organic compounds
1-(4-Iodo-3-phenylisoquinolin-1-yl)pyrrolidine-2,5-dione
aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: wjfu@lynu.edu.cn
In the title compound, C19H13IN2O2, the isoquinoline ring makes dihedral angles of 55.92 (3)° and 76.11 (3)° with the benzene and succinimide rings, respectively. The dihedral angle between the benzene and succinimide rings is 70.37 (3)°. In the the iodo atom deviates from the isoquinoline plane by 0.163 (1) Å. The crystal studied was found to be a racemic twin with a domain ratio of 0.41 (5):0.59 (5).
Related literature
For the synthesis of isoquinoline rings, see: Pandy et al. (2008). For the biological activity of isoquinolines and derivatives, see: Kletsas et al. (2004); Mach et al. (2004). For the synthesis of sterically non-hindering endocyclic ligands of the bi-isoquinoline family and an example X-ray structure of an octahedral tris-chelate iron(II) complex, see: Durola et al. (2006). For red phosphorescence of iridium complexes with isoquinolines and derivatives, see: Tsuboyama et al. (2003).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536809042111/si2208sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809042111/si2208Isup2.hkl
To a solution of (E)-2-(2-phenylethynyl)benzaldehyde O-acetyl oxime (0.5 mmol) in dry CH2Cl2 was added N-Iodosuccinimide (0.6 mmol). The mixture was stirred for 12 h at room temperature. After evaporation of the solvent, the residue was purified by
on silica gel to afford the title compound as a colorless solid (yield 90%). The title compound was recrystallized from CH2Cl2 at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH) or 0.97 Å (methylene CH2), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methylene C). The number of Friedel pairs measured were 1229.
The isoquinoline derivatives play an important role in organic chemistry, not only as key structural units in many natural products (Kletsas et al., 2004), but also as building blocks in important pharmaceuticals (Mach et al., 2004). Isoquinoline species are also utilized as chiral ligands for transition metal catalysts (Durola et al., 2006), and their iridium complexes are used in organic light-emitting diodes (Tsuboyama et al., 2003). For these reasons, the efficient synthesis of isoquinoline ring system continues to attract the interest of synthetic chemists (Pandy et al., 2008). In this context, we report the synthesis of the title compound.
The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges. The isoquinoline ring makes dihedral angles of 55.92 (3)° and 76.11 (3)° with the benzene and succinimide rings, respectively. The dihedral angle between the benzene and succinimide ring is 70.37 (3)°. In the
the iodo atom deviates from the isoquinoline plane by 0.163 (1)° and the crystal is a racemic twin with a domain ratio of 0.41 (5):0.59 (5).For the synthesis of isoquinoline rings, see: Pandy et al. (2008). For the biological activity of isoquinolines and derivatives, see: Kletsas et al. (2004); Mach et al. (2004). For the synthesis of sterically non-hindering endocyclic ligands of the bi-isoquinoline family and an example X-ray structure of an octahedral tris-chelate iron(II) complex, see: Durola et al. (2006). For red
of iridium complexes with isoquinolines and derivatives, see: Tsuboyama et al. (2003).Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. View of the molecular structure of (I) with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms. |
C19H13IN2O2 | F(000) = 420 |
Mr = 428.21 | Dx = 1.726 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.874 (3) Å | Cell parameters from 3132 reflections |
b = 8.365 (3) Å | θ = 2.3–27.9° |
c = 11.292 (4) Å | µ = 1.96 mm−1 |
β = 100.494 (3)° | T = 294 K |
V = 824.1 (4) Å3 | Block, colourless |
Z = 2 | 0.39 × 0.32 × 0.21 mm |
Bruker APEXII CCD diffractometer | 2880 independent reflections |
Radiation source: fine-focus sealed tube | 2722 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
φ and ω scans | θmax = 25.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.516, Tmax = 0.684 | k = −9→10 |
5068 measured reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.0688P)2 + 3.9331P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
2880 reflections | Δρmax = 1.92 e Å−3 |
217 parameters | Δρmin = −0.85 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1229 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.41 (5) |
C19H13IN2O2 | V = 824.1 (4) Å3 |
Mr = 428.21 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.874 (3) Å | µ = 1.96 mm−1 |
b = 8.365 (3) Å | T = 294 K |
c = 11.292 (4) Å | 0.39 × 0.32 × 0.21 mm |
β = 100.494 (3)° |
Bruker APEXII CCD diffractometer | 2880 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2722 reflections with I > 2σ(I) |
Tmin = 0.516, Tmax = 0.684 | Rint = 0.021 |
5068 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.154 | Δρmax = 1.92 e Å−3 |
S = 1.14 | Δρmin = −0.85 e Å−3 |
2880 reflections | Absolute structure: Flack (1983), 1229 Friedel pairs |
217 parameters | Absolute structure parameter: 0.41 (5) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.46281 (6) | 0.81542 (14) | 0.63285 (5) | 0.0606 (3) | |
C19 | 0.9127 (11) | 0.9063 (12) | 0.5388 (8) | 0.042 (2) | |
H19 | 0.9014 | 0.9804 | 0.4764 | 0.051* | |
C17 | 1.0667 (9) | 0.803 (3) | 0.7186 (8) | 0.059 (3) | |
H17 | 1.1548 | 0.8082 | 0.7774 | 0.071* | |
C12 | 0.7415 (11) | 0.827 (2) | −0.0459 (8) | 0.050 (2) | |
H12A | 0.8499 | 0.8453 | −0.0437 | 0.060* | |
H12B | 0.6832 | 0.8818 | −0.1150 | 0.060* | |
C2 | 0.5181 (10) | 0.7804 (11) | 0.4622 (7) | 0.039 (2) | |
C14 | 0.8040 (9) | 0.794 (2) | 0.5427 (7) | 0.045 (3) | |
N1 | 0.7039 (8) | 0.7695 (8) | 0.3323 (6) | 0.0352 (17) | |
C1 | 0.6664 (10) | 0.7796 (9) | 0.4443 (7) | 0.035 (2) | |
C9 | 0.5916 (10) | 0.7606 (9) | 0.2384 (8) | 0.0354 (19) | |
C3 | 0.3933 (10) | 0.7661 (9) | 0.3598 (8) | 0.0339 (19) | |
C8 | 0.4349 (10) | 0.7559 (10) | 0.2450 (7) | 0.0347 (18) | |
C7 | 0.3209 (11) | 0.7417 (13) | 0.1405 (9) | 0.048 (2) | |
H7 | 0.3474 | 0.7367 | 0.0646 | 0.058* | |
C5 | 0.1268 (12) | 0.7485 (14) | 0.2662 (13) | 0.062 (3) | |
H5 | 0.0240 | 0.7467 | 0.2732 | 0.074* | |
C4 | 0.2361 (11) | 0.7637 (11) | 0.3664 (11) | 0.051 (3) | |
H4 | 0.2068 | 0.7728 | 0.4411 | 0.061* | |
C6 | 0.1664 (13) | 0.7355 (14) | 0.1537 (10) | 0.052 (2) | |
H6 | 0.0901 | 0.7225 | 0.0861 | 0.062* | |
C13 | 0.6947 (13) | 0.8815 (13) | 0.0688 (9) | 0.045 (2) | |
C15 | 0.8281 (12) | 0.6798 (14) | 0.6350 (9) | 0.048 (2) | |
H15 | 0.7552 | 0.6007 | 0.6382 | 0.058* | |
C16 | 0.9609 (12) | 0.6848 (15) | 0.7222 (9) | 0.051 (3) | |
H16 | 0.9777 | 0.6080 | 0.7828 | 0.061* | |
C18 | 1.0422 (11) | 0.9091 (19) | 0.6304 (10) | 0.066 (4) | |
H18 | 1.1144 | 0.9894 | 0.6293 | 0.079* | |
C11 | 0.7047 (17) | 0.6458 (13) | −0.0504 (10) | 0.059 (3) | |
H11A | 0.6281 | 0.6213 | −0.1209 | 0.071* | |
H11B | 0.7963 | 0.5844 | −0.0544 | 0.071* | |
O1 | 0.7041 (11) | 1.0138 (10) | 0.1076 (7) | 0.061 (2) | |
O2 | 0.6070 (9) | 0.4793 (8) | 0.0963 (7) | 0.0532 (17) | |
N2 | 0.6411 (10) | 0.7481 (10) | 0.1276 (8) | 0.0408 (17) | |
C10 | 0.6446 (12) | 0.6047 (13) | 0.0635 (9) | 0.041 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0499 (3) | 0.0991 (6) | 0.0354 (3) | 0.0116 (5) | 0.0148 (2) | −0.0016 (5) |
C19 | 0.047 (5) | 0.050 (5) | 0.029 (5) | 0.002 (4) | 0.002 (4) | 0.005 (4) |
C17 | 0.033 (4) | 0.098 (9) | 0.040 (5) | 0.021 (8) | −0.006 (3) | −0.006 (8) |
C12 | 0.059 (5) | 0.055 (6) | 0.038 (4) | 0.006 (7) | 0.013 (4) | 0.001 (7) |
C2 | 0.042 (4) | 0.049 (7) | 0.025 (4) | −0.001 (4) | 0.005 (3) | −0.008 (4) |
C14 | 0.034 (4) | 0.075 (9) | 0.030 (4) | 0.008 (5) | 0.012 (3) | −0.008 (6) |
N1 | 0.041 (4) | 0.034 (4) | 0.031 (3) | 0.001 (3) | 0.009 (3) | −0.002 (3) |
C1 | 0.041 (4) | 0.033 (6) | 0.029 (4) | 0.000 (3) | 0.003 (3) | 0.000 (3) |
C9 | 0.048 (5) | 0.027 (4) | 0.033 (4) | −0.001 (3) | 0.011 (4) | −0.003 (3) |
C3 | 0.044 (4) | 0.025 (5) | 0.033 (4) | 0.001 (3) | 0.006 (3) | −0.001 (3) |
C8 | 0.048 (5) | 0.028 (4) | 0.026 (4) | 0.003 (3) | 0.000 (3) | 0.000 (3) |
C7 | 0.044 (5) | 0.055 (5) | 0.038 (5) | −0.003 (4) | −0.011 (4) | −0.018 (4) |
C5 | 0.035 (5) | 0.054 (6) | 0.095 (9) | −0.005 (4) | 0.008 (5) | 0.003 (6) |
C4 | 0.042 (5) | 0.048 (6) | 0.062 (6) | 0.001 (4) | 0.010 (5) | 0.005 (4) |
C6 | 0.051 (6) | 0.060 (6) | 0.040 (5) | 0.003 (5) | −0.003 (4) | 0.007 (5) |
C13 | 0.063 (6) | 0.045 (6) | 0.026 (4) | −0.010 (4) | 0.004 (4) | 0.010 (4) |
C15 | 0.044 (5) | 0.063 (6) | 0.037 (5) | −0.002 (4) | 0.006 (4) | 0.000 (5) |
C16 | 0.044 (5) | 0.077 (7) | 0.028 (5) | 0.007 (5) | −0.002 (4) | 0.008 (5) |
C18 | 0.028 (5) | 0.128 (11) | 0.040 (6) | 0.016 (5) | 0.003 (4) | −0.010 (6) |
C11 | 0.098 (9) | 0.053 (7) | 0.032 (5) | −0.006 (6) | 0.022 (6) | −0.005 (4) |
O1 | 0.098 (7) | 0.050 (5) | 0.030 (4) | −0.017 (4) | 0.001 (4) | 0.007 (3) |
O2 | 0.080 (5) | 0.035 (4) | 0.047 (4) | 0.000 (3) | 0.017 (4) | 0.002 (3) |
N2 | 0.049 (4) | 0.040 (4) | 0.032 (4) | 0.003 (3) | 0.004 (3) | 0.004 (3) |
C10 | 0.049 (6) | 0.049 (6) | 0.022 (5) | 0.006 (4) | −0.003 (4) | −0.012 (4) |
I1—C2 | 2.093 (8) | C3—C8 | 1.414 (12) |
C19—C14 | 1.355 (17) | C8—C7 | 1.412 (12) |
C19—C18 | 1.399 (14) | C7—C6 | 1.407 (16) |
C19—H19 | 0.9300 | C7—H7 | 0.9300 |
C17—C18 | 1.32 (2) | C5—C4 | 1.355 (16) |
C17—C16 | 1.37 (2) | C5—C6 | 1.383 (17) |
C17—H17 | 0.9300 | C5—H5 | 0.9300 |
C12—C13 | 1.502 (14) | C4—H4 | 0.9300 |
C12—C11 | 1.548 (19) | C6—H6 | 0.9300 |
C12—H12A | 0.9700 | C13—O1 | 1.188 (13) |
C12—H12B | 0.9700 | C13—N2 | 1.424 (12) |
C2—C1 | 1.368 (12) | C15—C16 | 1.392 (13) |
C2—C3 | 1.453 (12) | C15—H15 | 0.9300 |
C14—C15 | 1.399 (17) | C16—H16 | 0.9300 |
C14—C1 | 1.498 (11) | C18—H18 | 0.9300 |
N1—C9 | 1.318 (12) | C11—C10 | 1.519 (15) |
N1—C1 | 1.368 (11) | C11—H11A | 0.9700 |
C9—N2 | 1.402 (12) | C11—H11B | 0.9700 |
C9—C8 | 1.407 (13) | O2—C10 | 1.181 (13) |
C3—C4 | 1.411 (13) | N2—C10 | 1.404 (13) |
C14—C19—C18 | 118.8 (10) | C4—C5—C6 | 120.7 (10) |
C14—C19—H19 | 120.6 | C4—C5—H5 | 119.6 |
C18—C19—H19 | 120.6 | C6—C5—H5 | 119.6 |
C18—C17—C16 | 119.2 (9) | C5—C4—C3 | 121.5 (11) |
C18—C17—H17 | 120.4 | C5—C4—H4 | 119.3 |
C16—C17—H17 | 120.4 | C3—C4—H4 | 119.3 |
C13—C12—C11 | 103.7 (9) | C5—C6—C7 | 120.7 (10) |
C13—C12—H12A | 111.0 | C5—C6—H6 | 119.7 |
C11—C12—H12A | 111.0 | C7—C6—H6 | 119.7 |
C13—C12—H12B | 111.0 | O1—C13—N2 | 124.4 (9) |
C11—C12—H12B | 111.0 | O1—C13—C12 | 126.1 (10) |
H12A—C12—H12B | 109.0 | N2—C13—C12 | 109.4 (10) |
C1—C2—C3 | 119.8 (8) | C16—C15—C14 | 120.1 (10) |
C1—C2—I1 | 122.0 (6) | C16—C15—H15 | 120.0 |
C3—C2—I1 | 118.1 (6) | C14—C15—H15 | 120.0 |
C19—C14—C15 | 119.0 (8) | C17—C16—C15 | 119.9 (10) |
C19—C14—C1 | 121.2 (10) | C17—C16—H16 | 120.1 |
C15—C14—C1 | 119.5 (11) | C15—C16—H16 | 120.1 |
C9—N1—C1 | 118.2 (7) | C17—C18—C19 | 123.1 (13) |
C2—C1—N1 | 122.6 (8) | C17—C18—H18 | 118.5 |
C2—C1—C14 | 124.5 (8) | C19—C18—H18 | 118.5 |
N1—C1—C14 | 112.9 (7) | C10—C11—C12 | 107.3 (8) |
N1—C9—N2 | 114.1 (8) | C10—C11—H11A | 110.2 |
N1—C9—C8 | 124.6 (8) | C12—C11—H11A | 110.2 |
N2—C9—C8 | 121.2 (8) | C10—C11—H11B | 110.2 |
C4—C3—C8 | 118.2 (9) | C12—C11—H11B | 110.2 |
C4—C3—C2 | 125.3 (9) | H11A—C11—H11B | 108.5 |
C8—C3—C2 | 116.5 (8) | C9—N2—C10 | 124.3 (8) |
C9—C8—C7 | 121.5 (9) | C9—N2—C13 | 122.9 (8) |
C9—C8—C3 | 118.2 (8) | C10—N2—C13 | 112.8 (8) |
C7—C8—C3 | 120.3 (9) | O2—C10—N2 | 124.3 (10) |
C6—C7—C8 | 118.6 (10) | O2—C10—C11 | 129.0 (9) |
C6—C7—H7 | 120.7 | N2—C10—C11 | 106.7 (9) |
C8—C7—H7 | 120.7 | ||
C18—C19—C14—C15 | −2.8 (16) | C6—C5—C4—C3 | −0.3 (16) |
C18—C19—C14—C1 | −177.1 (10) | C8—C3—C4—C5 | 1.5 (14) |
C3—C2—C1—N1 | 1.6 (13) | C2—C3—C4—C5 | −179.4 (9) |
I1—C2—C1—N1 | −174.7 (6) | C4—C5—C6—C7 | −1.6 (18) |
C3—C2—C1—C14 | −180.0 (10) | C8—C7—C6—C5 | 2.2 (17) |
I1—C2—C1—C14 | 3.7 (14) | C11—C12—C13—O1 | 179.7 (12) |
C9—N1—C1—C2 | 0.1 (11) | C11—C12—C13—N2 | 1.7 (11) |
C9—N1—C1—C14 | −178.5 (9) | C19—C14—C15—C16 | 1.0 (16) |
C19—C14—C1—C2 | −126.3 (10) | C1—C14—C15—C16 | 175.4 (10) |
C15—C14—C1—C2 | 59.3 (15) | C18—C17—C16—C15 | −1.3 (18) |
C19—C14—C1—N1 | 52.2 (14) | C14—C15—C16—C17 | 1.1 (16) |
C15—C14—C1—N1 | −122.1 (9) | C16—C17—C18—C19 | −0.6 (19) |
C1—N1—C9—N2 | −179.1 (7) | C14—C19—C18—C17 | 2.7 (17) |
C1—N1—C9—C8 | −2.0 (12) | C13—C12—C11—C10 | −2.1 (12) |
C1—C2—C3—C4 | 179.3 (8) | N1—C9—N2—C10 | 101.4 (10) |
I1—C2—C3—C4 | −4.2 (11) | C8—C9—N2—C10 | −75.8 (12) |
C1—C2—C3—C8 | −1.5 (12) | N1—C9—N2—C13 | −78.1 (11) |
I1—C2—C3—C8 | 174.9 (6) | C8—C9—N2—C13 | 104.7 (10) |
N1—C9—C8—C7 | −178.2 (8) | O1—C13—N2—C9 | 0.8 (16) |
N2—C9—C8—C7 | −1.3 (13) | C12—C13—N2—C9 | 178.8 (8) |
N1—C9—C8—C3 | 1.9 (12) | O1—C13—N2—C10 | −178.7 (11) |
N2—C9—C8—C3 | 178.8 (7) | C12—C13—N2—C10 | −0.6 (12) |
C4—C3—C8—C9 | 179.1 (8) | C9—N2—C10—O2 | −0.3 (16) |
C2—C3—C8—C9 | −0.1 (11) | C13—N2—C10—O2 | 179.1 (10) |
C4—C3—C8—C7 | −0.8 (12) | C9—N2—C10—C11 | 179.8 (9) |
C2—C3—C8—C7 | −180.0 (8) | C13—N2—C10—C11 | −0.8 (12) |
C9—C8—C7—C6 | 179.1 (9) | C12—C11—C10—O2 | −178.1 (11) |
C3—C8—C7—C6 | −1.0 (14) | C12—C11—C10—N2 | 1.8 (12) |
Experimental details
Crystal data | |
Chemical formula | C19H13IN2O2 |
Mr | 428.21 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 294 |
a, b, c (Å) | 8.874 (3), 8.365 (3), 11.292 (4) |
β (°) | 100.494 (3) |
V (Å3) | 824.1 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.96 |
Crystal size (mm) | 0.39 × 0.32 × 0.21 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.516, 0.684 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5068, 2880, 2722 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.154, 1.14 |
No. of reflections | 2880 |
No. of parameters | 217 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.92, −0.85 |
Absolute structure | Flack (1983), 1229 Friedel pairs |
Absolute structure parameter | 0.41 (5) |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
This work was supported by the Doctoral Foundation of Luoyang Normal University.
References
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Durola, F., Sauvage, J. P. & Wenger, O. S. (2006). Chem. Commun. pp. 171–173. Web of Science CSD CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kletsas, D., Li, W., Han, Z. & Papadopoulos, V. (2004). Biochem. Pharmacol. 67, 1927–1932. Web of Science CrossRef PubMed CAS Google Scholar
Mach, U. R., Hackling, A. E., Perachon, S., Ferry, S., Wermuth, C. G., Schwartz, J. C., Sokoloff, P. & Stark, H. (2004). ChemBioChem, 5, 508–518. Web of Science CrossRef PubMed CAS Google Scholar
Pandy, G. & Balakrishnan, M. (2008). J. Org. Chem. 73, 8128–8131. Web of Science PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The isoquinoline derivatives play an important role in organic chemistry, not only as key structural units in many natural products (Kletsas et al., 2004), but also as building blocks in important pharmaceuticals (Mach et al., 2004). Isoquinoline species are also utilized as chiral ligands for transition metal catalysts (Durola et al., 2006), and their iridium complexes are used in organic light-emitting diodes (Tsuboyama et al., 2003). For these reasons, the efficient synthesis of isoquinoline ring system continues to attract the interest of synthetic chemists (Pandy et al., 2008). In this context, we report the synthesis of the title compound.
The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges. The isoquinoline ring makes dihedral angles of 55.92 (3)° and 76.11 (3)° with the benzene and succinimide rings, respectively. The dihedral angle between the benzene and succinimide ring is 70.37 (3)°. In the crystal structure, the iodo atom deviates from the isoquinoline plane by 0.163 (1)° and the crystal is a racemic twin with a domain ratio of 0.41 (5):0.59 (5).