11—C12 | 115.21 (16) | H19A—C19—H19B | 109.5 |
C10—C11—C12 | 120.99 (17) | C18—C19—H19C | 109.5 |
C13—C12—C11 | 117.21 (16) | H19A—C19—H19C | 109.5 |
C13—C12—C15 | 122.22 (18) | H19B—C19—H19C | 109.5 |
C6—C1—C2—C3 | −0.3 (4) | C8—C9—C10—C11 | 0.6 (3) |
C7—C1—C2—C3 | 176.3 (2) | C14—C9—C10—C11 | −175.62 (17) |
C1—C2—C3—C4 | −0.6 (4) | C16—O2—C11—C10 | 4.9 (3) |
C2—C3—C4—C5 | 0.5 (4) | C16—O2—C11—C12 | −176.40 (17) |
C3—C4—C5—C6 | 0.4 (4) | C9—C10—C11—O2 | 179.02 (17) |
C2—C1—C6—C5 | 1.3 (3) | C9—C10—C11—C12 | 0.4 (3) |
C7—C1—C6—C5 | −175.3 (2) | O2—C11—C12—C13 | −179.07 (16) |
C4—C5—C6—C1 | −1.3 (3) | C10—C11—C12—C13 | −0.4 (3) |
C6—C1—C7—O1 | 151.5 (2) | O2—C11—C12—C15 | 1.0 (3) |
C2—C1—C7—O1 | −25.1 (3) | C10—C11—C12—C15 | 179.66 (18) |
C6—C1—C7—C8 | −25.8 (3) | C11—C12—C13—C8 | −0.7 (3) |
C2—C1—C7—C8 | 157.6 (2) | C15—C12—C13—C8 | 179.29 (18) |
O1—C7—C8—C9 | 130.0 (2) | C9—C8—C13—C12 | 1.7 (3) |
C1—C7—C8—C9 | −52.7 (3) | C7—C8—C13—C12 | −179.52 (17) |
O1—C7—C8—C13 | −48.7 (3) | C11—O2—C16—C17 | −169.54 (16) |
C1—C7—C8—C13 | 128.6 (2) | C18—O4—C17—O3 | 3.8 (3) |
C13—C8—C9—C10 | −1.6 (3) | C18—O4—C17—C16 | −174.0 (2) |
C7—C8—C9—C10 | 179.72 (16) | O2—C16—C17—O3 | 32.4 (3) |
C13—C8—C9—C14 | 174.45 (17) | O2—C16—C17—O4 | −149.82 (18) |
C7—C8—C9—C14 | −4.3 (3) | C17—O4—C18—C19 | −165.9 (2) |
Experimental details
Crystal data | |
Chemical formula | C19H20O4 |
Mr | 312.35 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 8.148 (4), 8.635 (4), 13.029 (7) |
α, β, γ (°) | 84.054 (8), 81.176 (8), 66.559 (7) |
V (Å3) | 830.2 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.21 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.982, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8847, 3391, 2630 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.173, 1.05 |
No. of reflections | 3391 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.25 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999).
Acknowledgements
The authors thank Professor T. N Guru Row and Miss Brinda Selvaraj, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for the data collection.
References
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cuesta-Rubio, O., Frontana-Uribe, B. A., Ramirez-Apan, T. & Cardenas, J. (2002). J. Biosci. 57, 372–380. CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Henry, G. E., Jacobs, H., Carrington, C. M. S., McLean, S. & Reynolds, W. F. (1999). Tetrahedron, 55, 1581–1596. Web of Science CrossRef CAS Google Scholar
Hsieh, H. P., Liou, J. P., Lin, Y. T., Mahindroo, N., Chang, J. Y., Yang, Y. N., Chern, S. S., Tan, U. K., Chang, C. W., Chen, T. W., Lin, C. H., Chang, Y. Y. & Wang, C. C. (2003). Bioorg. Med. Chem. Lett. 13, 101–105. Web of Science CrossRef PubMed CAS Google Scholar
Jiri, J., Miroslav, P., Josef, P. & Stanislav, W. (1991). Csech CS, 271, 185. Google Scholar
Khanum, S. A., Shashikanth, S. & Deepak, A. V. (2004a). Bioorg. Chem. 32, 211–222. Web of Science CrossRef PubMed CAS Google Scholar
Khanum, S. A., Venu, T. D., Shashikanth, S. & Firdouse, A. (2004b). Bioorg. Med. Chem. Lett. 14, 5351–5355. Web of Science CrossRef PubMed CAS Google Scholar
Kumazawa, E., Hirotani, K., Burford, S. C., Kawagoe, K., Miwa, T., Mitsul, I. & Ejima, A. (1997). Chem. Pharm. Bull. 45, 1470–1474. CrossRef CAS PubMed Web of Science Google Scholar
Leonard, D. M. (1997). J. Med. Chem. 40, 2971–2990. CrossRef CAS PubMed Web of Science Google Scholar
Palaska, E., Sahin, G., Kelicen, P., Durllu, N. T. & Altinok, G. (2002). Farmaco, 57, 101–107. Web of Science CrossRef PubMed CAS Google Scholar
Palomer, A., Pascual, J., Cabre, M., Borras, L., Gonzalez, G., Aparici, M., Carabaza, A., Cabre, F., Garcia, M. L. & Mauleon, D. (2002). Bioorg. Med. Chem. Lett. 12, 533–537. Web of Science CrossRef PubMed CAS Google Scholar
Palomer, A., Perez, J. J., Navea, S., Llorens, O., Pascual, J., Garcia, M. L. & Mauleon, D. M. (2000). Med. Chem. 43, 2280–2284. Web of Science CrossRef CAS Google Scholar
Revesz, L., Blum, F. E., Di Padova, E., Buhl, T. R., Feifel, H., Gram, P., Hiestand, U., Manning, U. & Rucklin, G. (2004). Bioorg. Med. Chem. Lett. 14, 3601–3605. Web of Science CrossRef PubMed CAS Google Scholar
Schlitzer, M., Bohm, M. & Sattler, I. (2002). Bioorg. Med. Chem. Lett. 10, 615–635. CrossRef CAS Google Scholar
Selvi, A. T., Joseph, G. S. & Jayaprakasha, G. K. (2003). Food Microbiol. 20, 455–460. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vidya, R., Eggen, M., Georg, G. I. & Himes, R. H. (2003). Bioorg. Med. Chem. Lett. 13, 757–760. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydroxy benzophenones are achieved from natural products (Henry et al., 1999; Vidya et al., 2003; Cuesta-Rubio et al., 2002) as well as by synthetic methods (Hsieh et al., 2003; Schlitzer et al., 2002; Revesz et al., 2004). The great importance of these substances is essentially due to the diverse biological and chemical properties they acquire. Benzophenone analogues possess a high analgesic (Jiri et al., 1991) efficacy and also endowed with anti-inflammatory property (Palomer et al., 2000; Palomer et al., 2002; Palaska et al., 2002; Khanum et al., 2004a,b).
Benzophenone analogues with nitro substituent exhibit significant in vivo antitumor activity and they have been reported to show activity as immunomodulators (Leonard, 1997). Based on these report, in vitro and in vivo studies of a series of novel nitro- and amino-substituted benzophenones have been investigated as potential anticancer agents. Nitro benzophenone derivative showed strong cytotoxic activity while the corresponding aminobenzophenone derivatives showed weak activity (Kumazawa et al., 1997). Besides benzophenone derivatives endowed with anti-microbial activity, for instance isoprenylated benzophenone, at its lower concentration of 500 to 1000 p.p.m. inhibits aflatoxin production in Aspergillus flavus, relatively greater than inhibition growth of the fungus - Selvi et al., (2003).
The molecular structure of title compound is shown on Fig.1. The dihedral angle between least-squares planes (two phenyl rings) is 69.04 (11)°. The intramolecular non-classical C–H···O hydrogen bond (Table 1) is observed.