organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Chloro­benzyl­­idene)-2-meth­oxy­benzohydrazide

aDepartment of Chemistry, Ankang University, Ankang Shanxi 725000, People's Republic of China
*Correspondence e-mail: guobiao_cao@126.com

(Received 21 September 2009; accepted 29 September 2009; online 3 October 2009)

The mol­ecule of the title compound, C15H13ClN2O2, displays an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 77.1 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For examples of the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.]); Zhu et al. (2009[Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.]); Yang (2007[Yang, D.-S. (2007). J. Chem. Crystallogr. 37, 343-348.]); You et al. (2008[You, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem. 82, 2215-2219.]). For the hydrazone compounds we have reported previously, see: Qu et al. (2008[Qu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]), Cao & Lu (2009a[Cao, G.-B. & Lu, X.-H. (2009a). Acta Cryst. E65, o1587.],b[Cao, G.-B. & Lu, X.-H. (2009b). Acta Cryst. E65, o1600.]), Qu & Cao (2009[Qu, L.-Z. & Cao, G.-B. (2009). Acta Cryst. E65, o1705.]), Cao & Wang (2009[Cao, G.-B. & Wang, X.-Y. (2009). Acta Cryst. E65, o1725.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O2

  • Mr = 288.72

  • Orthorhombic, P b c a

  • a = 12.808 (2) Å

  • b = 9.719 (2) Å

  • c = 21.882 (1) Å

  • V = 2723.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.928

  • 15666 measured reflections

  • 2977 independent reflections

  • 2317 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.05

  • 2977 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.895 (10) 2.005 (11) 2.8791 (16) 165 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Study on the crystal structures of hydrazone derivatives is an interesting topic in structural chemistry. Recently, the crystal structures of a number of hydrazone compounds have been reported (Mohd Lair et al., 2009; Fun et al., 2008; Li & Ban, 2009; Zhu et al., 2009; Yang, 2007; You et al., 2008). As a continuation of our work in this area (Qu et al., 2008; Yang et al., 2008; Cao & Lu, 2009a,b; Qu & Cao, 2009; Cao & Wang, 2009), the title new hydrazone compound, derived from the reaction of 2-chlorobenzaldehyde with an equimolar quantity of 2-methoxybenzohydrazide, is reported.

The molecule of the title compound (Fig. 1) displays an E configuration about the CN bond. The dihedral angle between the two benzene rings is 77.1 (2)°. In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form chains running along the b axis (Fig. 2).

Related literature top

For examples of the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009); Fun et al. (2008); Li & Ban (2009); Zhu et al. (2009); Yang (2007); You et al. (2008). For the hydrazone compounds we have reported previously, see: Qu et al. (2008); Yang et al. (2008), Cao & Lu (2009a,b), Qu & Cao (2009), Cao & Wang (2009).

Experimental top

The title compound was prepared by refluxing 2-chlorobenzaldehyde (0.1 mmol, 14.0 mg) with 2-methoxybenzohydrazide (0.1 mmol, 16.6 mg) in methanol (20 ml). Colourless block-like crystals were formed by slow evaporation of the solution in air.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93-0.96 Å, and with Uiso(H) set at 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Study on the crystal structures of hydrazone derivatives is an interesting topic in structural chemistry. Recently, the crystal structures of a number of hydrazone compounds have been reported (Mohd Lair et al., 2009; Fun et al., 2008; Li & Ban, 2009; Zhu et al., 2009; Yang, 2007; You et al., 2008). As a continuation of our work in this area (Qu et al., 2008; Yang et al., 2008; Cao & Lu, 2009a,b; Qu & Cao, 2009; Cao & Wang, 2009), the title new hydrazone compound, derived from the reaction of 2-chlorobenzaldehyde with an equimolar quantity of 2-methoxybenzohydrazide, is reported.

The molecule of the title compound (Fig. 1) displays an E configuration about the CN bond. The dihedral angle between the two benzene rings is 77.1 (2)°. In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form chains running along the b axis (Fig. 2).

For examples of the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009); Fun et al. (2008); Li & Ban (2009); Zhu et al. (2009); Yang (2007); You et al. (2008). For the hydrazone compounds we have reported previously, see: Qu et al. (2008); Yang et al. (2008), Cao & Lu (2009a,b), Qu & Cao (2009), Cao & Wang (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
(E)-N'-(2-Chlorobenzylidene)-2-methoxybenzohydrazide top
Crystal data top
C15H13ClN2O2F(000) = 1200
Mr = 288.72Dx = 1.408 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4172 reflections
a = 12.808 (2) Åθ = 2.4–26.7°
b = 9.719 (2) ŵ = 0.28 mm1
c = 21.882 (1) ÅT = 298 K
V = 2723.9 (7) Å3Block, colourless
Z = 80.30 × 0.27 × 0.27 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2977 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1611
Tmin = 0.920, Tmax = 0.928k = 1212
15666 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.9256P]
where P = (Fo2 + 2Fc2)/3
2977 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C15H13ClN2O2V = 2723.9 (7) Å3
Mr = 288.72Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.808 (2) ŵ = 0.28 mm1
b = 9.719 (2) ÅT = 298 K
c = 21.882 (1) Å0.30 × 0.27 × 0.27 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2977 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2317 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.928Rint = 0.026
15666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
2977 reflectionsΔρmin = 0.33 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69237 (5)1.03716 (5)0.48396 (2)0.07052 (19)
N10.65156 (10)0.68177 (13)0.59858 (5)0.0376 (3)
N20.70523 (10)0.69184 (13)0.65323 (6)0.0368 (3)
O10.70476 (9)0.46137 (10)0.66748 (5)0.0429 (3)
O20.91235 (9)0.45442 (12)0.71914 (6)0.0519 (3)
C10.59496 (13)0.79503 (16)0.50823 (7)0.0397 (4)
C20.60523 (14)0.90535 (19)0.46817 (7)0.0473 (4)
C30.54802 (17)0.9123 (2)0.41464 (8)0.0630 (5)
H30.55500.98770.38880.076*
C40.48113 (17)0.8075 (3)0.39982 (8)0.0691 (6)
H40.44250.81240.36390.083*
C50.47062 (15)0.6950 (2)0.43767 (8)0.0616 (5)
H50.42590.62340.42710.074*
C60.52691 (14)0.68944 (19)0.49135 (8)0.0501 (4)
H60.51940.61360.51690.060*
C70.65157 (13)0.79086 (16)0.56644 (7)0.0399 (4)
H70.68760.86820.57990.048*
C80.72722 (11)0.57716 (15)0.68513 (6)0.0328 (3)
C90.77783 (12)0.60482 (15)0.74570 (7)0.0363 (3)
C100.86873 (13)0.53644 (16)0.76282 (7)0.0429 (4)
C110.90966 (17)0.5564 (2)0.82074 (9)0.0602 (5)
H110.97060.51130.83230.072*
C120.85998 (19)0.6431 (3)0.86112 (9)0.0716 (6)
H120.88680.65380.90030.086*
C130.77176 (17)0.7140 (2)0.84470 (8)0.0634 (5)
H130.73990.77420.87200.076*
C140.73121 (14)0.69436 (17)0.78697 (7)0.0453 (4)
H140.67140.74200.77540.054*
C151.01129 (16)0.3943 (3)0.73206 (11)0.0753 (7)
H15A1.06160.46570.73930.113*
H15B1.03320.33950.69790.113*
H15C1.00580.33720.76770.113*
H20.7296 (17)0.7743 (14)0.6645 (9)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1003 (4)0.0546 (3)0.0567 (3)0.0134 (3)0.0006 (3)0.0130 (2)
N10.0449 (7)0.0357 (7)0.0323 (6)0.0034 (6)0.0073 (5)0.0016 (5)
N20.0478 (7)0.0295 (6)0.0330 (6)0.0012 (5)0.0091 (5)0.0000 (5)
O10.0548 (7)0.0287 (6)0.0451 (6)0.0017 (5)0.0090 (5)0.0018 (5)
O20.0435 (7)0.0469 (7)0.0654 (8)0.0123 (5)0.0045 (6)0.0001 (6)
C10.0478 (9)0.0403 (8)0.0311 (7)0.0094 (7)0.0030 (6)0.0032 (6)
C20.0583 (10)0.0487 (10)0.0349 (8)0.0099 (8)0.0001 (7)0.0014 (7)
C30.0777 (14)0.0747 (13)0.0367 (9)0.0216 (12)0.0060 (9)0.0072 (9)
C40.0683 (13)0.1022 (17)0.0369 (9)0.0257 (13)0.0174 (9)0.0083 (10)
C50.0551 (11)0.0802 (14)0.0496 (10)0.0067 (10)0.0126 (9)0.0189 (10)
C60.0569 (11)0.0512 (10)0.0423 (9)0.0029 (8)0.0069 (8)0.0070 (8)
C70.0499 (9)0.0343 (8)0.0354 (8)0.0011 (7)0.0064 (7)0.0013 (6)
C80.0341 (8)0.0298 (7)0.0344 (7)0.0018 (6)0.0001 (6)0.0000 (6)
C90.0416 (8)0.0313 (7)0.0360 (7)0.0032 (6)0.0028 (6)0.0051 (6)
C100.0458 (9)0.0358 (8)0.0470 (9)0.0043 (7)0.0057 (7)0.0096 (7)
C110.0641 (12)0.0619 (12)0.0547 (11)0.0081 (10)0.0251 (9)0.0154 (9)
C120.0886 (16)0.0872 (16)0.0389 (10)0.0188 (13)0.0197 (10)0.0042 (10)
C130.0757 (14)0.0748 (14)0.0397 (9)0.0136 (11)0.0018 (9)0.0127 (9)
C140.0503 (10)0.0452 (9)0.0406 (8)0.0002 (8)0.0008 (7)0.0055 (7)
C150.0493 (11)0.0764 (15)0.1003 (17)0.0188 (11)0.0003 (11)0.0219 (13)
Geometric parameters (Å, º) top
Cl1—C21.734 (2)C5—H50.9300
N1—C71.2723 (19)C6—H60.9300
N1—N21.3830 (17)C7—H70.9300
N2—C81.3449 (18)C8—C91.500 (2)
N2—H20.895 (10)C9—C141.389 (2)
O1—C81.2241 (17)C9—C101.392 (2)
O2—C101.364 (2)C10—C111.385 (2)
O2—C151.424 (2)C11—C121.377 (3)
C1—C21.391 (2)C11—H110.9300
C1—C61.396 (2)C12—C131.371 (3)
C1—C71.466 (2)C12—H120.9300
C2—C31.383 (2)C13—C141.379 (2)
C3—C41.369 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.379 (3)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.379 (2)C15—H15C0.9600
C7—N1—N2114.77 (13)O1—C8—C9123.04 (13)
C8—N2—N1119.62 (12)N2—C8—C9113.62 (12)
C8—N2—H2121.7 (14)C14—C9—C10118.93 (15)
N1—N2—H2118.4 (14)C14—C9—C8120.07 (14)
C10—O2—C15117.73 (16)C10—C9—C8120.91 (14)
C2—C1—C6117.31 (15)O2—C10—C11124.60 (16)
C2—C1—C7121.47 (15)O2—C10—C9115.66 (14)
C6—C1—C7121.21 (15)C11—C10—C9119.73 (17)
C3—C2—C1121.39 (18)C12—C11—C10119.87 (19)
C3—C2—Cl1118.28 (15)C12—C11—H11120.1
C1—C2—Cl1120.32 (13)C10—C11—H11120.1
C4—C3—C2119.72 (19)C13—C12—C11121.35 (17)
C4—C3—H3120.1C13—C12—H12119.3
C2—C3—H3120.1C11—C12—H12119.3
C3—C4—C5120.57 (17)C12—C13—C14118.72 (19)
C3—C4—H4119.7C12—C13—H13120.6
C5—C4—H4119.7C14—C13—H13120.6
C4—C5—C6119.45 (19)C13—C14—C9121.37 (17)
C4—C5—H5120.3C13—C14—H14119.3
C6—C5—H5120.3C9—C14—H14119.3
C5—C6—C1121.52 (18)O2—C15—H15A109.5
C5—C6—H6119.2O2—C15—H15B109.5
C1—C6—H6119.2H15A—C15—H15B109.5
N1—C7—C1120.21 (14)O2—C15—H15C109.5
N1—C7—H7119.9H15A—C15—H15C109.5
C1—C7—H7119.9H15B—C15—H15C109.5
O1—C8—N2123.30 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)2.01 (1)2.8791 (16)165 (2)
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O2
Mr288.72
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.808 (2), 9.719 (2), 21.882 (1)
V3)2723.9 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.27 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.920, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
15666, 2977, 2317
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.05
No. of reflections2977
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.33

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.895 (10)2.005 (11)2.8791 (16)165 (2)
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

The Vital Foundation of Ankang University (project No. 2008AKXY012) and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 02JK202) are gratefully acknowledged.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. & Lu, X.-H. (2009a). Acta Cryst. E65, o1587.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCao, G.-B. & Lu, X.-H. (2009b). Acta Cryst. E65, o1600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCao, G.-B. & Wang, X.-Y. (2009). Acta Cryst. E65, o1725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQu, L.-Z. & Cao, G.-B. (2009). Acta Cryst. E65, o1705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2007). J. Chem. Crystallogr. 37, 343–348.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem. 82, 2215–2219.  CAS Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds