organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Iodo-3-phenyl­isoquinolin-1-yl)pyrrolidine-2,5-dione

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: wjfu@lynu.edu.cn

(Received 27 September 2009; accepted 14 October 2009; online 23 October 2009)

In the title compound, C19H13IN2O2, the isoquinoline ring makes dihedral angles of 55.92 (3)° and 76.11 (3)° with the benzene and succinimide rings, respectively. The dihedral angle between the benzene and succinimide rings is 70.37 (3)°. In the crystal structure, the iodo atom deviates from the isoquinoline plane by 0.163 (1) Å. The crystal studied was found to be a racemic twin with a domain ratio of 0.41 (5):0.59 (5).

Related literature

For the synthesis of isoquinoline rings, see: Pandy et al. (2008[Pandy, G. & Balakrishnan, M. (2008). J. Org. Chem. 73, 8128-8131.]). For the biological activity of isoquinolines and derivatives, see: Kletsas et al. (2004[Kletsas, D., Li, W., Han, Z. & Papadopoulos, V. (2004). Biochem. Pharmacol. 67, 1927-1932.]); Mach et al. (2004[Mach, U. R., Hackling, A. E., Perachon, S., Ferry, S., Wermuth, C. G., Schwartz, J. C., Sokoloff, P. & Stark, H. (2004). ChemBioChem, 5, 508-518.]). For the synthesis of sterically non-hindering endocyclic ligands of the bi-isoquin­oline family and an example X-ray structure of an octa­hedral tris-chelate iron(II) complex, see: Durola et al. (2006[Durola, F., Sauvage, J. P. & Wenger, O. S. (2006). Chem. Commun. pp. 171-173.]). For red phospho­rescence of iridium complexes with isoquinolines and derivatives, see: Tsuboyama et al. (2003[Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971-12979.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13IN2O2

  • Mr = 428.21

  • Monoclinic, P 21

  • a = 8.874 (3) Å

  • b = 8.365 (3) Å

  • c = 11.292 (4) Å

  • β = 100.494 (3)°

  • V = 824.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 294 K

  • 0.39 × 0.32 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.516, Tmax = 0.684

  • 5068 measured reflections

  • 2880 independent reflections

  • 2722 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.154

  • S = 1.14

  • 2880 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.92 e Å−3

  • Δρmin = −0.85 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1229 Friedel pairs

  • Flack parameter: 0.41 (5)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The isoquinoline derivatives play an important role in organic chemistry, not only as key structural units in many natural products (Kletsas et al., 2004), but also as building blocks in important pharmaceuticals (Mach et al., 2004). Isoquinoline species are also utilized as chiral ligands for transition metal catalysts (Durola et al., 2006), and their iridium complexes are used in organic light-emitting diodes (Tsuboyama et al., 2003). For these reasons, the efficient synthesis of isoquinoline ring system continues to attract the interest of synthetic chemists (Pandy et al., 2008). In this context, we report the synthesis of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges. The isoquinoline ring makes dihedral angles of 55.92 (3)° and 76.11 (3)° with the benzene and succinimide rings, respectively. The dihedral angle between the benzene and succinimide ring is 70.37 (3)°. In the crystal structure, the iodo atom deviates from the isoquinoline plane by 0.163 (1)° and the crystal is a racemic twin with a domain ratio of 0.41 (5):0.59 (5).

Related literature top

For the synthesis of isoquinoline rings, see: Pandy et al. (2008). For the biological activity of isoquinolines and derivatives, see: Kletsas et al. (2004); Mach et al. (2004). For the synthesis of sterically non-hindering endocyclic ligands of the bi-isoquinoline family and an example X-ray structure of an octahedral tris-chelate iron(II) complex, see: Durola et al. (2006). For red phosphorescence of iridium complexes with isoquinolines and derivatives, see: Tsuboyama et al. (2003).

Experimental top

To a solution of (E)-2-(2-phenylethynyl)benzaldehyde O-acetyl oxime (0.5 mmol) in dry CH2Cl2 was added N-Iodosuccinimide (0.6 mmol). The mixture was stirred for 12 h at room temperature. After evaporation of the solvent, the residue was purified by column chromatography on silica gel to afford the title compound as a colorless solid (yield 90%). The title compound was recrystallized from CH2Cl2 at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH) or 0.97 Å (methylene CH2), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methylene C). The number of Friedel pairs measured were 1229.

Structure description top

The isoquinoline derivatives play an important role in organic chemistry, not only as key structural units in many natural products (Kletsas et al., 2004), but also as building blocks in important pharmaceuticals (Mach et al., 2004). Isoquinoline species are also utilized as chiral ligands for transition metal catalysts (Durola et al., 2006), and their iridium complexes are used in organic light-emitting diodes (Tsuboyama et al., 2003). For these reasons, the efficient synthesis of isoquinoline ring system continues to attract the interest of synthetic chemists (Pandy et al., 2008). In this context, we report the synthesis of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges. The isoquinoline ring makes dihedral angles of 55.92 (3)° and 76.11 (3)° with the benzene and succinimide rings, respectively. The dihedral angle between the benzene and succinimide ring is 70.37 (3)°. In the crystal structure, the iodo atom deviates from the isoquinoline plane by 0.163 (1)° and the crystal is a racemic twin with a domain ratio of 0.41 (5):0.59 (5).

For the synthesis of isoquinoline rings, see: Pandy et al. (2008). For the biological activity of isoquinolines and derivatives, see: Kletsas et al. (2004); Mach et al. (2004). For the synthesis of sterically non-hindering endocyclic ligands of the bi-isoquinoline family and an example X-ray structure of an octahedral tris-chelate iron(II) complex, see: Durola et al. (2006). For red phosphorescence of iridium complexes with isoquinolines and derivatives, see: Tsuboyama et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.
1-(4-Iodo-3-phenylisoquinolin-1-yl)pyrrolidine-2,5-dione top
Crystal data top
C19H13IN2O2F(000) = 420
Mr = 428.21Dx = 1.726 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.874 (3) ÅCell parameters from 3132 reflections
b = 8.365 (3) Åθ = 2.3–27.9°
c = 11.292 (4) ŵ = 1.96 mm1
β = 100.494 (3)°T = 294 K
V = 824.1 (4) Å3Block, colourless
Z = 20.39 × 0.32 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2880 independent reflections
Radiation source: fine-focus sealed tube2722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.516, Tmax = 0.684k = 910
5068 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0688P)2 + 3.9331P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2880 reflectionsΔρmax = 1.92 e Å3
217 parametersΔρmin = 0.85 e Å3
1 restraintAbsolute structure: Flack (1983), 1229 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.41 (5)
Crystal data top
C19H13IN2O2V = 824.1 (4) Å3
Mr = 428.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.874 (3) ŵ = 1.96 mm1
b = 8.365 (3) ÅT = 294 K
c = 11.292 (4) Å0.39 × 0.32 × 0.21 mm
β = 100.494 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2880 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2722 reflections with I > 2σ(I)
Tmin = 0.516, Tmax = 0.684Rint = 0.021
5068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.154Δρmax = 1.92 e Å3
S = 1.14Δρmin = 0.85 e Å3
2880 reflectionsAbsolute structure: Flack (1983), 1229 Friedel pairs
217 parametersAbsolute structure parameter: 0.41 (5)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.46281 (6)0.81542 (14)0.63285 (5)0.0606 (3)
C190.9127 (11)0.9063 (12)0.5388 (8)0.042 (2)
H190.90140.98040.47640.051*
C171.0667 (9)0.803 (3)0.7186 (8)0.059 (3)
H171.15480.80820.77740.071*
C120.7415 (11)0.827 (2)0.0459 (8)0.050 (2)
H12A0.84990.84530.04370.060*
H12B0.68320.88180.11500.060*
C20.5181 (10)0.7804 (11)0.4622 (7)0.039 (2)
C140.8040 (9)0.794 (2)0.5427 (7)0.045 (3)
N10.7039 (8)0.7695 (8)0.3323 (6)0.0352 (17)
C10.6664 (10)0.7796 (9)0.4443 (7)0.035 (2)
C90.5916 (10)0.7606 (9)0.2384 (8)0.0354 (19)
C30.3933 (10)0.7661 (9)0.3598 (8)0.0339 (19)
C80.4349 (10)0.7559 (10)0.2450 (7)0.0347 (18)
C70.3209 (11)0.7417 (13)0.1405 (9)0.048 (2)
H70.34740.73670.06460.058*
C50.1268 (12)0.7485 (14)0.2662 (13)0.062 (3)
H50.02400.74670.27320.074*
C40.2361 (11)0.7637 (11)0.3664 (11)0.051 (3)
H40.20680.77280.44110.061*
C60.1664 (13)0.7355 (14)0.1537 (10)0.052 (2)
H60.09010.72250.08610.062*
C130.6947 (13)0.8815 (13)0.0688 (9)0.045 (2)
C150.8281 (12)0.6798 (14)0.6350 (9)0.048 (2)
H150.75520.60070.63820.058*
C160.9609 (12)0.6848 (15)0.7222 (9)0.051 (3)
H160.97770.60800.78280.061*
C181.0422 (11)0.9091 (19)0.6304 (10)0.066 (4)
H181.11440.98940.62930.079*
C110.7047 (17)0.6458 (13)0.0504 (10)0.059 (3)
H11A0.62810.62130.12090.071*
H11B0.79630.58440.05440.071*
O10.7041 (11)1.0138 (10)0.1076 (7)0.061 (2)
O20.6070 (9)0.4793 (8)0.0963 (7)0.0532 (17)
N20.6411 (10)0.7481 (10)0.1276 (8)0.0408 (17)
C100.6446 (12)0.6047 (13)0.0635 (9)0.041 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0499 (3)0.0991 (6)0.0354 (3)0.0116 (5)0.0148 (2)0.0016 (5)
C190.047 (5)0.050 (5)0.029 (5)0.002 (4)0.002 (4)0.005 (4)
C170.033 (4)0.098 (9)0.040 (5)0.021 (8)0.006 (3)0.006 (8)
C120.059 (5)0.055 (6)0.038 (4)0.006 (7)0.013 (4)0.001 (7)
C20.042 (4)0.049 (7)0.025 (4)0.001 (4)0.005 (3)0.008 (4)
C140.034 (4)0.075 (9)0.030 (4)0.008 (5)0.012 (3)0.008 (6)
N10.041 (4)0.034 (4)0.031 (3)0.001 (3)0.009 (3)0.002 (3)
C10.041 (4)0.033 (6)0.029 (4)0.000 (3)0.003 (3)0.000 (3)
C90.048 (5)0.027 (4)0.033 (4)0.001 (3)0.011 (4)0.003 (3)
C30.044 (4)0.025 (5)0.033 (4)0.001 (3)0.006 (3)0.001 (3)
C80.048 (5)0.028 (4)0.026 (4)0.003 (3)0.000 (3)0.000 (3)
C70.044 (5)0.055 (5)0.038 (5)0.003 (4)0.011 (4)0.018 (4)
C50.035 (5)0.054 (6)0.095 (9)0.005 (4)0.008 (5)0.003 (6)
C40.042 (5)0.048 (6)0.062 (6)0.001 (4)0.010 (5)0.005 (4)
C60.051 (6)0.060 (6)0.040 (5)0.003 (5)0.003 (4)0.007 (5)
C130.063 (6)0.045 (6)0.026 (4)0.010 (4)0.004 (4)0.010 (4)
C150.044 (5)0.063 (6)0.037 (5)0.002 (4)0.006 (4)0.000 (5)
C160.044 (5)0.077 (7)0.028 (5)0.007 (5)0.002 (4)0.008 (5)
C180.028 (5)0.128 (11)0.040 (6)0.016 (5)0.003 (4)0.010 (6)
C110.098 (9)0.053 (7)0.032 (5)0.006 (6)0.022 (6)0.005 (4)
O10.098 (7)0.050 (5)0.030 (4)0.017 (4)0.001 (4)0.007 (3)
O20.080 (5)0.035 (4)0.047 (4)0.000 (3)0.017 (4)0.002 (3)
N20.049 (4)0.040 (4)0.032 (4)0.003 (3)0.004 (3)0.004 (3)
C100.049 (6)0.049 (6)0.022 (5)0.006 (4)0.003 (4)0.012 (4)
Geometric parameters (Å, º) top
I1—C22.093 (8)C3—C81.414 (12)
C19—C141.355 (17)C8—C71.412 (12)
C19—C181.399 (14)C7—C61.407 (16)
C19—H190.9300C7—H70.9300
C17—C181.32 (2)C5—C41.355 (16)
C17—C161.37 (2)C5—C61.383 (17)
C17—H170.9300C5—H50.9300
C12—C131.502 (14)C4—H40.9300
C12—C111.548 (19)C6—H60.9300
C12—H12A0.9700C13—O11.188 (13)
C12—H12B0.9700C13—N21.424 (12)
C2—C11.368 (12)C15—C161.392 (13)
C2—C31.453 (12)C15—H150.9300
C14—C151.399 (17)C16—H160.9300
C14—C11.498 (11)C18—H180.9300
N1—C91.318 (12)C11—C101.519 (15)
N1—C11.368 (11)C11—H11A0.9700
C9—N21.402 (12)C11—H11B0.9700
C9—C81.407 (13)O2—C101.181 (13)
C3—C41.411 (13)N2—C101.404 (13)
C14—C19—C18118.8 (10)C4—C5—C6120.7 (10)
C14—C19—H19120.6C4—C5—H5119.6
C18—C19—H19120.6C6—C5—H5119.6
C18—C17—C16119.2 (9)C5—C4—C3121.5 (11)
C18—C17—H17120.4C5—C4—H4119.3
C16—C17—H17120.4C3—C4—H4119.3
C13—C12—C11103.7 (9)C5—C6—C7120.7 (10)
C13—C12—H12A111.0C5—C6—H6119.7
C11—C12—H12A111.0C7—C6—H6119.7
C13—C12—H12B111.0O1—C13—N2124.4 (9)
C11—C12—H12B111.0O1—C13—C12126.1 (10)
H12A—C12—H12B109.0N2—C13—C12109.4 (10)
C1—C2—C3119.8 (8)C16—C15—C14120.1 (10)
C1—C2—I1122.0 (6)C16—C15—H15120.0
C3—C2—I1118.1 (6)C14—C15—H15120.0
C19—C14—C15119.0 (8)C17—C16—C15119.9 (10)
C19—C14—C1121.2 (10)C17—C16—H16120.1
C15—C14—C1119.5 (11)C15—C16—H16120.1
C9—N1—C1118.2 (7)C17—C18—C19123.1 (13)
C2—C1—N1122.6 (8)C17—C18—H18118.5
C2—C1—C14124.5 (8)C19—C18—H18118.5
N1—C1—C14112.9 (7)C10—C11—C12107.3 (8)
N1—C9—N2114.1 (8)C10—C11—H11A110.2
N1—C9—C8124.6 (8)C12—C11—H11A110.2
N2—C9—C8121.2 (8)C10—C11—H11B110.2
C4—C3—C8118.2 (9)C12—C11—H11B110.2
C4—C3—C2125.3 (9)H11A—C11—H11B108.5
C8—C3—C2116.5 (8)C9—N2—C10124.3 (8)
C9—C8—C7121.5 (9)C9—N2—C13122.9 (8)
C9—C8—C3118.2 (8)C10—N2—C13112.8 (8)
C7—C8—C3120.3 (9)O2—C10—N2124.3 (10)
C6—C7—C8118.6 (10)O2—C10—C11129.0 (9)
C6—C7—H7120.7N2—C10—C11106.7 (9)
C8—C7—H7120.7
C18—C19—C14—C152.8 (16)C6—C5—C4—C30.3 (16)
C18—C19—C14—C1177.1 (10)C8—C3—C4—C51.5 (14)
C3—C2—C1—N11.6 (13)C2—C3—C4—C5179.4 (9)
I1—C2—C1—N1174.7 (6)C4—C5—C6—C71.6 (18)
C3—C2—C1—C14180.0 (10)C8—C7—C6—C52.2 (17)
I1—C2—C1—C143.7 (14)C11—C12—C13—O1179.7 (12)
C9—N1—C1—C20.1 (11)C11—C12—C13—N21.7 (11)
C9—N1—C1—C14178.5 (9)C19—C14—C15—C161.0 (16)
C19—C14—C1—C2126.3 (10)C1—C14—C15—C16175.4 (10)
C15—C14—C1—C259.3 (15)C18—C17—C16—C151.3 (18)
C19—C14—C1—N152.2 (14)C14—C15—C16—C171.1 (16)
C15—C14—C1—N1122.1 (9)C16—C17—C18—C190.6 (19)
C1—N1—C9—N2179.1 (7)C14—C19—C18—C172.7 (17)
C1—N1—C9—C82.0 (12)C13—C12—C11—C102.1 (12)
C1—C2—C3—C4179.3 (8)N1—C9—N2—C10101.4 (10)
I1—C2—C3—C44.2 (11)C8—C9—N2—C1075.8 (12)
C1—C2—C3—C81.5 (12)N1—C9—N2—C1378.1 (11)
I1—C2—C3—C8174.9 (6)C8—C9—N2—C13104.7 (10)
N1—C9—C8—C7178.2 (8)O1—C13—N2—C90.8 (16)
N2—C9—C8—C71.3 (13)C12—C13—N2—C9178.8 (8)
N1—C9—C8—C31.9 (12)O1—C13—N2—C10178.7 (11)
N2—C9—C8—C3178.8 (7)C12—C13—N2—C100.6 (12)
C4—C3—C8—C9179.1 (8)C9—N2—C10—O20.3 (16)
C2—C3—C8—C90.1 (11)C13—N2—C10—O2179.1 (10)
C4—C3—C8—C70.8 (12)C9—N2—C10—C11179.8 (9)
C2—C3—C8—C7180.0 (8)C13—N2—C10—C110.8 (12)
C9—C8—C7—C6179.1 (9)C12—C11—C10—O2178.1 (11)
C3—C8—C7—C61.0 (14)C12—C11—C10—N21.8 (12)

Experimental details

Crystal data
Chemical formulaC19H13IN2O2
Mr428.21
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)8.874 (3), 8.365 (3), 11.292 (4)
β (°) 100.494 (3)
V3)824.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.39 × 0.32 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.516, 0.684
No. of measured, independent and
observed [I > 2σ(I)] reflections
5068, 2880, 2722
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.154, 1.14
No. of reflections2880
No. of parameters217
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.92, 0.85
Absolute structureFlack (1983), 1229 Friedel pairs
Absolute structure parameter0.41 (5)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the Doctoral Foundation of Luoyang Normal University.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDurola, F., Sauvage, J. P. & Wenger, O. S. (2006). Chem. Commun. pp. 171–173.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKletsas, D., Li, W., Han, Z. & Papadopoulos, V. (2004). Biochem. Pharmacol. 67, 1927–1932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMach, U. R., Hackling, A. E., Perachon, S., Ferry, S., Wermuth, C. G., Schwartz, J. C., Sokoloff, P. & Stark, H. (2004). ChemBioChem, 5, 508–518.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPandy, G. & Balakrishnan, M. (2008). J. Org. Chem. 73, 8128–8131.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds