organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trichodermol (4α-hydr­­oxy-12,13-ep­oxy­trichothec-9-ene)

aCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China, and bInstitute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
*Correspondence e-mail: jinhaozhao@zju.edu.cn

(Received 15 October 2009; accepted 23 October 2009; online 28 October 2009)

In the title compound, C15H22O3, the five-membered ring displays an envelope conformation, whereas the two six-membered rings show different conformations, viz. chair and half-chair. In the crystal, mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For the fungicidal activity of the endophytic fungus Trichoderma taxi sp. nov. from Taxus mairei, see: Nielsen et al. (2005[Nielsen, K. F., Grafenhan, T., Zafari, D. & Thrane, U. (2005). J. Agric. Food Chem. 53, 8190-8196.]); Zhang et al. (2007[Zhang, C., Liu, S., Lin, F., Kubicek, C. P. & Druzhinina, I. S. (2007). FEMS Microbiol. Lett. 270, 90-96.]). For the related Trichodermin structure, see: Chen et al. (2008[Chen, S.-Y., Zhang, C.-L., Chen, Y.-Z. & Lin, F.-C. (2008). Acta Cryst. E64, o702.]). For the extinction correction, see: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C15H22O3

  • Mr = 250.34

  • Monoclinic, P 21

  • a = 6.8284 (2) Å

  • b = 6.6209 (3) Å

  • c = 14.7170 (6) Å

  • β = 96.7507 (11)°

  • V = 660.74 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.66 × 0.49 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.934, Tmax = 0.976

  • 6503 measured reflections

  • 1634 independent reflections

  • 1540 reflections with F2 > 2σ(F2)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.00

  • 1634 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H201⋯O1i 0.84 2.02 2.839 (2) 165
Symmetry code: (i) x, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996[Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The endophytic fungi Trichoderma taxi sp. nov. from Taxus mairei can produce a compound with fungicidal activity-Trichodermin (Zhang et al., 2007), which is a member of the 4β-aceoxy-12,13-epoxytrichothecene family (Nielsen et al., 2005). Bioassays showed Trichodermin strongly inhibited Rhizoctonia solani and Botrytis cinere. In order to find the relationship between the stereochemistry of the C4 position and biological activities, the title compound had been designed and synthesized. Its molecular structure is shown in Fig. 1. In the molecule, the five membered ring displays an envelope conformation with atom C11 at the flap position 0.715 (3) Å out of the mean plane formed by the other four atoms. The O1-containing six-membered ring displays a chair conformation. The typical C2=C3 double bond length of 1.325 (2) Å suggests that C2 and C3 atoms are sp2 hybridized, which correlates with the larger C1—C2—C3 bond angle of 124.36 (16) ° and C2—C3—C4 bond angle of 122.95 (18) ° and a small C1—C2—C3—C4 torsion angle of -3.0 (3) °, as compared to 3.0 (3) ° in the compound of Trichodermin. And the C3-containing six-membered ring displays a half-chair conformation, as well as the compound of Trichodermin (Chen et al.). There are intermolecular O—H···O hydrogen bonds (Table 1) in the crystal structure, which lead to the formation of chains running along the b axis (Fig. 2).

Related literature top

For the fungicidal activity of the endophytic fungus Trichoderma taxi sp. nov. from Taxus mairei, see: Nielsen et al. (2005); Zhang et al. (2007). For the related Trichodermin structure, see: Chen et al. (2008). For the extinction correction, see: Larson (1970).

Experimental top

To a solution of 12,13-Epoxytrichothec-9-ene-4-one (1 g) in THF(100 ml) containing 10 ml of methanol was added sodium borohydride (100 mg) and the reactant was partitioned between 100 ml of ethyl acetate and water. The organic layer was dried with MgSO4 and concentrated, and the residue was chromatographed to give 620 mg solid precipitate. The solid was filtrated and recrystallized with 95% ethanol to colourless blocks.

[α]D = 65.7 (c 0.052). ESI-MS: 251 (M+H)+ (100%); 1H-NMR (500 MHz, CDCl3, ppm): 5.46 (1H, d, J=5.5Hz, H-10), 4.27 (1H, t, H-4), 4.22 (1H, d, J=5.5Hz, H-2), 3.67 (1H, d, J=5.5Hz, H-11), 3.05 (1H, d, J=4.0Hz, H-13), 2.78 (1H, d, J=4.0Hz, H-13), 2.56-2.49 (1H, m, H-3), 2.00-1.97 (2H, m, H-8), 1.97-1.96 (1H, m, H-3), 1.96-1.94 (1H, m, H-7), 1.71 (3H, s, H-16), 1.33-1.31 (1H, m, H-7), 1.09 (3H, s, H-14), 0.86 (3H, s, H-15).

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were averaged; the absolute configuration was not determined. The H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group was allowed to rotate, but not to tip, to best fit the electron density.

Structure description top

The endophytic fungi Trichoderma taxi sp. nov. from Taxus mairei can produce a compound with fungicidal activity-Trichodermin (Zhang et al., 2007), which is a member of the 4β-aceoxy-12,13-epoxytrichothecene family (Nielsen et al., 2005). Bioassays showed Trichodermin strongly inhibited Rhizoctonia solani and Botrytis cinere. In order to find the relationship between the stereochemistry of the C4 position and biological activities, the title compound had been designed and synthesized. Its molecular structure is shown in Fig. 1. In the molecule, the five membered ring displays an envelope conformation with atom C11 at the flap position 0.715 (3) Å out of the mean plane formed by the other four atoms. The O1-containing six-membered ring displays a chair conformation. The typical C2=C3 double bond length of 1.325 (2) Å suggests that C2 and C3 atoms are sp2 hybridized, which correlates with the larger C1—C2—C3 bond angle of 124.36 (16) ° and C2—C3—C4 bond angle of 122.95 (18) ° and a small C1—C2—C3—C4 torsion angle of -3.0 (3) °, as compared to 3.0 (3) ° in the compound of Trichodermin. And the C3-containing six-membered ring displays a half-chair conformation, as well as the compound of Trichodermin (Chen et al.). There are intermolecular O—H···O hydrogen bonds (Table 1) in the crystal structure, which lead to the formation of chains running along the b axis (Fig. 2).

For the fungicidal activity of the endophytic fungus Trichoderma taxi sp. nov. from Taxus mairei, see: Nielsen et al. (2005); Zhang et al. (2007). For the related Trichodermin structure, see: Chen et al. (2008). For the extinction correction, see: Larson (1970).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View showing the O—H···O hydrogen bonding (dashed lines). Symmetry code: (i) = (1+x, y, 1+z).
4α-hydroxy-12,13-epoxytrichothec-9-ene top
Crystal data top
C15H22O3F(000) = 272.00
Mr = 250.34Dx = 1.258 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 6124 reflections
a = 6.8284 (2) Åθ = 3.0–27.4°
b = 6.6209 (3) ŵ = 0.09 mm1
c = 14.7170 (6) ÅT = 296 K
β = 96.7507 (11)°Chunk, colorless
V = 660.74 (4) Å30.66 × 0.49 × 0.28 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1540 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.018
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 78
Tmin = 0.934, Tmax = 0.976k = 88
6503 measured reflectionsl = 1918
1634 independent reflections
Refinement top
Refinement on F2 w = 1/[0.0012Fo2 + 1.5σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max < 0.001
wR(F2) = 0.095Δρmax = 0.17 e Å3
S = 1.00Δρmin = 0.15 e Å3
1634 reflectionsExtinction correction: Larson (1970), equation 22
164 parametersExtinction coefficient: 184 (28)
H-atom parameters constrained
Crystal data top
C15H22O3V = 660.74 (4) Å3
Mr = 250.34Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.8284 (2) ŵ = 0.09 mm1
b = 6.6209 (3) ÅT = 296 K
c = 14.7170 (6) Å0.66 × 0.49 × 0.28 mm
β = 96.7507 (11)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1634 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1540 reflections with F2 > 2σ(F2)
Tmin = 0.934, Tmax = 0.976Rint = 0.018
6503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034164 parameters
wR(F2) = 0.095H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
1634 reflectionsΔρmin = 0.15 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84609 (16)0.3577 (2)0.83213 (8)0.0329 (3)
O20.9112 (2)0.9341 (2)0.83678 (11)0.0535 (4)
O30.44991 (17)0.5728 (2)0.95141 (8)0.0428 (3)
C10.8680 (2)0.4910 (2)0.75578 (11)0.0295 (4)
C20.9296 (2)0.3595 (3)0.68075 (12)0.0389 (4)
C30.8120 (2)0.3061 (3)0.60656 (12)0.0423 (5)
C40.5978 (2)0.3670 (3)0.59348 (12)0.0484 (5)
C50.5275 (2)0.4606 (3)0.67912 (12)0.0394 (4)
C60.6784 (2)0.6115 (2)0.72646 (11)0.0307 (4)
C70.6045 (2)0.7082 (2)0.81427 (11)0.0298 (4)
C80.7735 (2)0.8181 (2)0.87935 (12)0.0374 (4)
C90.8824 (2)0.6492 (3)0.93698 (12)0.0398 (4)
C100.7723 (2)0.4555 (3)0.90883 (11)0.0326 (4)
C110.5685 (2)0.5348 (2)0.87747 (11)0.0294 (4)
C120.3896 (2)0.4194 (3)0.88380 (12)0.0418 (5)
C130.8819 (4)0.1859 (4)0.52998 (14)0.0596 (6)
C140.7229 (3)0.7762 (3)0.65783 (14)0.0505 (5)
C150.4273 (2)0.8481 (3)0.79217 (14)0.0485 (5)
H10.97480.58660.77450.035*
H21.05890.31250.68680.047*
H80.71090.90680.92070.045*
H100.77110.36290.96070.039*
H410.57870.46490.54420.058*
H420.51880.24790.57690.058*
H510.40410.53080.66170.047*
H520.50660.35340.72190.047*
H911.01830.64010.92410.048*
H920.87940.67491.00170.048*
H1210.39800.27780.90060.050*
H1220.27450.44110.83960.050*
H1310.80380.06560.52010.072*
H1321.01780.14970.54580.072*
H1330.86880.26560.47510.072*
H1410.76070.71390.60360.061*
H1420.82850.86020.68500.061*
H1430.60720.85720.64210.061*
H1510.33170.78390.74850.058*
H1520.46970.97230.76700.058*
H1530.36910.87600.84710.058*
H2010.87231.05390.82940.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0392 (5)0.0274 (6)0.0324 (5)0.0083 (5)0.0063 (4)0.0003 (5)
O20.0587 (8)0.0287 (7)0.0781 (10)0.0102 (7)0.0296 (7)0.0093 (7)
O30.0493 (7)0.0455 (8)0.0377 (6)0.0024 (6)0.0226 (5)0.0016 (6)
C10.0308 (7)0.0267 (9)0.0320 (7)0.0024 (6)0.0076 (5)0.0016 (6)
C20.0398 (8)0.0335 (10)0.0466 (9)0.0012 (8)0.0179 (7)0.0075 (8)
C30.0633 (10)0.0326 (10)0.0344 (9)0.0079 (9)0.0207 (8)0.0044 (8)
C40.0632 (11)0.0501 (13)0.0308 (8)0.0053 (11)0.0004 (7)0.0065 (9)
C50.0381 (7)0.0463 (12)0.0330 (8)0.0009 (8)0.0007 (6)0.0002 (9)
C60.0386 (7)0.0272 (9)0.0273 (7)0.0021 (7)0.0083 (5)0.0025 (6)
C70.0336 (7)0.0241 (8)0.0329 (8)0.0043 (6)0.0093 (5)0.0022 (7)
C80.0424 (8)0.0303 (10)0.0419 (9)0.0012 (7)0.0153 (7)0.0106 (8)
C90.0393 (8)0.0459 (11)0.0337 (8)0.0021 (8)0.0023 (6)0.0101 (8)
C100.0383 (7)0.0342 (10)0.0254 (7)0.0076 (7)0.0049 (5)0.0043 (7)
C110.0343 (7)0.0293 (9)0.0261 (7)0.0030 (7)0.0103 (5)0.0001 (7)
C120.0393 (8)0.0427 (11)0.0455 (9)0.0034 (8)0.0145 (7)0.0013 (9)
C130.0909 (15)0.0460 (13)0.0478 (11)0.0127 (13)0.0322 (11)0.0138 (11)
C140.0785 (13)0.0354 (11)0.0413 (10)0.0041 (10)0.0229 (9)0.0086 (9)
C150.0516 (9)0.0397 (12)0.0563 (11)0.0188 (10)0.0144 (8)0.0089 (10)
Geometric parameters (Å, º) top
O1—C11.450 (2)C1—H10.980
O1—C101.443 (2)C2—H20.930
O2—C81.416 (2)C4—H410.970
O3—C111.453 (2)C4—H420.970
O3—C121.447 (2)C5—H510.970
C1—C21.504 (2)C5—H520.970
C1—C61.539 (2)C8—H80.980
C2—C31.325 (2)C9—H910.970
C3—C41.508 (2)C9—H920.970
C3—C131.503 (3)C10—H100.980
C4—C51.531 (2)C12—H1210.970
C5—C61.542 (2)C12—H1220.970
C6—C71.577 (2)C13—H1310.960
C6—C141.541 (2)C13—H1320.960
C7—C81.587 (2)C13—H1330.960
C7—C111.516 (2)C14—H1410.960
C7—C151.528 (2)C14—H1420.960
C8—C91.541 (2)C14—H1430.960
C9—C101.520 (2)C15—H1510.960
C10—C111.508 (2)C15—H1520.960
C11—C121.453 (2)C15—H1530.960
O2—H2010.840
C1—O1—C10114.24 (13)C3—C4—H42108.5
C11—O3—C1260.14 (11)C5—C4—H41108.5
O1—C1—C2106.26 (14)C5—C4—H42108.5
O1—C1—C6111.87 (12)H41—C4—H42109.5
C2—C1—C6113.14 (12)C4—C5—H51108.8
C1—C2—C3124.36 (16)C4—C5—H52108.8
C2—C3—C4121.26 (18)C6—C5—H51108.8
C2—C3—C13122.95 (18)C6—C5—H52108.8
C4—C3—C13115.78 (17)H51—C5—H52109.5
C3—C4—C5113.36 (15)O2—C8—H8108.1
C4—C5—C6112.11 (15)C7—C8—H8108.1
C1—C6—C5106.63 (14)C9—C8—H8108.1
C1—C6—C7108.69 (12)C8—C9—H91110.4
C1—C6—C14109.07 (15)C8—C9—H92110.4
C5—C6—C7111.85 (13)C10—C9—H91110.4
C5—C6—C14109.60 (14)C10—C9—H92110.4
C7—C6—C14110.88 (15)H91—C9—H92109.5
C6—C7—C8113.63 (13)O1—C10—H10111.4
C6—C7—C11106.61 (14)C9—C10—H10111.4
C6—C7—C15113.16 (13)C11—C10—H10111.4
C8—C7—C1197.80 (12)O3—C12—H121120.0
C8—C7—C15110.62 (15)O3—C12—H122120.0
C11—C7—C15114.07 (14)C11—C12—H121120.0
O2—C8—C7117.07 (15)C11—C12—H122120.0
O2—C8—C9109.54 (14)H121—C12—H122109.5
C7—C8—C9105.64 (15)C3—C13—H131109.5
C8—C9—C10105.72 (13)C3—C13—H132109.5
O1—C10—C9112.64 (14)C3—C13—H133109.5
O1—C10—C11108.15 (12)H131—C13—H132109.5
C9—C10—C11101.46 (15)H131—C13—H133109.5
O3—C11—C7118.26 (15)H132—C13—H133109.5
O3—C11—C10113.99 (12)C6—C14—H141109.5
O3—C11—C1259.75 (11)C6—C14—H142109.5
C7—C11—C10103.95 (13)C6—C14—H143109.5
C7—C11—C12129.49 (14)H141—C14—H142109.5
C10—C11—C12123.35 (16)H141—C14—H143109.5
O3—C12—C1160.11 (11)H142—C14—H143109.5
C8—O2—H201110.7C7—C15—H151109.5
O1—C1—H1108.5C7—C15—H152109.5
C2—C1—H1108.5C7—C15—H153109.5
C6—C1—H1108.5H151—C15—H152109.5
C1—C2—H2117.8H151—C15—H153109.5
C3—C2—H2117.8H152—C15—H153109.5
C3—C4—H41108.5
C1—O1—C10—C948.89 (16)C14—C6—C7—C11179.10 (14)
C1—O1—C10—C1162.42 (17)C14—C6—C7—C1554.7 (2)
C10—O1—C1—C2175.48 (11)C6—C7—C8—O240.8 (2)
C10—O1—C1—C651.55 (16)C6—C7—C8—C981.40 (17)
C12—O3—C11—C7121.49 (16)C6—C7—C11—O3163.39 (12)
C12—O3—C11—C10115.92 (18)C6—C7—C11—C1069.08 (15)
O1—C1—C2—C3105.4 (2)C6—C7—C11—C1290.7 (2)
O1—C1—C6—C571.96 (16)C8—C7—C11—O379.03 (15)
O1—C1—C6—C748.78 (17)C8—C7—C11—C1048.50 (15)
O1—C1—C6—C14169.78 (14)C8—C7—C11—C12151.67 (18)
C2—C1—C6—C548.01 (18)C11—C7—C8—O2152.82 (15)
C2—C1—C6—C7168.75 (14)C11—C7—C8—C930.61 (16)
C2—C1—C6—C1470.25 (19)C15—C7—C8—O287.74 (19)
C6—C1—C2—C317.7 (2)C15—C7—C8—C9150.05 (15)
C1—C2—C3—C43.0 (3)C15—C7—C11—O337.8 (2)
C1—C2—C3—C13175.8 (2)C15—C7—C11—C10165.28 (15)
C2—C3—C4—C59.8 (3)C15—C7—C11—C1234.9 (2)
C13—C3—C4—C5171.3 (2)O2—C8—C9—C10129.73 (15)
C3—C4—C5—C643.1 (2)C7—C8—C9—C102.80 (18)
C4—C5—C6—C161.64 (19)C8—C9—C10—O188.78 (16)
C4—C5—C6—C7179.67 (15)C8—C9—C10—C1126.62 (17)
C4—C5—C6—C1456.3 (2)O1—C10—C11—O3159.65 (14)
C1—C6—C7—C847.34 (19)O1—C10—C11—C770.22 (17)
C1—C6—C7—C1159.22 (16)O1—C10—C11—C1291.20 (19)
C1—C6—C7—C15174.58 (15)C9—C10—C11—O381.67 (17)
C5—C6—C7—C8164.80 (14)C9—C10—C11—C748.45 (16)
C5—C6—C7—C1158.24 (16)C9—C10—C11—C12150.13 (16)
C5—C6—C7—C1568.0 (2)C7—C11—C12—O3103.3 (2)
C14—C6—C7—C872.54 (18)C10—C11—C12—O3100.35 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H201···O1i0.842.022.839 (2)165
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H22O3
Mr250.34
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.8284 (2), 6.6209 (3), 14.7170 (6)
β (°) 96.7507 (11)
V3)660.74 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.66 × 0.49 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.934, 0.976
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6503, 1634, 1540
Rint0.018
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.00
No. of reflections1634
No. of parameters164
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR97 (Altomare et al., 1993), CRYSTALS (Watkin et al., 1996), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H201···O1i0.8402.0202.839 (2)164.9
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The work was supported by the Science and Technology Project of Zhejiang Province (No. 2008 C02007–3) and the National Natural Science Foundation of China (No. 30700532).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChen, S.-Y., Zhang, C.-L., Chen, Y.-Z. & Lin, F.-C. (2008). Acta Cryst. E64, o702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNielsen, K. F., Grafenhan, T., Zafari, D. & Thrane, U. (2005). J. Agric. Food Chem. 53, 8190–8196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationZhang, C., Liu, S., Lin, F., Kubicek, C. P. & Druzhinina, I. S. (2007). FEMS Microbiol. Lett. 270, 90–96.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds