organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl 2-ethyl­hexyl sulfoxide

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bDepartment of Chemistry, South China University of Technology, Guangzhou 510641, People's Republic of China
*Correspondence e-mail: chzgxu@scnu.edu.cn

(Received 15 October 2009; accepted 25 October 2009; online 31 October 2009)

The mol­ecule of the title compound, C15H24OS, shows S conformations for the S atom and the asymmetric C atom of the isooctyl group. The long axes of the mol­ecules are directed along the c axis. In the crystal structure, the mol­ecules are linked by weak inter­molecular bifurcated C—H⋯O hydrogen bonds.

Related literature

For an X-ray and neutron diffraction study of benzyl tert-butyl sulfoxide, see: Iitaka et al. (1986[Iitaka, Y., Itai, A., Tomioka, N., Kodama, Y., Ichikawa, K., Nishihata, K., Nishio, M., Izumi, M. & Doi, K. (1986). Bull. Chem. Soc. Jpn, 59, 2801-2806.]). For an X-ray study of a flexible disulfoxide ligand, 1,6-bis­(benzyl­sulfin­yl)hexane, see: Li et al., (2003[Li, J. R., Du, M., Bu, X. H. & Zhang, R. H. (2003). J. Solid State Chem. 173, 20-26.]); For the use of sulfoxides in the separation of palladium from other platinum-group metals by solvent extraction, see: Xu et al. (2006[Xu, Z. G., Gu, G. B., Liu, H. Y., Jiang, H. F. & Chang, C. K. (2006). Chin. J. Struct. Chem. 25, 1524-1530.], 2007[Xu, Z. G., Yu, R. N., Gu, G. B. & Chen, Z. H. (2007). Precious Met. 28, 6-9.]).

[Scheme 1]

Experimental

Crystal data
  • C15H24OS

  • Mr = 252.41

  • Monoclinic, P 21

  • a = 8.832 (2) Å

  • b = 5.2321 (14) Å

  • c = 16.588 (4) Å

  • β = 102.005 (3)°

  • V = 749.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 273 K

  • 0.26 × 0.22 × 0.15 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.970

  • 4539 measured reflections

  • 3119 independent reflections

  • 2527 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.095

  • S = 1.06

  • 3119 reflections

  • 156 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1074 Friedel pairs

  • Flack parameter: −0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.39 3.258 (3) 149
C1—H1B⋯O1i 0.97 2.49 3.333 (3) 145
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfoxides have been widely used in the separation of palladium from other platinum-group metals(PGMs) by solvent extraction (Xu et al., 2006). The experimental results indicated that the title compound exhibited excellent extraction property to PGMs (Xu et al.,2007). A similar disulfoxide ligand 1,6-bis(benzylsulfinyl)hexane and its Copper(II) and Cadmium(II) dimeric complexes were obtained (Li et al.,2003).

The stucture of the title compound, (I), Fig.1, exhibit the S conformation for the sulfur atom and asymmetric carbon atom of the isooctyl group. The long axes of the molecules are directed along the c axis. Additionally, the crystal structure exhibits weak intermolecular bifurcated C—H···O hydrogen bonds (for geometric details see Table 1).

Related literature top

For an X-ray and neutron diffraction study of benzyl tert-butyl sulfoxide, see: Iitaka et al. (1986). For an X-ray study of a flexible disulfoxide ligand, 1,6-bis(benzylsulfinyl)hexane, see: Li et al., (2003); For the use of sulfoxides in the separation of palladium from other platinum-group metals by solvent extraction, see: Xu et al. (2006, 2007).

Experimental top

The title compound was prepared refering to the literature method (Li et al.,2003; Iitaka et al., 1986) with little modification. Sodium hydroxide (99%, 0.273 g, 0.0068 mol) and 1-isooctyl mercaptan (1.000 g, 0.0068 mol) were dissolved in anhydrous ethanol (50 ml) at 70°C, and then benzylchloride (0.86 g, 0.0068 mol) was added to the above solution with stirring over 1 h. The solution was extracted with CH2Cl2 after addition 400 ml of water. Benzyl isooctyl sulfide(1.412 g, 0.0060 mol) was obtained after evaporation of CH2Cl2. Yield: 87%. Hydrogen peroxide (30%, 0.0043 mol) was added dropwise to a solution of benzyl isooctyl sulfide (1.000 g, 0.0042 mol) in acetic acid (60 ml) on ice bath with a vigorously stir for 1 h. 500 ml of water was added. The solution was extracted with CH2Cl2, and the product of benzyl isooctyl sulfoxide(0.943 g, 0.0037 mol) was obtained after evaporation of CH2Cl2. Yield: 88%. It was characterized by recording its infrared and NMR spectra. White single crystals of the title compound were obtained by slow evaporation of its mixed solution including n-hexane and dichloromethane.

Refinement top

All H atoms were placed in calculated positions and subsequently constrained to ride on their parent atoms, with C–H distances of 0.93 Å (C-aromatic) and 0.97 Å (C-methyl). The Uiso(H) values were set at 1.2 Ueq(C aromatic) and 1.5 Ueq(C methyl).

Structure description top

Sulfoxides have been widely used in the separation of palladium from other platinum-group metals(PGMs) by solvent extraction (Xu et al., 2006). The experimental results indicated that the title compound exhibited excellent extraction property to PGMs (Xu et al.,2007). A similar disulfoxide ligand 1,6-bis(benzylsulfinyl)hexane and its Copper(II) and Cadmium(II) dimeric complexes were obtained (Li et al.,2003).

The stucture of the title compound, (I), Fig.1, exhibit the S conformation for the sulfur atom and asymmetric carbon atom of the isooctyl group. The long axes of the molecules are directed along the c axis. Additionally, the crystal structure exhibits weak intermolecular bifurcated C—H···O hydrogen bonds (for geometric details see Table 1).

For an X-ray and neutron diffraction study of benzyl tert-butyl sulfoxide, see: Iitaka et al. (1986). For an X-ray study of a flexible disulfoxide ligand, 1,6-bis(benzylsulfinyl)hexane, see: Li et al., (2003); For the use of sulfoxides in the separation of palladium from other platinum-group metals by solvent extraction, see: Xu et al. (2006, 2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecule structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound as viewed along the b axis.
Benzyl 2-ethylhexyl sulfoxide top
Crystal data top
C15H24OSF(000) = 276
Mr = 252.41Dx = 1.118 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2250 reflections
a = 8.832 (2) Åθ = 2.4–23.4°
b = 5.2321 (14) ŵ = 0.20 mm1
c = 16.588 (4) ÅT = 273 K
β = 102.005 (3)°Block, white
V = 749.8 (3) Å30.26 × 0.22 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
3119 independent reflections
Radiation source: fine-focus sealed tube2527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 711
Tmin = 0.949, Tmax = 0.970k = 66
4539 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.047P)2 + ]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.022
3119 reflectionsΔρmax = 0.15 e Å3
156 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1074 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C15H24OSV = 749.8 (3) Å3
Mr = 252.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.832 (2) ŵ = 0.20 mm1
b = 5.2321 (14) ÅT = 273 K
c = 16.588 (4) Å0.26 × 0.22 × 0.15 mm
β = 102.005 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
3119 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2527 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.970Rint = 0.021
4539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.15 e Å3
S = 1.06Δρmin = 0.15 e Å3
3119 reflectionsAbsolute structure: Flack (1983), 1074 Friedel pairs
156 parametersAbsolute structure parameter: 0.03 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48826 (6)0.23389 (10)0.70138 (3)0.05069 (16)
C10.6639 (3)0.0772 (5)0.68705 (15)0.0621 (6)
H1A0.74350.09450.73670.075*
H1B0.64410.10360.67690.075*
C20.7188 (2)0.1937 (4)0.61568 (12)0.0502 (5)
C30.6676 (3)0.1092 (5)0.53602 (17)0.0714 (7)
H30.59930.02790.52590.086*
C40.7162 (3)0.2252 (7)0.47099 (14)0.0778 (7)
H40.68020.16630.41750.093*
C100.3505 (2)0.0564 (5)0.91695 (12)0.0555 (6)
H10A0.33030.12520.90950.067*
H10B0.45480.07590.94920.067*
C90.3423 (2)0.1786 (4)0.83225 (11)0.0489 (5)
H90.36200.36170.84130.059*
C140.1834 (2)0.1520 (4)0.77427 (13)0.0571 (6)
H14A0.10710.23590.79960.069*
H14B0.18620.24270.72360.069*
C80.4742 (2)0.0711 (5)0.79491 (12)0.0516 (5)
H8A0.45640.10950.78350.062*
H8B0.57120.08840.83450.062*
C50.8165 (3)0.4249 (6)0.48481 (16)0.0722 (8)
H50.84930.50220.44090.087*
C110.2376 (3)0.1677 (5)0.96566 (13)0.0607 (6)
H11A0.25360.35090.97080.073*
H11B0.13270.13870.93540.073*
C70.8196 (3)0.3962 (5)0.62789 (14)0.0640 (6)
H70.85570.45720.68110.077*
C60.8688 (3)0.5117 (6)0.56292 (15)0.0737 (7)
H60.93750.64840.57260.088*
C120.2557 (3)0.0528 (6)1.05069 (14)0.0730 (7)
H12A0.36020.08431.08120.088*
H12B0.24170.13081.04550.088*
C150.1300 (3)0.1175 (6)0.75268 (15)0.0782 (7)
H15A0.20280.20200.72610.117*
H15B0.03020.11400.71610.117*
H15C0.12280.20830.80200.117*
C130.1419 (3)0.1591 (7)1.09933 (15)0.0903 (11)
H13A0.15370.34121.10400.135*
H13B0.16180.08431.15330.135*
H13C0.03820.11901.07130.135*
O10.5294 (2)0.5042 (3)0.72507 (10)0.0703 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0564 (3)0.0427 (3)0.0549 (3)0.0024 (3)0.0162 (2)0.0007 (3)
C10.0675 (15)0.0432 (14)0.0836 (16)0.0064 (12)0.0342 (13)0.0086 (12)
C20.0520 (11)0.0406 (15)0.0624 (12)0.0054 (10)0.0215 (9)0.0006 (10)
C30.0696 (15)0.0641 (17)0.0844 (17)0.0124 (13)0.0249 (13)0.0186 (13)
C40.0815 (16)0.094 (2)0.0604 (13)0.006 (2)0.0211 (12)0.0157 (18)
C100.0608 (13)0.0537 (14)0.0536 (12)0.0046 (11)0.0156 (10)0.0015 (10)
C90.0560 (11)0.0377 (14)0.0538 (11)0.0022 (9)0.0132 (9)0.0009 (9)
C140.0575 (12)0.0593 (16)0.0560 (12)0.0035 (11)0.0150 (10)0.0000 (10)
C80.0587 (12)0.0409 (13)0.0580 (12)0.0034 (10)0.0184 (10)0.0038 (9)
C50.0774 (17)0.078 (2)0.0697 (15)0.0113 (15)0.0353 (13)0.0131 (14)
C110.0643 (13)0.0643 (19)0.0554 (11)0.0034 (12)0.0170 (10)0.0006 (11)
C70.0638 (14)0.0697 (18)0.0593 (13)0.0104 (14)0.0145 (11)0.0028 (12)
C60.0769 (17)0.0720 (19)0.0771 (16)0.0169 (14)0.0270 (13)0.0031 (14)
C120.0772 (16)0.084 (2)0.0600 (14)0.0012 (15)0.0203 (12)0.0009 (13)
C150.0746 (16)0.0795 (19)0.0805 (16)0.0213 (16)0.0164 (13)0.0149 (15)
C130.0885 (18)0.122 (3)0.0676 (15)0.0008 (18)0.0328 (14)0.0044 (16)
O10.1012 (13)0.0340 (9)0.0831 (10)0.0008 (9)0.0366 (9)0.0008 (8)
Geometric parameters (Å, º) top
S1—O11.4923 (18)C14—H14B0.9700
S1—C81.797 (2)C8—H8A0.9700
S1—C11.813 (2)C8—H8B0.9700
C1—C21.499 (3)C5—C61.360 (4)
C1—H1A0.9700C5—H50.9300
C1—H1B0.9700C11—C121.511 (3)
C2—C71.372 (3)C11—H11A0.9700
C2—C31.378 (3)C11—H11B0.9700
C3—C41.382 (4)C7—C61.382 (3)
C3—H30.9300C7—H70.9300
C4—C51.358 (4)C6—H60.9300
C4—H40.9300C12—C131.520 (3)
C10—C111.523 (3)C12—H12A0.9700
C10—C91.532 (3)C12—H12B0.9700
C10—H10A0.9700C15—H15A0.9600
C10—H10B0.9700C15—H15B0.9600
C9—C141.534 (3)C15—H15C0.9600
C9—C81.535 (3)C13—H13A0.9600
C9—H90.9800C13—H13B0.9600
C14—C151.507 (3)C13—H13C0.9600
C14—H14A0.9700
O1—S1—C8106.19 (10)S1—C8—H8A109.3
O1—S1—C1107.14 (11)C9—C8—H8B109.3
C8—S1—C196.52 (10)S1—C8—H8B109.3
C2—C1—S1110.21 (15)H8A—C8—H8B107.9
C2—C1—H1A109.6C4—C5—C6119.9 (2)
S1—C1—H1A109.6C4—C5—H5120.1
C2—C1—H1B109.6C6—C5—H5120.1
S1—C1—H1B109.6C12—C11—C10112.9 (2)
H1A—C1—H1B108.1C12—C11—H11A109.0
C7—C2—C3117.6 (2)C10—C11—H11A109.0
C7—C2—C1120.3 (2)C12—C11—H11B109.0
C3—C2—C1122.1 (2)C10—C11—H11B109.0
C2—C3—C4121.0 (2)H11A—C11—H11B107.8
C2—C3—H3119.5C2—C7—C6121.5 (2)
C4—C3—H3119.5C2—C7—H7119.3
C5—C4—C3120.3 (2)C6—C7—H7119.3
C5—C4—H4119.9C5—C6—C7119.8 (3)
C3—C4—H4119.9C5—C6—H6120.1
C11—C10—C9114.60 (18)C7—C6—H6120.1
C11—C10—H10A108.6C11—C12—C13113.4 (2)
C9—C10—H10A108.6C11—C12—H12A108.9
C11—C10—H10B108.6C13—C12—H12A108.9
C9—C10—H10B108.6C11—C12—H12B108.9
H10A—C10—H10B107.6C13—C12—H12B108.9
C10—C9—C14113.55 (17)H12A—C12—H12B107.7
C10—C9—C8108.82 (16)C14—C15—H15A109.5
C14—C9—C8112.70 (16)C14—C15—H15B109.5
C10—C9—H9107.1H15A—C15—H15B109.5
C14—C9—H9107.1C14—C15—H15C109.5
C8—C9—H9107.1H15A—C15—H15C109.5
C15—C14—C9115.7 (2)H15B—C15—H15C109.5
C15—C14—H14A108.3C12—C13—H13A109.5
C9—C14—H14A108.3C12—C13—H13B109.5
C15—C14—H14B108.3H13A—C13—H13B109.5
C9—C14—H14B108.3C12—C13—H13C109.5
H14A—C14—H14B107.4H13A—C13—H13C109.5
C9—C8—S1111.68 (15)H13B—C13—H13C109.5
C9—C8—H8A109.3
O1—S1—C1—C264.88 (19)C10—C9—C8—S1172.63 (15)
C8—S1—C1—C2174.08 (17)C14—C9—C8—S160.5 (2)
S1—C1—C2—C790.3 (2)O1—S1—C8—C963.90 (17)
S1—C1—C2—C387.7 (2)C1—S1—C8—C9173.90 (16)
C7—C2—C3—C40.1 (4)C3—C4—C5—C60.2 (4)
C1—C2—C3—C4177.9 (2)C9—C10—C11—C12176.65 (19)
C2—C3—C4—C50.3 (4)C3—C2—C7—C60.1 (4)
C11—C10—C9—C1460.3 (3)C1—C2—C7—C6178.2 (2)
C11—C10—C9—C8173.35 (18)C4—C5—C6—C70.0 (4)
C10—C9—C14—C1561.5 (2)C2—C7—C6—C50.2 (4)
C8—C9—C14—C1562.8 (2)C10—C11—C12—C13179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.393.258 (3)149
C1—H1B···O1i0.972.493.333 (3)145
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H24OS
Mr252.41
Crystal system, space groupMonoclinic, P21
Temperature (K)273
a, b, c (Å)8.832 (2), 5.2321 (14), 16.588 (4)
β (°) 102.005 (3)
V3)749.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.26 × 0.22 × 0.15
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.949, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
4539, 3119, 2527
Rint0.021
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.06
No. of reflections3119
No. of parameters156
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15
Absolute structureFlack (1983), 1074 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.393.258 (3)149.0
C1—H1B···O1i0.972.493.333 (3)144.8
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province (Nos. 8451063101000731 and 9151063101000037) and the NNSFC (No. 20971046).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIitaka, Y., Itai, A., Tomioka, N., Kodama, Y., Ichikawa, K., Nishihata, K., Nishio, M., Izumi, M. & Doi, K. (1986). Bull. Chem. Soc. Jpn, 59, 2801–2806.  CrossRef CAS Web of Science Google Scholar
First citationLi, J. R., Du, M., Bu, X. H. & Zhang, R. H. (2003). J. Solid State Chem. 173, 20–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z. G., Gu, G. B., Liu, H. Y., Jiang, H. F. & Chang, C. K. (2006). Chin. J. Struct. Chem. 25, 1524–1530.  CAS Google Scholar
First citationXu, Z. G., Yu, R. N., Gu, G. B. & Chen, Z. H. (2007). Precious Met. 28, 6–9.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds