organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Amino-1H-tetra­zol-1-yl)formamide

aState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: duzhiming430@sohu.com

(Received 12 October 2009; accepted 23 October 2009; online 28 October 2009)

In the title compound, C2H4N6O, the planar [maximum deviation = 0.006 (2) Å] amino­tetra­zole group makes a dihedral angle of 83.65 (8)° with the formamide unit. In the crystal structure, inter­molecular N—H⋯N, N—H⋯O and C—H⋯N hydrogen bonds are responsible for the formation of a three-dimensional network.

Related literature

For energetic nitro­gen-rich derivatives of 1,5-diamino­tetra­zole, see: Joo et al. (2008[Joo, Y.-H., Twamley, B., Garg, S. & Shreeve, J. M. (2008). Angew. Chem. Int. Ed. 47, 6236-6239.]). For nitro­gen-rich metastable green chemistry compounds, see: Steinhauser et al. (2008[Steinhauser, G. & Klapötke, T. M. (2008). Angew. Chem. Int. Ed. 47, 3330-3347.]). For 1,5-diamino-1H-tetra­zole derivatives, see: Galvez-Ruiz et al. (2005[Galvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237-4253.]). For the structure of N-(1-diacetyl­amino-1H-tetra­zol-5-yl)-acetamide, see: He et al. (2009[He, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009). Acta Cryst. E65, o1902.]).

[Scheme 1]

Experimental

Crystal data
  • C2H4N6O

  • Mr = 128.11

  • Orthorhombic, P n n 2

  • a = 10.232 (10) Å

  • b = 12.054 (12) Å

  • c = 4.208 (4) Å

  • V = 519.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 93 K

  • 0.47 × 0.27 × 0.07 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.940, Tmax = 0.991

  • 3464 measured reflections

  • 659 independent reflections

  • 545 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 1.00

  • 659 reflections

  • 94 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯N1i 0.84 (3) 2.02 (3) 2.851 (4) 168 (3)
N6—H6A⋯O1ii 0.87 (3) 2.54 (3) 2.981 (4) 113 (2)
N6—H6A⋯N3iii 0.87 (3) 2.35 (3) 3.164 (4) 156 (3)
N6—H6B⋯O1iv 0.91 (3) 2.12 (3) 3.006 (4) 167 (2)
C2—H2⋯N2v 0.95 2.53 3.404 (5) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x, y, z+1; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitrogen-containing compounds have received an increasing interest during the last years, these compounds exhibit potential application in gas generator, "green" pyrotechnics and high density energetic materials (Galvez-Ruiz et al., 2005; Steinhauser & Klapötke, 2008; Joo et al., 2008). Rencently, we synthesized a new nitrogen-containing compound, N-(5-amino-1H-tetrazol-1-yl)formamide, which has a nitrogen content of 65.62%. Herein, we report the crystal structure of the title compound.

The molecular structure of the title compound is presented in Fig. 1. The aminotetrazole group is essentially planar and makes a dihedral angle of 83.65 (8)° with the formamide unit. The bond distances and bond angels in the title compound are similar to the corresponding distances and angles reported by He et al. (2009). In the crystal structure, the molecules are linked to each other via intermolecular N—H···N, N—H···O and C—H···N hydrogen bonds (Table 1), forming a three-dimensional network structure.

Related literature top

For energetic nitrogen-rich derivatives of 1,5-diaminotetrazole, see: Joo et al. (2008). For nitrogen-rich metastable green chemistry compounds, see: Steinhauser et al. (2008). For 1,5-diamino-1H-tetrazole derivatives, see: Galvez-Ruiz et al. (2005). For the structure of N-(1-diacetylamino-1H-tetrazole-5-yl)-acetamide, see: He et al. (2009).

Experimental top

Diamino-tetrazole (10 mmol) was dissolved in 10 ml formic acid, 0.3 g sodium formate was added to the above mixture and reacted under refluxing, use TLC to control the reaction process. After cooling, the crude product precipitated and was filtered. The purity of the compound was checked by its melting point. 1H-NMR (DMSO—d6, 400 MHz): 11.71(1H,s), 8.34(1H,s), 7.02(2H, s); MS (EI,70 eV) m/z:128(M+). 70 mg of the obtained product was dissolved in the mixture solution of methanol (20 ml) and acetone (10 ml) and the solution was kept at room temperature to give suitable crystals for X-ray structure determination.

Refinement top

Amino H atoms were located in a difference Fourier maps and were refined isotropically. Other H-atoms were placed in calculated positions with C—H = 0.98 Å, and refined in riding mode with Uiso(H) = 1.2Ueq (C).

In the absence of significant anomalous dispersion effects, the Friedel pairs were averaged.

Structure description top

Nitrogen-containing compounds have received an increasing interest during the last years, these compounds exhibit potential application in gas generator, "green" pyrotechnics and high density energetic materials (Galvez-Ruiz et al., 2005; Steinhauser & Klapötke, 2008; Joo et al., 2008). Rencently, we synthesized a new nitrogen-containing compound, N-(5-amino-1H-tetrazol-1-yl)formamide, which has a nitrogen content of 65.62%. Herein, we report the crystal structure of the title compound.

The molecular structure of the title compound is presented in Fig. 1. The aminotetrazole group is essentially planar and makes a dihedral angle of 83.65 (8)° with the formamide unit. The bond distances and bond angels in the title compound are similar to the corresponding distances and angles reported by He et al. (2009). In the crystal structure, the molecules are linked to each other via intermolecular N—H···N, N—H···O and C—H···N hydrogen bonds (Table 1), forming a three-dimensional network structure.

For energetic nitrogen-rich derivatives of 1,5-diaminotetrazole, see: Joo et al. (2008). For nitrogen-rich metastable green chemistry compounds, see: Steinhauser et al. (2008). For 1,5-diamino-1H-tetrazole derivatives, see: Galvez-Ruiz et al. (2005). For the structure of N-(1-diacetylamino-1H-tetrazole-5-yl)-acetamide, see: He et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-(5-Amino-1H-tetrazol-1-yl)formamide top
Crystal data top
C2H4N6OF(000) = 264
Mr = 128.11Dx = 1.639 Mg m3
Orthorhombic, Pnn2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 -2nCell parameters from 1548 reflections
a = 10.232 (10) Åθ = 3.4–27.2°
b = 12.054 (12) ŵ = 0.14 mm1
c = 4.208 (4) ÅT = 93 K
V = 519.1 (9) Å3Platelet, colorless
Z = 40.47 × 0.27 × 0.07 mm
Data collection top
Rigaku Saturn724+
diffractometer
659 independent reflections
Radiation source: Rotating Anode545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 28.5714 pixels mm-1θmax = 27.3°, θmin = 3.4°
multi–scanh = 1312
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1514
Tmin = 0.940, Tmax = 0.991l = 55
3464 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0522P)2]
where P = (Fo2 + 2Fc2)/3
659 reflections(Δ/σ)max < 0.001
94 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C2H4N6OV = 519.1 (9) Å3
Mr = 128.11Z = 4
Orthorhombic, Pnn2Mo Kα radiation
a = 10.232 (10) ŵ = 0.14 mm1
b = 12.054 (12) ÅT = 93 K
c = 4.208 (4) Å0.47 × 0.27 × 0.07 mm
Data collection top
Rigaku Saturn724+
diffractometer
659 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
545 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.991Rint = 0.051
3464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.22 e Å3
659 reflectionsΔρmin = 0.19 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32520 (17)0.52017 (15)0.4700 (5)0.0250 (5)
N10.53348 (19)0.80213 (18)0.7377 (6)0.0200 (5)
N20.4393 (2)0.85281 (17)0.5557 (6)0.0219 (5)
N30.3276 (2)0.80311 (18)0.5797 (6)0.0213 (5)
N40.34795 (18)0.71697 (17)0.7884 (6)0.0177 (5)
N50.2526 (2)0.6400 (2)0.8533 (6)0.0189 (5)
N60.5250 (2)0.64294 (19)1.0818 (6)0.0210 (5)
C10.4751 (2)0.7167 (2)0.8815 (6)0.0178 (6)
C20.2470 (2)0.5459 (2)0.6773 (7)0.0203 (6)
H20.17690.49610.71800.024*
H5N0.196 (3)0.661 (2)0.986 (9)0.028 (8)*
H6A0.607 (3)0.645 (2)1.134 (8)0.043 (10)*
H6B0.473 (3)0.596 (2)1.192 (8)0.028 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (11)0.0284 (10)0.0259 (11)0.0004 (8)0.0050 (9)0.0016 (9)
N10.0113 (10)0.0261 (12)0.0226 (13)0.0013 (8)0.0011 (10)0.0021 (11)
N20.0133 (10)0.0263 (12)0.0262 (14)0.0021 (9)0.0010 (11)0.0016 (11)
N30.0137 (11)0.0257 (11)0.0247 (13)0.0006 (8)0.0006 (10)0.0051 (11)
N40.0093 (10)0.0220 (11)0.0216 (12)0.0009 (8)0.0009 (10)0.0012 (10)
N50.0090 (10)0.0269 (12)0.0209 (13)0.0011 (8)0.0050 (9)0.0021 (10)
N60.0116 (10)0.0265 (12)0.0250 (14)0.0001 (9)0.0023 (10)0.0025 (11)
C10.0107 (11)0.0229 (13)0.0198 (15)0.0027 (9)0.0004 (11)0.0028 (11)
C20.0143 (12)0.0233 (15)0.0232 (13)0.0014 (10)0.0013 (11)0.0058 (13)
Geometric parameters (Å, º) top
O1—C21.224 (3)N5—C21.356 (4)
N1—C11.335 (3)N5—H5N0.84 (4)
N1—N21.374 (3)N6—C11.328 (4)
N2—N31.294 (3)N6—H6A0.87 (4)
N3—N41.376 (3)N6—H6B0.90 (3)
N4—C11.359 (3)C2—H20.9500
N4—N51.374 (3)
C1—N1—N2106.4 (2)C1—N6—H6A121 (2)
N3—N2—N1111.7 (2)C1—N6—H6B121 (2)
N2—N3—N4105.4 (2)H6A—N6—H6B117 (3)
C1—N4—N5128.4 (2)N6—C1—N1129.2 (2)
C1—N4—N3109.3 (2)N6—C1—N4123.6 (2)
N5—N4—N3122.0 (2)N1—C1—N4107.2 (2)
C2—N5—N4119.1 (2)O1—C2—N5125.0 (2)
C2—N5—H5N126.0 (19)O1—C2—H2117.5
N4—N5—H5N114.4 (19)N5—C2—H2117.5
C1—N1—N2—N30.2 (3)N2—N1—C1—N40.4 (3)
N1—N2—N3—N40.7 (3)N5—N4—C1—N66.3 (4)
N2—N3—N4—C11.0 (3)N3—N4—C1—N6179.7 (2)
N2—N3—N4—N5174.8 (2)N5—N4—C1—N1174.2 (3)
C1—N4—N5—C281.1 (3)N3—N4—C1—N10.9 (3)
N3—N4—N5—C291.4 (3)N4—N5—C2—O13.8 (4)
N2—N1—C1—N6179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···N1i0.84 (3)2.02 (3)2.851 (4)168 (3)
N6—H6A···O1ii0.87 (3)2.54 (3)2.981 (4)113 (2)
N6—H6A···N3iii0.87 (3)2.35 (3)3.164 (4)156 (3)
N6—H6B···O1iv0.91 (3)2.12 (3)3.006 (4)167 (2)
C2—H2···N2v0.952.533.404 (5)152
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y, z+1; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC2H4N6O
Mr128.11
Crystal system, space groupOrthorhombic, Pnn2
Temperature (K)93
a, b, c (Å)10.232 (10), 12.054 (12), 4.208 (4)
V3)519.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.47 × 0.27 × 0.07
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.940, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3464, 659, 545
Rint0.051
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.00
No. of reflections659
No. of parameters94
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···N1i0.84 (3)2.02 (3)2.851 (4)168 (3)
N6—H6A···O1ii0.87 (3)2.54 (3)2.981 (4)113 (2)
N6—H6A···N3iii0.87 (3)2.35 (3)3.164 (4)156 (3)
N6—H6B···O1iv0.91 (3)2.12 (3)3.006 (4)167 (2)
C2—H2···N2v0.95002.53003.404 (5)152.00
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y, z+1; (v) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the State Key Laboratory of Explosion Science and Technology of Beijing Institute of Technology, China (No. ZDKT08–01).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237–4253.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHe, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009). Acta Cryst. E65, o1902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJoo, Y.-H., Twamley, B., Garg, S. & Shreeve, J. M. (2008). Angew. Chem. Int. Ed. 47, 6236–6239.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinhauser, G. & Klapötke, T. M. (2008). Angew. Chem. Int. Ed. 47, 3330–3347.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds