metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4′-(4-cyano­phen­yl)-2,2′:6′,2′′-terpyridine]cobalt(II) dichloride

aJiangXi University of Traditional Chinese Medicine, NanChang 330047, People's Republic of China, and bKey Laboratory of Modern Preparation of TCM, Ministry of Education of JiangXi, University of Traditional Chinese Medicine, NanChang 330047, People's Republic of China
*Correspondence e-mail: qk0876@hotmail.com

(Received 23 September 2009; accepted 5 October 2009; online 13 October 2009)

The title complex, [Co(C22H14N4)2]Cl2, has been synthesized by a solvothermal reaction of the 4′-(4-cyano­phen­yl)-2,2′:6′,2′′-terpyridine ligand with CoCl2·6H2O. The cobalt(II) ion is six-coordinated by two tridentate ligands in a distorted octa­hedral geometry. The benzene rings form dihedral angles of 30.02 (7) and 30.26 (7)° with the mean planes of the terpyridine ring systems. The chloride anions are statistically disordered over two positions with refined site occupancies of 0.601 (2) and 0.399 (2).

Related literature

For the synthesis of functionalized terpyridines, see: Heller & Schubert (2003[Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947-961.]). For the structure of related cobalt complexes, see: Yu et al. (2008[Yu, Z., Nabei, A., Izumi, T., Okubo, T. & Kuroda-Sowa, T. (2008). Acta Cryst. C64, m209-m212.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C22H14N4)2]Cl2

  • Mr = 798.57

  • Monoclinic, C c

  • a = 13.258 (3) Å

  • b = 12.349 (3) Å

  • c = 25.394 (7) Å

  • β = 101.585 (13)°

  • V = 4072.9 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 291 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.84, Tmax = 0.87

  • 18347 measured reflections

  • 7941 independent reflections

  • 7439 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.04

  • 7941 reflections

  • 515 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3940 Friedel pairs

  • Flack parameter: 0.079 (12)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polypyridine ligands have played an important role in many areas. In particular, the chelating ligand terpyridine and its derivatives have been studied extensively as outstanding complexing agents for a wide range of metal ions (Heller & Schubert, 2003). In this paper, we report the crystal structure of the title compound obtained by a solvothermal reaction of CoCl2.6H2O and the tridentate 4'-(4-cyanophenyl)-2,2': 6',2''-terpyridine ligand.

An ORTEP drawing of the title compound is shown in Fig. 1. Both Cl- anions are disordered over two positions with refined site occupancies of 0.601 (2) and 0.399 (2). The cobalt(II) ion is six-coordinated by two mer-arranged tridentate N3-terpyridine ligands in a distorted octahedral geometry. As observed in the related complexes bis[4'-(4-cyanophenyl)-2,2':6',2''-terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate and bis[4'-(4-cyanophenyl)-2,2':6',2''-terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane solvate (Yu et al., 2008), the Co–N1 and Co–N4 bond distances of the central pyridine rings [2.000 (3) and 1.980 (3) Å, respectively] are significantly shorter than those involving the side pyridine rings [Co–N2 = 2.105 (3) Å; Co–N3 = 2.089 (3) Å; Co–N5 = 2.119 (3) Å; Co–N6 = 2.093 (3) Å], resulting in a pronounced distortion of the octahedral coordination geometry at the metal centre. The terpyridine ring systems are only approximately planar (maximum deviation of 0.170 (4) Å for atom C34) and form dihedral angles of 30.02 (7) and 30.26 (7)° with the attached benzene rings.

Related literature top

For the synthesis of functionalized terpyridines, see: Heller & Schubert (2003). For the structure of related cobalt complexes, see: Yu et al. (2008).

Experimental top

A mixture of 4'-(4-cyanophenyl)-2,2':6',2''-terpyridine (33.4 mg, 0.1 mmol), CoCl2.6H2O (12 mg, 0.05 mmol) in a 10% water-ethanol solution (2 ml) were sealed in a glass tube was kept at 125 °C. Red crystals suitable for X-ray analysis were obtained after 5 days.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Polypyridine ligands have played an important role in many areas. In particular, the chelating ligand terpyridine and its derivatives have been studied extensively as outstanding complexing agents for a wide range of metal ions (Heller & Schubert, 2003). In this paper, we report the crystal structure of the title compound obtained by a solvothermal reaction of CoCl2.6H2O and the tridentate 4'-(4-cyanophenyl)-2,2': 6',2''-terpyridine ligand.

An ORTEP drawing of the title compound is shown in Fig. 1. Both Cl- anions are disordered over two positions with refined site occupancies of 0.601 (2) and 0.399 (2). The cobalt(II) ion is six-coordinated by two mer-arranged tridentate N3-terpyridine ligands in a distorted octahedral geometry. As observed in the related complexes bis[4'-(4-cyanophenyl)-2,2':6',2''-terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate and bis[4'-(4-cyanophenyl)-2,2':6',2''-terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane solvate (Yu et al., 2008), the Co–N1 and Co–N4 bond distances of the central pyridine rings [2.000 (3) and 1.980 (3) Å, respectively] are significantly shorter than those involving the side pyridine rings [Co–N2 = 2.105 (3) Å; Co–N3 = 2.089 (3) Å; Co–N5 = 2.119 (3) Å; Co–N6 = 2.093 (3) Å], resulting in a pronounced distortion of the octahedral coordination geometry at the metal centre. The terpyridine ring systems are only approximately planar (maximum deviation of 0.170 (4) Å for atom C34) and form dihedral angles of 30.02 (7) and 30.26 (7)° with the attached benzene rings.

For the synthesis of functionalized terpyridines, see: Heller & Schubert (2003). For the structure of related cobalt complexes, see: Yu et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for the clarity.
Bis[4'-(4-cyanophenyl)-2,2':6',2''-terpyridine]cobalt(II) dichloride top
Crystal data top
[Co(C22H14N4)2]Cl2F(000) = 1636
Mr = 798.57Dx = 1.302 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2346 reflections
a = 13.258 (3) Åθ = 2.1–27.4°
b = 12.349 (3) ŵ = 0.59 mm1
c = 25.394 (7) ÅT = 291 K
β = 101.585 (13)°Block, red
V = 4072.9 (18) Å30.30 × 0.26 × 0.24 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
7941 independent reflections
Radiation source: sealed tube7439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.84, Tmax = 0.87l = 3131
18347 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.06P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
7941 reflectionsΔρmax = 0.19 e Å3
515 parametersΔρmin = 0.32 e Å3
2 restraintsAbsolute structure: Flack (1983), 3940 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.079 (12)
Crystal data top
[Co(C22H14N4)2]Cl2V = 4072.9 (18) Å3
Mr = 798.57Z = 4
Monoclinic, CcMo Kα radiation
a = 13.258 (3) ŵ = 0.59 mm1
b = 12.349 (3) ÅT = 291 K
c = 25.394 (7) Å0.30 × 0.26 × 0.24 mm
β = 101.585 (13)°
Data collection top
Rigaku SCXmini
diffractometer
7941 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
7439 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.87Rint = 0.030
18347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.19 e Å3
S = 1.04Δρmin = 0.32 e Å3
7941 reflectionsAbsolute structure: Flack (1983), 3940 Friedel pairs
515 parametersAbsolute structure parameter: 0.079 (12)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4556 (2)0.7500 (3)0.66226 (14)0.0433 (7)
H1A0.44300.77130.69550.052*
C20.4258 (3)0.6489 (3)0.64410 (15)0.0504 (8)
H2A0.39670.60130.66530.060*
C30.4396 (3)0.6178 (3)0.59307 (15)0.0533 (9)
H3A0.41790.54980.57970.064*
C40.4871 (3)0.6904 (3)0.56123 (15)0.0525 (8)
H4A0.49860.67110.52750.063*
C50.5151 (2)0.7915 (2)0.58384 (13)0.0390 (6)
C60.5656 (2)0.8774 (2)0.55783 (12)0.0394 (6)
C70.5987 (3)0.8635 (3)0.50908 (15)0.0517 (8)
H7A0.58540.79880.49020.062*
C80.6519 (2)0.9472 (3)0.48857 (12)0.0400 (7)
C90.6644 (3)1.0457 (2)0.51690 (14)0.0439 (7)
H9A0.69531.10390.50300.053*
C100.6306 (2)1.0582 (3)0.56667 (13)0.0404 (7)
C110.6467 (2)1.1512 (2)0.59883 (13)0.0391 (6)
C120.6815 (3)1.2479 (3)0.58696 (15)0.0555 (9)
H12A0.70201.25840.55440.067*
C130.6872 (3)1.3370 (3)0.62514 (15)0.0522 (8)
H13A0.71021.40490.61690.063*
C140.6589 (3)1.3198 (3)0.67199 (15)0.0543 (9)
H14A0.65941.37640.69620.065*
C150.6290 (3)1.2182 (3)0.68424 (16)0.0514 (8)
H15A0.61481.20750.71830.062*
C160.6931 (3)0.9314 (3)0.43904 (13)0.0423 (7)
C170.7813 (3)0.9872 (3)0.43298 (14)0.0543 (9)
H17A0.80971.03910.45810.065*
C180.8274 (3)0.9655 (3)0.38933 (17)0.0597 (9)
H18A0.88701.00200.38570.072*
C190.7838 (3)0.8889 (3)0.35105 (14)0.0554 (9)
C200.6954 (3)0.8334 (4)0.35633 (15)0.0593 (10)
H20A0.66670.78240.33070.071*
C210.6496 (3)0.8545 (3)0.40035 (16)0.0553 (9)
H21A0.59020.81760.40400.066*
C220.8327 (3)0.8633 (3)0.30799 (15)0.0565 (9)
C310.3510 (2)1.0851 (3)0.62015 (14)0.0471 (8)
H31A0.36871.08610.58650.057*
C320.2585 (2)1.1288 (3)0.62426 (14)0.0478 (8)
H32A0.21711.16250.59490.057*
C330.2299 (3)1.1225 (3)0.66953 (14)0.0488 (8)
H33A0.16551.14920.67220.059*
C340.2927 (2)1.0764 (3)0.71530 (14)0.0450 (7)
H34A0.27321.07340.74840.054*
C350.3859 (3)1.0358 (2)0.70731 (14)0.0418 (7)
C360.4629 (2)0.9833 (2)0.75215 (13)0.0388 (7)
C370.4442 (2)0.9479 (3)0.80124 (13)0.0422 (7)
H37A0.38110.96250.81040.051*
C380.5186 (2)0.8908 (3)0.83676 (13)0.0423 (7)
C390.6133 (2)0.8692 (3)0.82105 (11)0.0370 (6)
H39A0.66550.83180.84380.044*
C400.6266 (2)0.9048 (3)0.77123 (12)0.0383 (6)
C410.7216 (2)0.8845 (3)0.74866 (12)0.0393 (6)
C420.8132 (2)0.8443 (3)0.77910 (14)0.0468 (7)
H42A0.81950.82520.81500.056*
C430.8944 (2)0.8347 (3)0.75235 (13)0.0455 (7)
H43A0.95770.81090.77160.055*
C440.8859 (3)0.8579 (3)0.70063 (14)0.0457 (7)
H44A0.94080.84660.68350.055*
C450.7900 (2)0.9006 (3)0.67171 (14)0.0458 (7)
H45A0.78410.92000.63580.055*
C460.4954 (3)0.8463 (3)0.88779 (13)0.0443 (7)
C470.4241 (3)0.8945 (3)0.91366 (13)0.0470 (7)
H47A0.39220.95840.89980.056*
C480.3989 (3)0.8503 (3)0.95938 (14)0.0566 (10)
H48A0.35240.88450.97680.068*
C490.4469 (3)0.7497 (3)0.97918 (14)0.0494 (8)
C500.5180 (3)0.7026 (3)0.95501 (16)0.0543 (8)
H50A0.54980.63860.96870.065*
C510.5438 (3)0.7506 (3)0.90896 (14)0.0451 (7)
H51A0.59310.71850.89270.054*
C520.4167 (3)0.7051 (3)1.02482 (13)0.0497 (8)
Cl10.72405 (11)0.45349 (12)0.35812 (5)0.0485 (4)0.601 (2)
Cl20.56620 (11)0.38709 (12)0.92594 (5)0.0514 (4)0.601 (2)
Cl1'0.81405 (18)0.33040 (19)0.38569 (9)0.0536 (6)0.399 (2)
Cl2'0.64297 (16)0.43338 (17)0.98097 (9)0.0480 (5)0.399 (2)
Co10.56329 (2)0.97563 (3)0.660571 (17)0.03465 (10)
N10.5537 (2)0.9571 (2)0.73767 (12)0.0383 (6)
N20.70937 (18)0.9132 (2)0.69502 (10)0.0395 (6)
N30.4179 (2)1.0409 (2)0.66062 (11)0.0436 (6)
N40.5838 (3)0.9701 (2)0.58551 (13)0.0459 (7)
N50.50297 (19)0.8216 (2)0.63437 (11)0.0374 (5)
N60.6186 (2)1.1312 (2)0.65007 (11)0.0432 (6)
N70.3920 (2)0.6612 (3)1.06197 (12)0.0552 (7)
N80.8747 (3)0.8401 (3)0.27126 (13)0.0613 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (15)0.0384 (16)0.0550 (18)0.0097 (12)0.0103 (13)0.0049 (14)
C20.0429 (18)0.0469 (19)0.064 (2)0.0191 (15)0.0168 (15)0.0096 (16)
C30.0385 (17)0.059 (2)0.060 (2)0.0194 (15)0.0027 (15)0.0081 (17)
C40.052 (2)0.0401 (18)0.061 (2)0.0016 (14)0.0011 (16)0.0100 (15)
C50.0376 (15)0.0299 (14)0.0463 (16)0.0047 (12)0.0003 (12)0.0015 (12)
C60.0455 (17)0.0322 (15)0.0377 (15)0.0036 (12)0.0013 (12)0.0028 (12)
C70.063 (2)0.0440 (18)0.0527 (19)0.0052 (16)0.0228 (17)0.0014 (15)
C80.0460 (17)0.0369 (15)0.0314 (14)0.0031 (13)0.0054 (12)0.0138 (12)
C90.0508 (18)0.0262 (14)0.0557 (19)0.0024 (12)0.0129 (15)0.0108 (13)
C100.0301 (14)0.0406 (16)0.0472 (16)0.0022 (12)0.0000 (12)0.0068 (13)
C110.0328 (14)0.0344 (15)0.0482 (16)0.0037 (12)0.0035 (12)0.0125 (13)
C120.067 (2)0.0419 (19)0.055 (2)0.0191 (17)0.0046 (17)0.0135 (15)
C130.0383 (17)0.0499 (19)0.067 (2)0.0189 (15)0.0076 (15)0.0020 (17)
C140.056 (2)0.0464 (19)0.060 (2)0.0027 (16)0.0096 (17)0.0196 (16)
C150.0401 (17)0.0428 (19)0.071 (2)0.0005 (14)0.0094 (15)0.0177 (16)
C160.0464 (16)0.0396 (16)0.0386 (15)0.0070 (13)0.0030 (13)0.0065 (13)
C170.069 (2)0.056 (2)0.0392 (16)0.0119 (17)0.0138 (16)0.0093 (15)
C180.057 (2)0.063 (2)0.064 (2)0.0085 (17)0.0223 (18)0.0002 (18)
C190.067 (2)0.058 (2)0.0415 (17)0.0193 (18)0.0111 (16)0.0131 (16)
C200.071 (3)0.067 (2)0.0409 (18)0.013 (2)0.0142 (17)0.0030 (17)
C210.061 (2)0.048 (2)0.059 (2)0.0084 (17)0.0161 (17)0.0154 (17)
C220.065 (2)0.056 (2)0.051 (2)0.0216 (18)0.0165 (16)0.0117 (16)
C310.0339 (15)0.0512 (19)0.0505 (18)0.0025 (13)0.0056 (13)0.0189 (15)
C320.0386 (17)0.0442 (18)0.0546 (19)0.0034 (13)0.0052 (14)0.0128 (15)
C330.0424 (18)0.0469 (19)0.058 (2)0.0129 (15)0.0113 (15)0.0011 (15)
C340.0399 (16)0.0527 (19)0.0448 (16)0.0029 (14)0.0145 (13)0.0049 (14)
C350.0438 (16)0.0326 (14)0.0489 (17)0.0072 (12)0.0091 (13)0.0060 (13)
C360.0355 (15)0.0325 (15)0.0509 (18)0.0096 (12)0.0148 (13)0.0055 (13)
C370.0339 (15)0.0481 (18)0.0450 (17)0.0086 (13)0.0091 (12)0.0081 (14)
C380.0371 (15)0.0505 (18)0.0397 (16)0.0101 (13)0.0089 (12)0.0016 (14)
C390.0318 (14)0.0410 (15)0.0368 (14)0.0037 (11)0.0032 (11)0.0065 (12)
C400.0330 (14)0.0396 (16)0.0428 (15)0.0076 (12)0.0087 (12)0.0002 (12)
C410.0309 (14)0.0403 (15)0.0461 (16)0.0013 (12)0.0067 (12)0.0028 (13)
C420.0381 (16)0.0544 (19)0.0459 (17)0.0134 (14)0.0035 (13)0.0014 (15)
C430.0256 (13)0.0537 (19)0.0503 (17)0.0067 (13)0.0089 (12)0.0118 (15)
C440.0343 (16)0.0488 (18)0.0574 (19)0.0001 (13)0.0177 (14)0.0167 (15)
C450.0374 (16)0.0502 (18)0.0485 (17)0.0050 (14)0.0057 (13)0.0018 (15)
C460.0474 (17)0.0502 (19)0.0372 (16)0.0021 (14)0.0128 (13)0.0030 (14)
C470.054 (2)0.0486 (19)0.0398 (16)0.0064 (15)0.0113 (14)0.0024 (14)
C480.071 (2)0.064 (2)0.0406 (17)0.0236 (19)0.0238 (16)0.0010 (16)
C490.0485 (18)0.0510 (19)0.0516 (18)0.0031 (15)0.0174 (15)0.0040 (15)
C500.0500 (19)0.051 (2)0.066 (2)0.0079 (16)0.0214 (16)0.0120 (17)
C510.053 (2)0.0357 (17)0.0490 (17)0.0016 (14)0.0170 (14)0.0021 (13)
C520.057 (2)0.0485 (19)0.0454 (18)0.0119 (15)0.0151 (15)0.0010 (15)
Cl10.0543 (8)0.0529 (8)0.0400 (6)0.0026 (6)0.0133 (5)0.0035 (5)
Cl20.0559 (8)0.0544 (8)0.0461 (7)0.0087 (6)0.0155 (6)0.0008 (6)
Cl1'0.0564 (13)0.0522 (12)0.0563 (12)0.0047 (9)0.0214 (9)0.0021 (10)
Cl2'0.0534 (11)0.0402 (10)0.0516 (11)0.0032 (8)0.0135 (9)0.0007 (9)
Co10.03243 (18)0.03119 (17)0.04075 (19)0.00312 (17)0.00836 (13)0.00386 (18)
N10.0307 (13)0.0365 (13)0.0492 (16)0.0026 (10)0.0118 (11)0.0048 (12)
N20.0317 (12)0.0365 (13)0.0499 (14)0.0017 (10)0.0074 (10)0.0021 (11)
N30.0432 (14)0.0421 (14)0.0432 (14)0.0090 (11)0.0033 (11)0.0115 (11)
N40.061 (2)0.0309 (14)0.0445 (16)0.0045 (12)0.0073 (14)0.0030 (12)
N50.0311 (12)0.0323 (12)0.0497 (14)0.0009 (9)0.0105 (10)0.0081 (11)
N60.0590 (16)0.0298 (12)0.0426 (14)0.0034 (11)0.0147 (12)0.0024 (11)
N70.0517 (17)0.0637 (19)0.0507 (16)0.0008 (14)0.0114 (13)0.0039 (15)
N80.071 (2)0.061 (2)0.0559 (18)0.0210 (17)0.0214 (16)0.0034 (15)
Geometric parameters (Å, º) top
C1—N51.362 (4)C32—C331.283 (5)
C1—C21.363 (5)C32—H32A0.9300
C1—H1A0.9300C33—C341.407 (5)
C2—C31.398 (5)C33—H33A0.9300
C2—H2A0.9300C34—C351.385 (4)
C3—C41.435 (5)C34—H34A0.9300
C3—H3A0.9300C35—N31.338 (4)
C4—C51.393 (5)C35—C361.514 (4)
C4—H4A0.9300C36—N11.367 (4)
C5—N51.376 (4)C36—C371.390 (5)
C5—C61.480 (4)C37—C381.388 (4)
C6—N41.340 (4)C37—H37A0.9300
C6—C71.404 (5)C38—C391.416 (4)
C7—C81.409 (5)C38—C461.496 (5)
C7—H7A0.9300C39—C401.384 (4)
C8—C91.406 (5)C39—H39A0.9300
C8—C161.482 (5)C40—N11.322 (4)
C9—C101.432 (5)C40—C411.506 (4)
C9—H9A0.9300C41—N21.385 (4)
C10—N41.385 (4)C41—C421.393 (4)
C10—C111.401 (5)C42—C431.389 (5)
C11—C121.336 (4)C42—H42A0.9300
C11—N61.445 (4)C43—C441.327 (5)
C12—C131.459 (5)C43—H43A0.9300
C12—H12A0.9300C44—C451.435 (5)
C13—C141.334 (5)C44—H44A0.9300
C13—H13A0.9300C45—N21.331 (4)
C14—C151.370 (5)C45—H45A0.9300
C14—H14A0.9300C46—C471.389 (5)
C15—N61.371 (4)C46—C511.400 (5)
C15—H15A0.9300C47—C481.383 (5)
C16—C171.392 (5)C47—H47A0.9300
C16—C211.404 (5)C48—C491.439 (5)
C17—C181.395 (5)C48—H48A0.9300
C17—H17A0.9300C49—C501.355 (5)
C18—C191.396 (6)C49—C521.412 (5)
C18—H18A0.9300C50—C511.413 (5)
C19—C201.387 (6)C50—H50A0.9300
C19—C221.414 (5)C51—H51A0.9300
C20—C211.400 (5)C52—N71.190 (4)
C20—H20A0.9300Co1—N41.980 (3)
C21—H21A0.9300Co1—N12.000 (3)
C22—N81.213 (5)Co1—N32.089 (3)
C31—N31.332 (4)Co1—N62.093 (3)
C31—C321.363 (5)Co1—N22.105 (3)
C31—H31A0.9300Co1—N52.119 (3)
N5—C1—C2123.5 (3)C37—C36—C35126.5 (3)
N5—C1—H1A118.3C38—C37—C36120.8 (3)
C2—C1—H1A118.3C38—C37—H37A119.6
C1—C2—C3118.8 (3)C36—C37—H37A119.6
C1—C2—H2A120.6C37—C38—C39117.8 (3)
C3—C2—H2A120.6C37—C38—C46120.4 (3)
C2—C3—C4120.3 (3)C39—C38—C46121.5 (3)
C2—C3—H3A119.8C40—C39—C38118.8 (3)
C4—C3—H3A119.8C40—C39—H39A120.6
C5—C4—C3116.0 (3)C38—C39—H39A120.6
C5—C4—H4A122.0N1—C40—C39122.3 (3)
C3—C4—H4A122.0N1—C40—C41113.2 (3)
N5—C5—C4123.8 (3)C39—C40—C41124.5 (3)
N5—C5—C6111.7 (3)N2—C41—C42123.6 (3)
C4—C5—C6124.4 (3)N2—C41—C40113.0 (3)
N4—C6—C7120.8 (3)C42—C41—C40123.4 (3)
N4—C6—C5115.4 (3)C43—C42—C41115.7 (3)
C7—C6—C5123.7 (3)C43—C42—H42A122.1
C6—C7—C8120.3 (3)C41—C42—H42A122.1
C6—C7—H7A119.9C44—C43—C42123.1 (3)
C8—C7—H7A119.9C44—C43—H43A118.5
C9—C8—C7117.5 (3)C42—C43—H43A118.5
C9—C8—C16121.5 (3)C43—C44—C45118.5 (3)
C7—C8—C16121.0 (3)C43—C44—H44A120.8
C8—C9—C10121.3 (3)C45—C44—H44A120.8
C8—C9—H9A119.4N2—C45—C44121.6 (3)
C10—C9—H9A119.4N2—C45—H45A119.2
N4—C10—C11118.0 (3)C44—C45—H45A119.2
N4—C10—C9117.5 (3)C47—C46—C51118.9 (3)
C11—C10—C9124.4 (3)C47—C46—C38122.1 (3)
C12—C11—C10128.4 (3)C51—C46—C38119.0 (3)
C12—C11—N6121.3 (3)C48—C47—C46122.0 (3)
C10—C11—N6110.4 (3)C48—C47—H47A119.0
C11—C12—C13119.9 (3)C46—C47—H47A119.0
C11—C12—H12A120.0C47—C48—C49118.0 (3)
C13—C12—H12A120.0C47—C48—H48A121.0
C14—C13—C12119.1 (3)C49—C48—H48A121.0
C14—C13—H13A120.5C50—C49—C52122.8 (4)
C12—C13—H13A120.5C50—C49—C48120.7 (3)
C13—C14—C15119.6 (3)C52—C49—C48116.5 (3)
C13—C14—H14A120.2C49—C50—C51120.1 (3)
C15—C14—H14A120.2C49—C50—H50A120.0
C14—C15—N6124.8 (4)C51—C50—H50A120.0
C14—C15—H15A117.6C46—C51—C50120.2 (3)
N6—C15—H15A117.6C46—C51—H51A119.9
C17—C16—C21119.6 (3)C50—C51—H51A119.9
C17—C16—C8119.3 (3)N7—C52—C49175.9 (4)
C21—C16—C8120.9 (3)N4—Co1—N1170.50 (11)
C16—C17—C18120.3 (4)N4—Co1—N3108.59 (12)
C16—C17—H17A119.8N1—Co1—N378.69 (11)
C18—C17—H17A119.8N4—Co1—N677.85 (11)
C17—C18—C19119.8 (4)N1—Co1—N6108.82 (11)
C17—C18—H18A120.1N3—Co1—N689.60 (11)
C19—C18—H18A120.1N4—Co1—N295.44 (12)
C20—C19—C18120.5 (4)N1—Co1—N277.59 (11)
C20—C19—C22119.5 (4)N3—Co1—N2155.92 (10)
C18—C19—C22120.0 (4)N6—Co1—N294.15 (11)
C19—C20—C21119.7 (4)N4—Co1—N577.46 (11)
C19—C20—H20A120.1N1—Co1—N596.34 (10)
C21—C20—H20A120.1N3—Co1—N593.23 (11)
C20—C21—C16120.1 (4)N6—Co1—N5154.74 (10)
C20—C21—H21A120.0N2—Co1—N593.40 (10)
C16—C21—H21A120.0C40—N1—C36120.8 (3)
N8—C22—C19179.2 (4)C40—N1—Co1120.4 (2)
N3—C31—C32125.0 (3)C36—N1—Co1117.9 (2)
N3—C31—H31A117.5C45—N2—C41117.5 (3)
C32—C31—H31A117.5C45—N2—Co1127.7 (2)
C33—C32—C31118.5 (3)C41—N2—Co1114.74 (19)
C33—C32—H32A120.8C31—N3—C35114.9 (3)
C31—C32—H32A120.8C31—N3—Co1129.0 (2)
C32—C33—C34122.1 (3)C35—N3—Co1116.1 (2)
C32—C33—H33A118.9C6—N4—C10122.4 (3)
C34—C33—H33A118.9C6—N4—Co1119.3 (2)
C35—C34—C33115.0 (3)C10—N4—Co1117.6 (2)
C35—C34—H34A122.5C1—N5—C5117.5 (3)
C33—C34—H34A122.5C1—N5—Co1127.1 (2)
N3—C35—C34124.3 (3)C5—N5—Co1115.35 (19)
N3—C35—C36113.6 (3)C15—N6—C11115.1 (3)
C34—C35—C36122.1 (3)C15—N6—Co1129.2 (2)
N1—C36—C37119.5 (3)C11—N6—Co1115.61 (19)
N1—C36—C35113.4 (3)
N5—C1—C2—C33.2 (5)N3—Co1—N1—C40174.6 (3)
C1—C2—C3—C41.8 (5)N6—Co1—N1—C4099.8 (2)
C2—C3—C4—C51.5 (5)N2—Co1—N1—C409.6 (2)
C3—C4—C5—N52.6 (5)N5—Co1—N1—C4082.5 (2)
C3—C4—C5—C6179.5 (3)N3—Co1—N1—C365.4 (2)
N5—C5—C6—N44.4 (4)N6—Co1—N1—C3691.1 (2)
C4—C5—C6—N4178.3 (3)N2—Co1—N1—C36178.7 (2)
N5—C5—C6—C7172.0 (3)N5—Co1—N1—C3686.6 (2)
C4—C5—C6—C75.3 (5)C44—C45—N2—C410.7 (5)
N4—C6—C7—C80.1 (5)C44—C45—N2—Co1179.2 (2)
C5—C6—C7—C8176.1 (3)C42—C41—N2—C450.4 (5)
C6—C7—C8—C93.8 (5)C40—C41—N2—C45178.5 (3)
C6—C7—C8—C16176.1 (3)C42—C41—N2—Co1178.3 (3)
C7—C8—C9—C104.1 (5)C40—C41—N2—Co10.2 (3)
C16—C8—C9—C10175.7 (3)N4—Co1—N2—C4512.7 (3)
C8—C9—C10—N40.9 (5)N1—Co1—N2—C45173.9 (3)
C8—C9—C10—C11175.5 (3)N3—Co1—N2—C45163.8 (3)
N4—C10—C11—C12173.4 (3)N6—Co1—N2—C4565.5 (3)
C9—C10—C11—C1210.2 (5)N5—Co1—N2—C4590.4 (3)
N4—C10—C11—N65.8 (4)N4—Co1—N2—C41168.8 (2)
C9—C10—C11—N6170.5 (3)N1—Co1—N2—C414.7 (2)
C10—C11—C12—C13176.4 (3)N3—Co1—N2—C4114.7 (4)
N6—C11—C12—C132.7 (5)N6—Co1—N2—C41113.1 (2)
C11—C12—C13—C141.0 (6)N5—Co1—N2—C4191.1 (2)
C12—C13—C14—C152.6 (6)C32—C31—N3—C353.7 (5)
C13—C14—C15—N64.8 (6)C32—C31—N3—Co1177.9 (3)
C9—C8—C16—C1730.1 (5)C34—C35—N3—C312.5 (5)
C7—C8—C16—C17149.8 (3)C36—C35—N3—C31178.9 (3)
C9—C8—C16—C21155.2 (3)C34—C35—N3—Co1178.9 (3)
C7—C8—C16—C2124.9 (5)C36—C35—N3—Co10.3 (3)
C21—C16—C17—C181.2 (5)N4—Co1—N3—C317.7 (3)
C8—C16—C17—C18173.6 (3)N1—Co1—N3—C31178.7 (3)
C16—C17—C18—C191.2 (6)N6—Co1—N3—C3169.4 (3)
C17—C18—C19—C200.6 (6)N2—Co1—N3—C31168.7 (3)
C17—C18—C19—C22177.3 (4)N5—Co1—N3—C3185.5 (3)
C18—C19—C20—C210.1 (6)N4—Co1—N3—C35170.7 (2)
C22—C19—C20—C21176.8 (4)N1—Co1—N3—C353.0 (2)
C19—C20—C21—C160.1 (6)N6—Co1—N3—C35112.2 (2)
C17—C16—C21—C200.7 (5)N2—Co1—N3—C3512.9 (4)
C8—C16—C21—C20174.0 (3)N5—Co1—N3—C3592.9 (2)
N3—C31—C32—C334.0 (6)C7—C6—N4—C103.4 (5)
C31—C32—C33—C342.9 (6)C5—C6—N4—C10179.9 (3)
C32—C33—C34—C351.8 (5)C7—C6—N4—Co1167.0 (3)
C33—C34—C35—N31.7 (5)C5—C6—N4—Co19.5 (4)
C33—C34—C35—C36179.9 (3)C11—C10—N4—C6179.6 (3)
N3—C35—C36—N14.0 (4)C9—C10—N4—C63.0 (5)
C34—C35—C36—N1174.6 (3)C11—C10—N4—Co19.1 (4)
N3—C35—C36—C37166.5 (3)C9—C10—N4—Co1167.5 (2)
C34—C35—C36—C3714.9 (5)N3—Co1—N4—C697.3 (3)
N1—C36—C37—C383.2 (5)N6—Co1—N4—C6177.3 (3)
C35—C36—C37—C38173.3 (3)N2—Co1—N4—C684.2 (3)
C36—C37—C38—C390.6 (5)N5—Co1—N4—C68.1 (3)
C36—C37—C38—C46175.7 (3)N3—Co1—N4—C1091.9 (3)
C37—C38—C39—C400.6 (5)N6—Co1—N4—C106.4 (2)
C46—C38—C39—C40174.4 (3)N2—Co1—N4—C1086.6 (3)
C38—C39—C40—N10.7 (5)N5—Co1—N4—C10178.9 (3)
C38—C39—C40—C41178.0 (3)C2—C1—N5—C54.1 (5)
N1—C40—C41—N27.2 (4)C2—C1—N5—Co1174.9 (3)
C39—C40—C41—N2170.3 (3)C4—C5—N5—C13.8 (4)
N1—C40—C41—C42170.9 (3)C6—C5—N5—C1178.9 (3)
C39—C40—C41—C4211.6 (5)C4—C5—N5—Co1175.3 (2)
N2—C41—C42—C430.4 (5)C6—C5—N5—Co12.0 (3)
C40—C41—C42—C43177.5 (3)N4—Co1—N5—C1175.7 (3)
C41—C42—C43—C442.5 (5)N1—Co1—N5—C111.6 (3)
C42—C43—C44—C453.6 (5)N3—Co1—N5—C167.4 (3)
C43—C44—C45—N22.7 (5)N6—Co1—N5—C1163.4 (3)
C37—C38—C46—C4728.6 (5)N2—Co1—N5—C189.4 (3)
C39—C38—C46—C47156.4 (3)N4—Co1—N5—C55.2 (2)
C37—C38—C46—C51148.7 (3)N1—Co1—N5—C5167.5 (2)
C39—C38—C46—C5126.3 (5)N3—Co1—N5—C5113.6 (2)
C51—C46—C47—C480.5 (5)N6—Co1—N5—C517.6 (4)
C38—C46—C47—C48176.8 (4)N2—Co1—N5—C589.6 (2)
C46—C47—C48—C491.8 (6)C14—C15—N6—C113.0 (5)
C47—C48—C49—C502.9 (6)C14—C15—N6—Co1174.7 (3)
C47—C48—C49—C52177.9 (4)C12—C11—N6—C150.8 (4)
C52—C49—C50—C51179.1 (3)C10—C11—N6—C15178.4 (3)
C48—C49—C50—C511.7 (6)C12—C11—N6—Co1178.9 (3)
C47—C46—C51—C501.8 (5)C10—C11—N6—Co10.4 (3)
C38—C46—C51—C50175.6 (3)N4—Co1—N6—C15174.5 (3)
C49—C50—C51—C460.7 (6)N1—Co1—N6—C1512.5 (3)
C39—C40—N1—C363.4 (5)N3—Co1—N6—C1565.4 (3)
C41—C40—N1—C36179.1 (3)N2—Co1—N6—C1590.8 (3)
C39—C40—N1—Co1165.5 (2)N5—Co1—N6—C15162.1 (3)
C41—C40—N1—Co112.1 (4)N4—Co1—N6—C113.2 (2)
C37—C36—N1—C404.6 (5)N1—Co1—N6—C11169.8 (2)
C35—C36—N1—C40175.9 (3)N3—Co1—N6—C11112.3 (2)
C37—C36—N1—Co1164.5 (2)N2—Co1—N6—C1191.5 (2)
C35—C36—N1—Co16.8 (3)N5—Co1—N6—C1115.6 (4)

Experimental details

Crystal data
Chemical formula[Co(C22H14N4)2]Cl2
Mr798.57
Crystal system, space groupMonoclinic, Cc
Temperature (K)291
a, b, c (Å)13.258 (3), 12.349 (3), 25.394 (7)
β (°) 101.585 (13)
V3)4072.9 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.84, 0.87
No. of measured, independent and
observed [I > 2σ(I)] reflections
18347, 7941, 7439
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.04
No. of reflections7941
No. of parameters515
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.32
Absolute structureFlack (1983), 3940 Friedel pairs
Absolute structure parameter0.079 (12)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947–961.  CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Z., Nabei, A., Izumi, T., Okubo, T. & Kuroda-Sowa, T. (2008). Acta Cryst. C64, m209–m212.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds