inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­potassium hepta­cyanido­molybdate(III) dihydrate

aDepartment of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
*Correspondence e-mail: ohkoshi@chem.s.u-tokyo.ac.jp

(Received 8 July 2009; accepted 28 September 2009; online 17 October 2009)

The asymmetric unit of the title compound, KI4[MoIII(CN)7]·2H2O, consists of one [Mo(CN)7]4− anion, four K+ cations, and two water mol­ecules. The [MoIII(CN)7]4− anion has a seven-coordinated capped-trigonal-prismatic coordination geometry. The site-occupancy factors of the disordered water mol­ecules were set at 0.90, 0.60 and 0.50. The H-atom positions could not be determined for two of the water mol­ecules. The H atoms of the water with a site-occupancy factor of 0.90 were refined using O—H and H⋯H distance restraints.

Related literature

For the synthesis and spectroscopic information for the title compound, see: Young (1932[Young, R. C. (1932). J. Am. Chem. Soc. 54, 1402-1405.]); Rossman et al. (1973[Rossman, G. R., Tsay, F. D. & Gray, H. B. (1973). Inorg. Chem. 12, 824-829.]). For octa­cyanido­metalate-based materials with photomagnetic and magnetic properties, see: Arimoto et al. (2003[Arimoto, Y., Ohkoshi, S., Zhong, Z. J., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Am. Chem. Soc. 125, 9240-9241.]); Catala et al. (2005[Catala, L., Mathoniere, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746-748.]); Ohkoshi et al. (2007[Ohkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084-3085.], 2008[Ohkoshi, S., Hamada, Y., Matsuda, T., Tunobuchi, Y. & Tokoro, H. (2008). Chem. Mater. 20, 3048-3054.]). For the related hepta­cyanido molybdate(III) crystal structure with D5h and C2v symmetry, see: Hursthouse et al. (1980[Hursthouse, M. B., Malik, K. M. A., Soares, A. M., Gibson, J. F. & Griffith, W. P. (1980). Inorg. Chim. Acta, 45, L81-L82.])); Larionova et al. (2004[Larionova, J., Willemin, S., Donnadieu, B., Henner, B., Guerin, C., Gillon, B. & Goujon, A. (2004). J. Phys. Chem. Solids, 65, 677-691.]); For a hepta­cyanido molybdate(II) crystal structure with Cs symmetry, see: Drew et al. (1977[Drew, M. G. B., Mitchell, P. C. H. & Pygall, C. F. (1977). J. Chem. Soc. Dalton Trans. pp. 1071-1077.]).

[Scheme 1]

Experimental

Crystal data
  • K4[Mo(CN)7]·2H2O

  • Mr = 468.29

  • Triclinic, [P \overline 1]

  • a = 8.8813 (5) Å

  • b = 9.2896 (4) Å

  • c = 9.7221 (4) Å

  • α = 86.6480 (13)°

  • β = 82.2150 (19)°

  • γ = 71.2570 (17)°

  • V = 752.48 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 90 K

  • 0.10 × 0.05 × 0.02 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.826, Tmax = 0.961

  • 7367 measured reflections

  • 3421 independent reflections

  • 2893 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.153

  • S = 1.25

  • 3421 reflections

  • 210 parameters

  • 3 restraints

  • H-atom parameters not defined

  • Δρmax = 2.85 e Å−3

  • Δρmin = −1.08 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PyMOLWin (DeLano, 2007[DeLano, W. L. (2007). The pyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA, USA.]).

Supporting information


Comment top

In the field of molecule-based magnets, cyano-bridged metal assemblies have been much studied to demonstrate novel functionalities. Octacyanometalate-based materials show interesting functionalities such as photomagnetism (Arimoto et al., 2003; Catala et al., 2005; Ohkoshi et al., 2008) and chemically sensitive magnetism (Ohkoshi et al., 2007). As a versatile class of building blocks, a heptacyanomolybdate ion [MoIII(CN)7]4- is also attractive because this metal complex can adopt various spatial configurations, depending on the chemical environment, pentagonal bipyramid (D5 h) and capped trigonal prism (C2v) (Rossman et al., 1973; Larionova et al., 2004). Although the coordination geometry of pentagonal bipyramid (D5 h) has been observed with the mixed salt NaIKI 3[Mo(CN)7]2H2O, that of capped trigonal prism (C2 v) has not been reported (Hursthouse et al., 1980, Drew et al., 1977). In this paper, we report the crystal structure of KI4[MoIII(CN)7]2H2O with capped trigonal prism (C2v) symmetry, which has the asymmetric unit of one [MoIII(CN)7]4- anion, four K+ cations, and two water molecules distributed over three sites with site occupation factors (s.o.f's) of 0.90, 0.60 and 0.50. (Fig. 1). The synthesis and the spectral information of the title compound as been reported by Young (1932) and Rossman et al., (1973).

Related literature top

For the synthesis and spectroscopic information for the title compound, see: Young (1932); Rossman et al. (1973). For octacyanometalate-based materials with photomagnetic and magnetic properties, see: Arimoto et al. (2003); Catala et al. (2005); Ohkoshi et al. (2007, 2008). For the related heptacyano molybdate(III) crystal structure with D5h and C2v symmetry, see: Hursthouse et al. (1980)); Larionova et al. (2004); For a heptacyano molybdate(II) crystal structure with Cs symmetry, see: Drew et al. (1977).

Experimental top

The title compound was prepared by reacting (NH4)2[MoCl5(H2O)] (1.81 g) with KCN (4 g) in H2O (23 ml) at room temperature. The prepared compound was a green plate-type crystal. Elemental analyses: calcd for KI4[MoIII(CN)7]2.75H2O, Calculated: Mo, 19.82%; C, 17.37%; H, 1.15%; N, 20.26%. Found: Mo, 19.44%; C, 17.65%; H, 1.13%; N, 20.01%. In the Infrared (IR) spectra, cyano stretching peaks were observed at 2114 and 2069 cm-1.

Refinement top

The H atoms of the solvent water molecules, O2 and O3, could not be located. The maximum and minimum residual electron density peaks were located 0.18 and 0.91 Å from the K3 atom and the Mo1 atom, respectively.

Structure description top

Mo1 K2 4.0798 (8) . ? Mo1 K3 4.1049 (8) . ?

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2007); software used to prepare material for publication: ORTEP-3 (Farrugia, 1997) and PyMOLWin (DeLano, 2007).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plots (50% probability level) of independent atoms of KI4[MoIII(CN)7]2H2O. Positions of hydrogen atoms of the disordered water molecules could not be determined.
Tetrapotassium heptacyanidomolybdate(III) dihydrate top
Crystal data top
K4[Mo(CN)7]·2H2OZ = 2
Mr = 468.29F(000) = 454
Triclinic, P1Dx = 2.067 Mg m3
a = 8.8813 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.2896 (4) ÅCell parameters from 6568 reflections
c = 9.7221 (4) Åθ = 3.0–27.5°
α = 86.6480 (13)°µ = 1.99 mm1
β = 82.2150 (19)°T = 90 K
γ = 71.2570 (17)°Platelet, green
V = 752.48 (6) Å30.10 × 0.05 × 0.02 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3421 independent reflections
Radiation source: fine-focus sealed tube2893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1999)
h = 1111
Tmin = 0.826, Tmax = 0.961k = 1211
7367 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054H-atom parameters not defined
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0908P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
3421 reflectionsΔρmax = 2.85 e Å3
210 parametersΔρmin = 1.08 e Å3
3 restraints
Crystal data top
K4[Mo(CN)7]·2H2Oγ = 71.2570 (17)°
Mr = 468.29V = 752.48 (6) Å3
Triclinic, P1Z = 2
a = 8.8813 (5) ÅMo Kα radiation
b = 9.2896 (4) ŵ = 1.99 mm1
c = 9.7221 (4) ÅT = 90 K
α = 86.6480 (13)°0.10 × 0.05 × 0.02 mm
β = 82.2150 (19)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3421 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1999)
2893 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.961Rint = 0.025
7367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0543 restraints
wR(F2) = 0.153H-atom parameters not defined
S = 1.25Δρmax = 2.85 e Å3
3421 reflectionsΔρmin = 1.08 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Some weak peaks appeared around all O atoms (O1, O2, and O3). Although we could assign the H atoms of O1 with restraints of DFIX (O—H 0.85 0.02 Å and H···H distances about 1.38 0.02 Å), the H atoms of O2 and O3 could not be placed using restraints of DFIX.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.28013 (4)0.18814 (3)0.22632 (3)0.00989 (16)
K40.28925 (10)0.01355 (9)0.17415 (9)0.0124 (2)
K10.27995 (11)0.37242 (10)0.36699 (9)0.0146 (2)
K20.28226 (10)0.58985 (9)0.03172 (9)0.0129 (2)
K30.27856 (10)0.21632 (9)0.42126 (9)0.0133 (2)
N30.3585 (4)0.1085 (4)0.1198 (4)0.0150 (7)
N40.3673 (5)0.3229 (4)0.0868 (4)0.0182 (8)
N10.3641 (5)0.0960 (4)0.5568 (4)0.0157 (7)
N20.0322 (5)0.0987 (5)0.2950 (5)0.0298 (10)
N50.0203 (5)0.3068 (5)0.0908 (5)0.0336 (11)
C60.3280 (5)0.4105 (4)0.3111 (4)0.0144 (8)
C40.3348 (5)0.2756 (4)0.0224 (4)0.0127 (7)
C50.0799 (5)0.2568 (5)0.1380 (5)0.0219 (9)
C10.3329 (5)0.1282 (4)0.4402 (4)0.0125 (7)
C30.3286 (5)0.0076 (4)0.1562 (4)0.0136 (8)
C20.0739 (5)0.0069 (5)0.2682 (5)0.0206 (9)
N60.3562 (5)0.5301 (4)0.3555 (4)0.0174 (8)
C70.5434 (6)0.2691 (4)0.2568 (4)0.0166 (8)
N70.6817 (5)0.3103 (4)0.2748 (4)0.0209 (8)
O10.0067 (7)0.3954 (6)0.2344 (7)0.0609 (15)0.90
O20.0141 (11)0.2434 (11)0.5544 (12)0.075 (3)0.60
O30.0025 (13)0.4462 (11)0.4867 (14)0.070 (3)0.50
H10.019 (9)0.488 (3)0.199 (6)0.05 (2)*0.90
H20.007 (9)0.343 (6)0.157 (4)0.05 (2)*0.90
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0125 (2)0.0083 (2)0.0092 (2)0.00373 (15)0.00109 (14)0.00049 (14)
K40.0150 (5)0.0119 (5)0.0117 (5)0.0060 (4)0.0028 (4)0.0013 (4)
K10.0201 (5)0.0125 (4)0.0116 (5)0.0058 (4)0.0027 (4)0.0011 (3)
K20.0167 (5)0.0075 (4)0.0163 (5)0.0065 (4)0.0022 (4)0.0014 (4)
K30.0172 (5)0.0080 (4)0.0156 (5)0.0044 (4)0.0034 (4)0.0020 (4)
N30.0166 (18)0.0182 (17)0.0096 (16)0.0053 (14)0.0019 (13)0.0032 (13)
N40.0192 (19)0.0188 (18)0.0187 (19)0.0099 (15)0.0020 (15)0.0051 (14)
N10.0215 (19)0.0164 (17)0.0104 (17)0.0066 (14)0.0051 (14)0.0010 (13)
N20.020 (2)0.030 (2)0.037 (3)0.0057 (17)0.0057 (18)0.006 (2)
N50.018 (2)0.036 (3)0.045 (3)0.0082 (19)0.004 (2)0.012 (2)
C60.018 (2)0.0144 (18)0.0123 (19)0.0064 (15)0.0022 (15)0.0001 (14)
C40.019 (2)0.0074 (16)0.0137 (19)0.0076 (14)0.0029 (15)0.0011 (14)
C50.016 (2)0.016 (2)0.033 (3)0.0037 (16)0.0025 (18)0.0030 (17)
C10.0159 (19)0.0104 (17)0.0136 (19)0.0065 (14)0.0026 (15)0.0040 (14)
C30.0150 (19)0.0171 (19)0.0077 (17)0.0042 (15)0.0020 (14)0.0036 (14)
C20.018 (2)0.023 (2)0.023 (2)0.0085 (17)0.0036 (17)0.0039 (17)
N60.024 (2)0.0174 (18)0.0123 (18)0.0094 (15)0.0003 (14)0.0027 (13)
C70.027 (2)0.0129 (18)0.0099 (18)0.0064 (16)0.0014 (16)0.0054 (14)
N70.019 (2)0.0197 (19)0.026 (2)0.0070 (15)0.0041 (16)0.0097 (16)
O10.056 (4)0.035 (3)0.090 (4)0.013 (3)0.004 (3)0.006 (3)
O20.058 (6)0.070 (6)0.088 (7)0.008 (5)0.014 (5)0.015 (5)
O30.052 (6)0.054 (6)0.105 (9)0.024 (6)0.009 (6)0.022 (6)
Geometric parameters (Å, º) top
Mo1—C22.120 (4)K2—N4vii2.934 (4)
Mo1—C52.135 (4)K2—N7vii3.096 (4)
Mo1—C12.150 (4)K2—C43.109 (4)
Mo1—C42.156 (4)K2—N43.134 (4)
Mo1—C62.160 (4)K2—C63.150 (4)
Mo1—C32.164 (4)K2—N63.181 (4)
Mo1—C72.198 (5)K2—N53.188 (4)
K4—N1i2.836 (4)K2—C53.229 (4)
K4—N22.888 (5)K2—C4vii3.329 (4)
K4—N3ii2.948 (4)K2—C7vii3.380 (4)
K4—N3iii2.983 (4)K3—O22.767 (10)
K4—N7ii3.076 (4)K3—N6viii2.788 (4)
K4—N4iii3.119 (4)K3—O32.806 (11)
K4—N53.141 (4)K3—O12.912 (6)
K4—C3iii3.185 (4)K3—N1ix2.989 (4)
K4—C23.250 (4)K3—N7ix3.039 (4)
K4—C4iii3.274 (4)K3—N13.081 (4)
K4—C3ii3.317 (4)K3—C13.093 (4)
K4—C7ii3.362 (4)K3—C33.125 (4)
K1—N4iii2.783 (4)K3—N33.140 (4)
K1—O32.888 (10)K3—C23.339 (4)
K1—N22.900 (4)K3—N23.344 (5)
K1—O22.921 (10)N3—C31.140 (6)
K1—N7iv3.031 (4)N4—C41.161 (6)
K1—N6i3.046 (4)N1—C11.174 (5)
K1—N1i3.051 (4)N2—C21.167 (6)
K1—N6iv3.051 (4)N5—C51.161 (6)
K1—O13.075 (6)C6—N61.154 (5)
K1—C6i3.200 (4)C7—N71.154 (6)
K1—C1i3.210 (4)O1—K2viii3.383 (6)
K1—C7iv3.362 (4)O1—H10.89 (2)
K2—N3v2.819 (4)O1—H20.89 (2)
K2—N5vi2.882 (5)O3—O3x1.005 (18)
C2—Mo1—C574.20 (16)C5—K2—C4vii129.62 (10)
C2—Mo1—C175.73 (16)N3v—K2—C7vii88.06 (10)
C5—Mo1—C1126.45 (17)N5vi—K2—C7vii86.38 (12)
C2—Mo1—C4125.11 (16)N4vii—K2—C7vii68.44 (11)
C5—Mo1—C475.08 (17)N7vii—K2—C7vii19.92 (11)
C1—Mo1—C4155.91 (15)C4—K2—C7vii95.04 (10)
C2—Mo1—C6120.52 (17)N4—K2—C7vii74.03 (10)
C5—Mo1—C675.93 (16)C6—K2—C7vii142.50 (11)
C1—Mo1—C682.82 (14)N6—K2—C7vii143.29 (11)
C4—Mo1—C693.98 (14)N5—K2—C7vii133.68 (11)
C2—Mo1—C377.55 (16)C5—K2—C7vii135.26 (11)
C5—Mo1—C3122.98 (16)C4vii—K2—C7vii48.32 (10)
C1—Mo1—C391.60 (14)O2—K3—N6viii121.8 (2)
C4—Mo1—C382.69 (14)O2—K3—O342.0 (3)
C6—Mo1—C3158.53 (16)N6viii—K3—O380.6 (2)
C2—Mo1—C7144.39 (15)O2—K3—O175.4 (3)
C5—Mo1—C7141.38 (15)N6viii—K3—O174.07 (13)
C1—Mo1—C777.75 (15)O3—K3—O151.2 (3)
C4—Mo1—C778.21 (15)O2—K3—N1ix144.9 (2)
C6—Mo1—C778.68 (15)N6viii—K3—N1ix77.83 (11)
C3—Mo1—C779.88 (14)O3—K3—N1ix148.6 (2)
C2—Mo1—K2125.94 (11)O1—K3—N1ix139.68 (15)
C5—Mo1—K251.79 (11)O2—K3—N7ix66.5 (2)
C1—Mo1—K2132.54 (9)N6viii—K3—N7ix88.30 (11)
C4—Mo1—K248.64 (10)O3—K3—N7ix69.5 (3)
C6—Mo1—K249.76 (10)O1—K3—N7ix119.81 (15)
C3—Mo1—K2131.31 (10)N1ix—K3—N7ix87.22 (11)
C7—Mo1—K289.59 (10)O2—K3—N176.9 (2)
C2—Mo1—K354.13 (11)N6viii—K3—N1151.78 (12)
C5—Mo1—K3128.27 (11)O3—K3—N1118.3 (3)
C1—Mo1—K347.57 (9)O1—K3—N1133.85 (13)
C4—Mo1—K3131.21 (10)N1ix—K3—N175.93 (11)
C6—Mo1—K3130.36 (11)N7ix—K3—N180.28 (9)
C3—Mo1—K348.53 (10)O2—K3—C183.5 (2)
C7—Mo1—K390.34 (10)N6viii—K3—C1154.61 (11)
K2—Mo1—K3179.844 (19)O3—K3—C1124.7 (2)
N1i—K4—N274.36 (12)O1—K3—C1118.24 (13)
N1i—K4—N3ii79.64 (10)N1ix—K3—C179.58 (10)
N2—K4—N3ii136.55 (11)N7ix—K3—C1102.07 (10)
N1i—K4—N3iii155.68 (12)N1—K3—C121.93 (10)
N2—K4—N3iii128.12 (12)O2—K3—C3118.1 (2)
N3ii—K4—N3iii76.83 (11)N6viii—K3—C3104.25 (11)
N1i—K4—N7ii83.60 (11)O3—K3—C3129.1 (3)
N2—K4—N7ii120.85 (12)O1—K3—C380.92 (15)
N3ii—K4—N7ii89.44 (11)N1ix—K3—C378.63 (10)
N3iii—K4—N7ii90.10 (11)N7ix—K3—C3158.45 (10)
N1i—K4—N4iii88.28 (10)N1—K3—C380.57 (10)
N2—K4—N4iii70.89 (11)C1—K3—C359.65 (10)
N3ii—K4—N4iii74.16 (11)O2—K3—N3132.2 (2)
N3iii—K4—N4iii91.13 (11)N6viii—K3—N383.31 (10)
N7ii—K4—N4iii162.80 (11)O3—K3—N3125.4 (3)
N1i—K4—N5128.70 (12)O1—K3—N374.17 (15)
N2—K4—N586.40 (12)N1ix—K3—N374.35 (10)
N3ii—K4—N5136.58 (11)N7ix—K3—N3160.97 (11)
N3iii—K4—N568.27 (11)N1—K3—N399.33 (10)
N7ii—K4—N566.26 (12)C1—K3—N379.57 (10)
N4iii—K4—N5129.74 (12)C3—K3—N320.96 (10)
N1i—K4—C3iii155.52 (11)O2—K3—C269.3 (2)
N2—K4—C3iii111.36 (12)N6viii—K3—C2137.97 (11)
N3ii—K4—C3iii80.82 (10)O3—K3—C293.7 (2)
N3iii—K4—C3iii20.96 (10)O1—K3—C270.34 (13)
N7ii—K4—C3iii110.84 (11)N1ix—K3—C2117.51 (11)
N4iii—K4—C3iii72.25 (10)N7ix—K3—C2128.83 (11)
N5—K4—C3iii75.78 (11)N1—K3—C265.60 (11)
N1i—K4—C288.58 (11)C1—K3—C247.92 (11)
N2—K4—C220.85 (11)C3—K3—C248.92 (11)
N3ii—K4—C2157.13 (11)N3—K3—C266.16 (10)
N3iii—K4—C2115.65 (11)O2—K3—N254.2 (2)
N7ii—K4—C2108.80 (11)N6viii—K3—N2130.22 (11)
N4iii—K4—C286.05 (11)O3—K3—N273.6 (2)
N5—K4—C265.55 (11)O1—K3—N256.52 (13)
C3iii—K4—C2104.29 (11)N1ix—K3—N2137.62 (10)
N1i—K4—C4iii109.02 (10)N7ix—K3—N2119.73 (11)
N2—K4—C4iii77.45 (11)N1—K3—N277.35 (10)
N3ii—K4—C4iii78.98 (10)C1—K3—N263.97 (10)
N3iii—K4—C4iii72.38 (10)C3—K3—N264.95 (10)
N7ii—K4—C4iii160.72 (11)N3—K3—N278.27 (10)
N4iii—K4—C4iii20.75 (10)C2—K3—N220.11 (10)
N5—K4—C4iii112.42 (12)C3—N3—K2viii154.0 (3)
C3iii—K4—C4iii52.41 (10)C3—N3—K4xi98.7 (3)
C2—K4—C4iii86.57 (11)K2viii—N3—K4xi106.90 (12)
N1i—K4—C3ii77.63 (10)C3—N3—K4iii89.6 (3)
N2—K4—C3ii148.30 (11)K2viii—N3—K4iii89.18 (11)
N3ii—K4—C3ii19.86 (10)K4xi—N3—K4iii103.17 (11)
N3iii—K4—C3ii78.16 (9)C3—N3—K378.8 (3)
N7ii—K4—C3ii69.59 (10)K2viii—N3—K392.09 (10)
N4iii—K4—C3ii93.89 (10)K4xi—N3—K399.76 (11)
N5—K4—C3ii123.26 (11)K4iii—N3—K3155.59 (14)
C3iii—K4—C3ii88.77 (10)C4—N4—K1iii151.2 (3)
C2—K4—C3ii166.20 (10)C4—N4—K2vii99.5 (3)
C4iii—K4—C3ii98.25 (10)K1iii—N4—K2vii109.07 (13)
N1i—K4—C7ii80.29 (10)C4—N4—K4iii87.2 (3)
N2—K4—C7ii136.66 (12)K1iii—N4—K4iii84.27 (10)
N3ii—K4—C7ii69.42 (10)K2vii—N4—K4iii99.88 (11)
N3iii—K4—C7ii85.77 (10)C4—N4—K278.1 (3)
N7ii—K4—C7ii20.02 (10)K1iii—N4—K297.92 (11)
N4iii—K4—C7ii143.19 (10)K2vii—N4—K2104.52 (11)
N5—K4—C7ii82.72 (12)K4iii—N4—K2153.20 (14)
C3iii—K4—C7ii106.31 (10)C1—N1—K4i154.3 (3)
C2—K4—C7ii128.06 (11)C1—N1—K3ix99.3 (3)
C4iii—K4—C7ii144.98 (11)K4i—N1—K3ix106.16 (12)
C3ii—K4—C7ii49.57 (10)C1—N1—K1i86.9 (3)
N4iii—K1—O3126.5 (3)K4i—N1—K1i84.65 (10)
N4iii—K1—N275.70 (12)K3ix—N1—K1i102.10 (11)
O3—K1—N279.8 (2)C1—N1—K379.6 (3)
N4iii—K1—O2132.7 (2)K4i—N1—K397.05 (11)
O3—K1—O240.3 (3)K3ix—N1—K3104.07 (11)
N2—K1—O258.2 (2)K1i—N1—K3152.14 (14)
N4iii—K1—N7iv83.94 (11)C2—N2—K497.4 (3)
O3—K1—N7iv72.6 (3)C2—N2—K1176.0 (4)
N2—K1—N7iv124.93 (12)K4—N2—K186.55 (12)
O2—K1—N7iv112.8 (2)C2—N2—K379.7 (3)
N4iii—K1—N6i151.13 (12)K4—N2—K3176.65 (16)
O3—K1—N6i73.8 (3)K1—N2—K396.37 (12)
N2—K1—N6i132.09 (12)C5—N5—K2vi176.1 (4)
O2—K1—N6i76.2 (2)C5—N5—K491.7 (3)
N7iv—K1—N6i83.89 (11)K2vi—N5—K485.04 (11)
N4iii—K1—N1i90.63 (10)C5—N5—K281.6 (3)
O3—K1—N1i124.6 (3)K2vi—N5—K2101.74 (12)
N2—K1—N1i71.04 (12)K4—N5—K2173.03 (16)
O2—K1—N1i84.5 (2)N6—C6—Mo1178.8 (4)
N7iv—K1—N1i160.62 (11)N6—C6—K281.0 (3)
N6i—K1—N1i92.27 (10)Mo1—C6—K298.68 (14)
N4iii—K1—N6iv79.25 (11)N6—C6—K1i71.9 (3)
O3—K1—N6iv143.8 (2)Mo1—C6—K1i108.80 (14)
N2—K1—N6iv135.46 (11)K2—C6—K1i146.00 (14)
O2—K1—N6iv141.7 (2)N6—C6—K1xii62.6 (3)
N7iv—K1—N6iv87.65 (11)Mo1—C6—K1xii116.23 (15)
N6i—K1—N6iv74.18 (11)K2—C6—K1xii90.47 (10)
N1i—K1—N6iv73.05 (10)K1i—C6—K1xii94.81 (10)
N4iii—K1—O177.78 (15)N4—C4—Mo1178.7 (4)
O3—K1—O148.9 (3)N4—C4—K280.5 (3)
N2—K1—O159.89 (13)Mo1—C4—K2100.01 (13)
O2—K1—O170.8 (3)N4—C4—K4iii72.1 (3)
N7iv—K1—O166.03 (12)Mo1—C4—K4iii107.93 (13)
N6i—K1—O1120.18 (14)K2—C4—K4iii144.67 (13)
N1i—K1—O1130.92 (12)N4—C4—K2vii60.4 (3)
N6iv—K1—O1146.53 (13)Mo1—C4—K2vii118.33 (15)
N4iii—K1—C6i155.00 (11)K2—C4—K2vii96.36 (10)
O3—K1—C6i78.4 (3)K4iii—C4—K2vii89.15 (10)
N2—K1—C6i115.01 (12)N5—C5—Mo1174.1 (4)
O2—K1—C6i66.0 (2)N5—C5—K277.6 (3)
N7iv—K1—C6i104.87 (11)Mo1—C5—K296.91 (15)
N6i—K1—C6i21.12 (10)N5—C5—K468.2 (3)
N1i—K1—C6i73.26 (10)Mo1—C5—K4117.19 (16)
N6iv—K1—C6i77.82 (10)K2—C5—K4145.76 (14)
O1—K1—C6i127.22 (14)N1—C1—Mo1179.0 (3)
N4iii—K1—C1i112.02 (11)N1—C1—K378.5 (3)
O3—K1—C1i108.7 (3)Mo1—C1—K3101.55 (13)
N2—K1—C1i78.95 (12)N1—C1—K1i71.7 (3)
O2—K1—C1i71.3 (2)Mo1—C1—K1i108.74 (13)
N7iv—K1—C1i154.97 (11)K3—C1—K1i141.57 (14)
N6i—K1—C1i72.96 (10)N1—C1—K3ix60.7 (3)
N1i—K1—C1i21.43 (10)Mo1—C1—K3ix118.36 (15)
N6iv—K1—C1i77.16 (10)K3—C1—K3ix95.18 (10)
O1—K1—C1i134.42 (12)K1i—C1—K3ix90.83 (9)
C6i—K1—C1i52.82 (10)N3—C3—Mo1178.1 (4)
N4iii—K1—C7iv78.81 (10)N3—C3—K380.3 (3)
O3—K1—C7iv90.8 (2)Mo1—C3—K3100.21 (13)
N2—K1—C7iv139.24 (12)N3—C3—K4iii69.5 (3)
O2—K1—C7iv129.9 (2)Mo1—C3—K4iii110.74 (14)
N7iv—K1—C7iv19.95 (11)K3—C3—K4iii143.04 (14)
N6i—K1—C7iv80.85 (10)N3—C3—K4xi61.5 (3)
N1i—K1—C7iv140.67 (11)Mo1—C3—K4xi116.62 (15)
N6iv—K1—C7iv67.80 (10)K3—C3—K4xi92.56 (10)
O1—K1—C7iv84.04 (12)K4iii—C3—K4xi91.23 (10)
C6i—K1—C7iv101.40 (10)N2—C2—Mo1175.1 (4)
C1i—K1—C7iv140.79 (11)N2—C2—K461.8 (3)
N3v—K2—N5vi74.20 (12)Mo1—C2—K4123.11 (17)
N3v—K2—N4vii79.00 (11)N2—C2—K380.2 (3)
N5vi—K2—N4vii143.65 (11)Mo1—C2—K394.90 (14)
N3v—K2—N7vii92.82 (10)K4—C2—K3141.94 (14)
N5vi—K2—N7vii69.19 (12)C6—N6—K3v154.2 (3)
N4vii—K2—N7vii88.33 (11)C6—N6—K1i87.0 (3)
N3v—K2—C4154.84 (11)K3v—N6—K1i93.00 (11)
N5vi—K2—C4130.86 (12)C6—N6—K1xii97.7 (3)
N4vii—K2—C478.98 (11)K3v—N6—K1xii107.02 (12)
N7vii—K2—C498.55 (10)K1i—N6—K1xii105.82 (11)
N3v—K2—N4152.82 (11)C6—N6—K278.0 (3)
N5vi—K2—N4123.51 (12)K3v—N6—K291.82 (10)
N4vii—K2—N475.48 (11)K1i—N6—K2154.44 (14)
N7vii—K2—N477.34 (10)K1xii—N6—K296.69 (11)
C4—K2—N421.43 (10)N7—C7—Mo1178.9 (4)
N3v—K2—C6103.06 (11)N7—C7—K1xii63.6 (2)
N5vi—K2—C6131.04 (12)Mo1—C7—K1xii116.63 (15)
N4vii—K2—C678.58 (11)N7—C7—K4xi65.9 (3)
N7vii—K2—C6156.93 (10)Mo1—C7—K4xi113.90 (14)
C4—K2—C660.55 (10)K1xii—C7—K4xi129.43 (15)
N4—K2—C681.01 (10)N7—C7—K2vii66.0 (3)
N3v—K2—N682.07 (9)Mo1—C7—K2vii115.03 (15)
N5vi—K2—N6123.91 (12)K1xii—C7—K2vii83.05 (10)
N4vii—K2—N674.98 (11)K4xi—C7—K2vii74.38 (9)
N7vii—K2—N6163.17 (11)N7—C7—K3ix62.5 (3)
C4—K2—N680.61 (10)Mo1—C7—K3ix116.39 (16)
N4—K2—N6100.02 (10)K1xii—C7—K3ix77.65 (9)
C6—K2—N621.00 (10)K4xi—C7—K3ix82.09 (10)
N3v—K2—N5127.59 (12)K2vii—C7—K3ix128.45 (14)
N5vi—K2—N578.26 (12)C7—N7—K1xii96.4 (3)
N4vii—K2—N5138.08 (11)C7—N7—K3ix97.8 (3)
N7vii—K2—N5117.52 (11)K1xii—N7—K3ix88.49 (10)
C4—K2—N565.63 (11)C7—N7—K4xi94.1 (3)
N4—K2—N578.79 (11)K1xii—N7—K4xi169.07 (15)
C6—K2—N565.05 (11)K3ix—N7—K4xi93.01 (11)
N6—K2—N577.64 (11)C7—N7—K2vii94.0 (3)
N3v—K2—C5136.31 (12)K1xii—N7—K2vii93.66 (11)
N5vi—K2—C599.08 (12)K3ix—N7—K2vii167.66 (15)
N4vii—K2—C5117.27 (11)K4xi—N7—K2vii82.64 (10)
N7vii—K2—C5125.79 (11)K3—O1—K1102.27 (19)
C4—K2—C548.67 (11)K3—O1—K2viii85.71 (15)
N4—K2—C566.00 (11)K1—O1—K2viii169.2 (2)
C6—K2—C548.91 (11)K3—O1—H1133 (5)
N6—K2—C565.90 (11)K1—O1—H1109 (5)
N5—K2—C520.83 (10)K2viii—O1—H170 (5)
N3v—K2—C4vii79.86 (10)K3—O1—H2110 (4)
N5vi—K2—C4vii128.22 (11)K1—O1—H297 (5)
N4vii—K2—C4vii20.13 (10)K2viii—O1—H273 (5)
N7vii—K2—C4vii68.23 (10)H1—O1—H2100 (3)
C4—K2—C4vii83.64 (10)K3—O2—K1110.1 (4)
N4—K2—C4vii72.96 (10)O3x—O3—K3124.8 (14)
C6—K2—C4vii97.92 (10)O3x—O3—K1121.3 (14)
N6—K2—C4vii95.04 (10)K3—O3—K1109.9 (3)
N5—K2—C4vii149.11 (11)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y1, z; (v) x, y+1, z; (vi) x, y+1, z; (vii) x1, y+1, z; (viii) x, y1, z; (ix) x1, y, z+1; (x) x, y1, z+1; (xi) x1, y, z; (xii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaK4[Mo(CN)7]·2H2O
Mr468.29
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.8813 (5), 9.2896 (4), 9.7221 (4)
α, β, γ (°)86.6480 (13), 82.2150 (19), 71.2570 (17)
V3)752.48 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.10 × 0.05 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.826, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
7367, 3421, 2893
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.153, 1.25
No. of reflections3421
No. of parameters210
No. of restraints3
H-atom treatmentH-atom parameters not defined
Δρmax, Δρmin (e Å3)2.85, 1.08

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PyMOLWin (DeLano, 2007).

 

Acknowledgements

The present research was supported in part by a Grant-in-Aid for Young Scientists (S) from JSPS, a grant for the Global COE Program, Chemistry Innovation through Cooperation of Science and Engineering, the Photon Frontier Network Program from MEXT, Japan, the Kurata Memorial Hitachi Science and Technology Foundation, and the Inamori Foundation. YT is grateful to JSPS Research Fellowships for Young Scientists. A part of this work was conducted at the Center for Nano Lithography & Analysis at the University of Tokyo, supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References

First citationArimoto, Y., Ohkoshi, S., Zhong, Z. J., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Am. Chem. Soc. 125, 9240–9241.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCatala, L., Mathoniere, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746–748.  Web of Science CrossRef Google Scholar
First citationDeLano, W. L. (2007). The pyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA, USA.  Google Scholar
First citationDrew, M. G. B., Mitchell, P. C. H. & Pygall, C. F. (1977). J. Chem. Soc. Dalton Trans. pp. 1071–1077.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHursthouse, M. B., Malik, K. M. A., Soares, A. M., Gibson, J. F. & Griffith, W. P. (1980). Inorg. Chim. Acta, 45, L81–L82.  CrossRef Web of Science Google Scholar
First citationLarionova, J., Willemin, S., Donnadieu, B., Henner, B., Guerin, C., Gillon, B. & Goujon, A. (2004). J. Phys. Chem. Solids, 65, 677–691.  Web of Science CrossRef CAS Google Scholar
First citationOhkoshi, S., Hamada, Y., Matsuda, T., Tunobuchi, Y. & Tokoro, H. (2008). Chem. Mater. 20, 3048–3054.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084–3085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRossman, G. R., Tsay, F. D. & Gray, H. B. (1973). Inorg. Chem. 12, 824–829.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, R. C. (1932). J. Am. Chem. Soc. 54, 1402–1405.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds