organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-o-Phenyl­enediaceto­nitrile

aDepartment of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland
*Correspondence e-mail: jdw3@st-and.ac.uk

(Received 17 September 2009; accepted 11 October 2009; online 17 October 2009)

In the title compound, NCCH2C6H4CH2CN, the bond lengths and angles are within normal ranges. The benzene ring makes dihedral angles of 4.94 (8) and 77.04 (8)° with the C—C—C—N mean planes. Weak non-conventional C—H⋯N hydrogen bonds are effective in the stabilization of the crystal structure. The weak C—H⋯N contacts form anti­parallel chains running in the a + c direction, and ring systems with two N-atom acceptors and four H-atom donors.

Related literature

For reactions of Woollins' Reagent see: Gray et al. (2005[Gray, I. P., Bhattachcharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2005). Chem. Eur. J. 11, 6221-6227.]); Hua et al. (2006[Hua, G., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2006). Org. Lett. 8, 5251-5254.], 2009[Hua, G., Li, Y., Fuller, A., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612-1618.]); Hua & Woollins (2009[Hua, G. & Woollins, J. D. (2009). Angew. Chem., Int. Ed. 48, 1368-1377.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2

  • Mr = 156.18

  • Monoclinic, P 21 /n

  • a = 8.3882 (18) Å

  • b = 8.1605 (15) Å

  • c = 11.993 (2) Å

  • β = 101.890 (6)°

  • V = 803.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.977, Tmax = 0.988

  • 5271 measured reflections

  • 1660 independent reflections

  • 1330 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.133

  • S = 1.09

  • 1660 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯N1i 0.99 2.57 3.5605 (18) 176
C9—H9B⋯N1ii 0.99 2.56 3.5210 (17) 165
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we have continued our studies exploring the reactivity of Woollins reagent towards different organic substituents (Gray et al. 2005, Hua et al. 2006 and 2009; Hua & Woollins 2009). Thereby 2,2'-(1,2-phenylene)diacetonitrile represents one of the starting materials. Single crystals of 2,5-dihydroxybenzaldehyde for X-ray crystallographic analysis were obtained by recrystallization from dichloromethane-hexane solution.

The bond lengths (Allen et al., 1987) and angles are within normal ranges.The benzene ring makes the dihedral angles of 4.94 (8) and 77.04 (8)° with the mean planes of C1—C7—C8—N1 and C2—C9—C10—N2 respectively. The antiparallel chains running in a+c direction are generated through the weak C—H···N contacts, glide plane and inversinon symmetry operations[see Fig. 2 and Table 1]. Inversion symmetry forms also C—H···N ring systems consisting of two N acceptors and four H atom donors,where the centroid-centroid distance between the inversion-related benzene ring planes is 3.6809 (10) Å, the perpendicular plane to plane distance is 3.364 Å, and the slippage between the planes is 1.495 Å.

Related literature top

For reactions of Woollins' Reagent see: Gray et al. (2005); Hua et al. (2006, 2009); Hua & Woollins (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

Commercially available 2,2'-(1,2-phenylene)diacetonitrile was recrystallized from dichloromethane-hexane.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were treated as riding on their parent C atoms with Uiso(H)= 1.2–1.5Ueq(C).

Structure description top

Recently, we have continued our studies exploring the reactivity of Woollins reagent towards different organic substituents (Gray et al. 2005, Hua et al. 2006 and 2009; Hua & Woollins 2009). Thereby 2,2'-(1,2-phenylene)diacetonitrile represents one of the starting materials. Single crystals of 2,5-dihydroxybenzaldehyde for X-ray crystallographic analysis were obtained by recrystallization from dichloromethane-hexane solution.

The bond lengths (Allen et al., 1987) and angles are within normal ranges.The benzene ring makes the dihedral angles of 4.94 (8) and 77.04 (8)° with the mean planes of C1—C7—C8—N1 and C2—C9—C10—N2 respectively. The antiparallel chains running in a+c direction are generated through the weak C—H···N contacts, glide plane and inversinon symmetry operations[see Fig. 2 and Table 1]. Inversion symmetry forms also C—H···N ring systems consisting of two N acceptors and four H atom donors,where the centroid-centroid distance between the inversion-related benzene ring planes is 3.6809 (10) Å, the perpendicular plane to plane distance is 3.364 Å, and the slippage between the planes is 1.495 Å.

For reactions of Woollins' Reagent see: Gray et al. (2005); Hua et al. (2006, 2009); Hua & Woollins (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View along the b direction of the crystal packing of the title compound with non-conventional hydrogen bonding shown as dashed lines.
2,2'-o-Phenylenediacetonitrile top
Crystal data top
C10H8N2F(000) = 328
Mr = 156.18Dx = 1.291 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3882 (18) ÅCell parameters from 2633 reflections
b = 8.1605 (15) Åθ = 2.7–28.3°
c = 11.993 (2) ŵ = 0.08 mm1
β = 101.890 (6)°T = 93 K
V = 803.4 (3) Å3Block, colorless
Z = 40.30 × 0.25 × 0.15 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1660 independent reflections
Radiation source: rotating anode1330 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.031
Detector resolution: 0.83 pixels mm-1θmax = 28.7°, θmin = 2.7°
ω scansh = 1110
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2004)
k = 910
Tmin = 0.977, Tmax = 0.988l = 1315
5271 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.0077P]
where P = (Fo2 + 2Fc2)/3
1660 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H8N2V = 803.4 (3) Å3
Mr = 156.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3882 (18) ŵ = 0.08 mm1
b = 8.1605 (15) ÅT = 93 K
c = 11.993 (2) Å0.30 × 0.25 × 0.15 mm
β = 101.890 (6)°
Data collection top
Rigaku Mercury CCD
diffractometer
1660 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2004)
1330 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.988Rint = 0.031
5271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.09Δρmax = 0.28 e Å3
1660 reflectionsΔρmin = 0.21 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.77845 (13)0.05887 (16)0.95174 (10)0.0215 (3)
C20.72184 (13)0.13136 (16)1.04228 (10)0.0218 (3)
C70.83384 (14)0.16768 (16)0.86390 (10)0.0257 (3)
H7A0.74040.23500.82530.031*
H7B0.91910.24330.90380.031*
C30.66532 (15)0.03264 (16)1.12009 (11)0.0250 (3)
H30.62730.08171.18160.030*
C80.89813 (14)0.07728 (16)0.77779 (10)0.0252 (3)
N10.94789 (13)0.00673 (14)0.70957 (10)0.0313 (3)
C100.88145 (15)0.38338 (15)1.10361 (10)0.0248 (4)
C90.71906 (14)0.31597 (16)1.05579 (11)0.0249 (3)
H9A0.67680.36660.98050.030*
H9B0.64380.34481.10640.030*
C50.71958 (14)0.20835 (16)1.02028 (11)0.0278 (4)
H50.71920.32421.01260.033*
C60.77646 (14)0.11076 (16)0.94203 (11)0.0248 (4)
H60.81460.16070.88090.030*
N21.00792 (13)0.43446 (14)1.14226 (9)0.0318 (3)
C40.66348 (14)0.13701 (17)1.10929 (11)0.0271 (3)
H40.62390.20341.16280.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0169 (6)0.0226 (7)0.0238 (7)0.0002 (4)0.0009 (5)0.0007 (5)
C20.0176 (6)0.0247 (7)0.0221 (7)0.0023 (5)0.0013 (5)0.0002 (5)
C70.0267 (7)0.0232 (7)0.0274 (7)0.0013 (5)0.0062 (5)0.0001 (6)
C30.0207 (7)0.0311 (8)0.0220 (7)0.0002 (5)0.0019 (5)0.0002 (6)
C80.0217 (7)0.0285 (7)0.0252 (7)0.0031 (5)0.0043 (5)0.0008 (6)
N10.0292 (7)0.0337 (8)0.0319 (7)0.0012 (5)0.0085 (5)0.0019 (5)
C100.0321 (7)0.0198 (7)0.0243 (7)0.0044 (5)0.0097 (6)0.0012 (5)
C90.0256 (7)0.0240 (8)0.0250 (7)0.0021 (5)0.0049 (5)0.0018 (6)
C50.0257 (7)0.0210 (7)0.0342 (8)0.0006 (5)0.0007 (6)0.0018 (6)
C60.0241 (7)0.0235 (8)0.0263 (7)0.0027 (5)0.0040 (5)0.0023 (6)
N20.0325 (7)0.0272 (7)0.0359 (7)0.0019 (5)0.0071 (5)0.0044 (5)
C40.0234 (7)0.0314 (8)0.0253 (7)0.0034 (5)0.0022 (5)0.0054 (6)
Geometric parameters (Å, º) top
C1—C61.3890 (19)C8—N11.1471 (15)
C1—C21.4025 (16)C10—N21.1452 (15)
C1—C71.5218 (18)C10—C91.4714 (17)
C2—C31.3882 (18)C9—H9A0.9900
C2—C91.5159 (18)C9—H9B0.9900
C7—C81.4599 (17)C5—C41.3809 (18)
C7—H7A0.9900C5—C61.3882 (17)
C7—H7B0.9900C5—H50.9500
C3—C41.390 (2)C6—H60.9500
C3—H30.9500C4—H40.9500
C6—C1—C2119.02 (11)N2—C10—C9178.97 (14)
C6—C1—C7121.58 (11)C10—C9—C2112.32 (10)
C2—C1—C7119.36 (12)C10—C9—H9A109.1
C3—C2—C1119.52 (13)C2—C9—H9A109.1
C3—C2—C9119.34 (11)C10—C9—H9B109.1
C1—C2—C9121.14 (11)C2—C9—H9B109.1
C8—C7—C1113.88 (11)H9A—C9—H9B107.9
C8—C7—H7A108.8C4—C5—C6120.00 (12)
C1—C7—H7A108.8C4—C5—H5120.0
C8—C7—H7B108.8C6—C5—H5120.0
C1—C7—H7B108.8C1—C6—C5121.00 (11)
H7A—C7—H7B107.7C1—C6—H6119.5
C2—C3—C4120.94 (12)C5—C6—H6119.5
C2—C3—H3119.5C5—C4—C3119.53 (12)
C4—C3—H3119.5C5—C4—H4120.2
N1—C8—C7179.54 (14)C3—C4—H4120.2
C6—C1—C2—C30.04 (16)C3—C2—C9—C10103.33 (13)
C7—C1—C2—C3177.52 (11)C1—C2—C9—C1077.54 (13)
C6—C1—C2—C9179.09 (11)C2—C1—C6—C50.00 (17)
C7—C1—C2—C91.61 (15)C7—C1—C6—C5177.43 (10)
C6—C1—C7—C85.75 (16)C4—C5—C6—C10.15 (18)
C2—C1—C7—C8176.84 (10)C6—C5—C4—C30.34 (18)
C1—C2—C3—C40.23 (17)C2—C3—C4—C50.38 (18)
C9—C2—C3—C4178.91 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N1i0.992.573.5605 (18)176
C9—H9B···N1ii0.992.563.5210 (17)165
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2
Mr156.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)8.3882 (18), 8.1605 (15), 11.993 (2)
β (°) 101.890 (6)
V3)803.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2004)
Tmin, Tmax0.977, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5271, 1660, 1330
Rint0.031
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.133, 1.09
No. of reflections1660
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N1i0.992.573.5605 (18)176.2
C9—H9B···N1ii0.992.563.5210 (17)164.6
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the University of St Andrews and the Engineering and Physical Science Research Council (EPRSC, UK) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationGray, I. P., Bhattachcharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2005). Chem. Eur. J. 11, 6221–6227.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHua, G., Li, Y., Fuller, A., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612–1618.  Web of Science CrossRef Google Scholar
First citationHua, G., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2006). Org. Lett. 8, 5251–5254.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHua, G. & Woollins, J. D. (2009). Angew. Chem., Int. Ed. 48, 1368–1377.  Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds