organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Carb­­oxy-1-phenyl­ethanaminium nitrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 17 September 2009; accepted 18 October 2009; online 28 October 2009)

In the title salt, C9H12NO2+·NO3, the cation and anion are linked by a bifurcated N—H⋯(O,O) hydrogen bond. The crystal packing is stabilized by inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, which connect neighbouring cations and anions, resulting in a two-dimensional network.

Related literature

For details of the preparation of β-amino acids, see: Cohen et al. (2002[Cohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977-1981.]); Qu et al. (2004[Qu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. F., Liu, Z.-G. & Xue, Z.-L. (2004). Chem. Eur. J. 10, 54-60.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12NO2+·NO3

  • Mr = 228.21

  • Monoclinic, P 21 /c

  • a = 6.2017 (12) Å

  • b = 10.313 (2) Å

  • c = 18.077 (4) Å

  • β = 105.36 (3)°

  • V = 1114.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.50 × 0.30 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.960, Tmax = 0.982

  • 11050 measured reflections

  • 2549 independent reflections

  • 1652 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.231

  • S = 1.11

  • 2549 reflections

  • 149 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.56 3.414 (5) 152
C2—H2A⋯O4ii 0.97 2.46 3.256 (5) 140
O2—H2⋯O5iii 0.82 2.01 2.743 (4) 148
N1—H1C⋯O5ii 0.88 2.13 2.979 (4) 160
N1—H1C⋯O4ii 0.88 2.41 3.129 (4) 139
N1—H1B⋯O1iv 0.88 1.97 2.830 (4) 166
N1—H1A⋯O4 0.88 2.39 3.101 (4) 138
N1—H1A⋯O3 0.88 2.07 2.933 (4) 165
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

β-Amino acids are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds (Cohen et al., 2002; Qu et al. 2004).

The title compound C9H12NO2+.NO3- exists as two independent ions linked by bifurcated N—H···O hydrogen bonds (Fig. 1). The crystal structure is stabilized by intermolecular N—H···O, O—H···O and C—H ···O hydrogen bonds (Table 1) which connect neighbouring cations and anions, resulting in a two-dimensional network (Fig. 2).

Related literature top

For details of the preparation of β-amino acids, see: Cohen et al. (2002); Qu et al. (2004).

Experimental top

Benzaldehyde (1.59 g, 15 mmol), malonic acid (2.5 g, 24 mmol) and ammonium acetate (3.0 g, 39 mmol) were added in a flask under nitrogen and refluxed for 24 h yielding a white precipitate. After cooling to room temperature, the solution was filtered to yield 3-3mino-3-phenylpropionic acid. This was dissolved in ethanol and nitric acid. After slowly evaporating over a period of 5 d, colorless prism-like crystals of the title compound, suitable for X-ray diffraction experiments were isolated.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, with C—H = 0.93 to 1.00 Å, Uiso(H) = 1.2 Ueq(C), N—H = 0.88 Å, Uiso(H)= 1.5 Ueq(N).

Structure description top

β-Amino acids are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds (Cohen et al., 2002; Qu et al. 2004).

The title compound C9H12NO2+.NO3- exists as two independent ions linked by bifurcated N—H···O hydrogen bonds (Fig. 1). The crystal structure is stabilized by intermolecular N—H···O, O—H···O and C—H ···O hydrogen bonds (Table 1) which connect neighbouring cations and anions, resulting in a two-dimensional network (Fig. 2).

For details of the preparation of β-amino acids, see: Cohen et al. (2002); Qu et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. Intramolecular hydrogen bonds are drawn as a dashed lines.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure along the b axis. Hydrogen bonds are drawn as dashed lines.
2-Carboxy-1-phenylethanaminium nitrate top
Crystal data top
C9H12NO2+·NO3F(000) = 480
Mr = 228.21Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1797 reflections
a = 6.2017 (12) Åθ = 3.1–27.5°
b = 10.313 (2) ŵ = 0.11 mm1
c = 18.077 (4) ÅT = 293 K
β = 105.36 (3)°Prism, colorless
V = 1114.9 (4) Å30.50 × 0.30 × 0.15 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2549 independent reflections
Radiation source: fine-focus sealed tube1652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.960, Tmax = 0.982l = 2323
11050 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0829P)2 + 1.0943P]
where P = (Fo2 + 2Fc2)/3
2549 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C9H12NO2+·NO3V = 1114.9 (4) Å3
Mr = 228.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2017 (12) ŵ = 0.11 mm1
b = 10.313 (2) ÅT = 293 K
c = 18.077 (4) Å0.50 × 0.30 × 0.15 mm
β = 105.36 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2549 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1652 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.982Rint = 0.061
11050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0801 restraint
wR(F2) = 0.231H-atom parameters constrained
S = 1.11Δρmax = 0.59 e Å3
2549 reflectionsΔρmin = 0.23 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1549 (5)0.1241 (2)0.30410 (14)0.0613 (8)
O20.8967 (5)0.2333 (3)0.34151 (16)0.0631 (8)
H20.92520.18130.37710.095*
N10.7398 (5)0.3900 (2)0.11238 (14)0.0382 (6)
H1A0.60200.38680.08230.066 (12)*
H1B0.76880.46970.13050.050 (10)*
H1C0.83520.36900.08560.050 (11)*
C31.0254 (6)0.2102 (3)0.29593 (19)0.0466 (8)
C40.6953 (6)0.1620 (3)0.14746 (19)0.0442 (8)
C10.7597 (6)0.2980 (3)0.17750 (18)0.0434 (8)
H10.65400.32550.20630.052*
C20.9930 (6)0.3062 (3)0.23070 (19)0.0505 (9)
H2A1.10150.28900.20190.061*
H2B1.01900.39330.25140.061*
C70.5759 (11)0.0891 (4)0.0971 (3)0.0857 (17)
H70.53610.17330.08050.103*
C80.4647 (9)0.0261 (5)0.1410 (4)0.0903 (18)
H80.34680.06750.15410.108*
C50.8088 (8)0.0973 (4)0.1026 (2)0.0620 (11)
H50.92740.13740.08920.074*
C90.5224 (7)0.1002 (4)0.1675 (3)0.0649 (11)
H90.44480.14170.19820.078*
C60.7458 (10)0.0285 (5)0.0774 (3)0.0817 (16)
H60.82190.07110.04660.098*
O30.3218 (4)0.3769 (3)0.01018 (15)0.0562 (7)
O40.2293 (5)0.3826 (3)0.09586 (15)0.0706 (9)
O50.0245 (4)0.3499 (3)0.00958 (16)0.0597 (7)
N20.1772 (5)0.3697 (3)0.02545 (17)0.0457 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.094 (2)0.0400 (14)0.0476 (15)0.0168 (14)0.0138 (14)0.0082 (11)
O20.0649 (18)0.0546 (16)0.0658 (18)0.0237 (13)0.0100 (14)0.0187 (13)
N10.0436 (15)0.0318 (14)0.0352 (14)0.0020 (11)0.0035 (12)0.0044 (11)
C30.060 (2)0.0397 (18)0.0345 (17)0.0015 (16)0.0034 (15)0.0028 (14)
C40.053 (2)0.0337 (16)0.0381 (17)0.0049 (14)0.0023 (15)0.0075 (14)
C10.0523 (19)0.0366 (17)0.0377 (17)0.0064 (14)0.0055 (14)0.0062 (13)
C20.059 (2)0.0430 (19)0.043 (2)0.0033 (16)0.0017 (17)0.0061 (15)
C70.110 (4)0.037 (2)0.079 (3)0.010 (3)0.028 (3)0.002 (2)
C80.081 (3)0.058 (3)0.110 (4)0.032 (3)0.012 (3)0.022 (3)
C50.078 (3)0.046 (2)0.056 (2)0.0012 (19)0.009 (2)0.0072 (18)
C90.058 (2)0.051 (2)0.082 (3)0.0113 (18)0.012 (2)0.011 (2)
C60.125 (5)0.052 (3)0.054 (3)0.017 (3)0.001 (3)0.002 (2)
O30.0519 (15)0.0685 (17)0.0521 (15)0.0016 (12)0.0203 (12)0.0067 (13)
O40.0683 (18)0.105 (2)0.0385 (15)0.0053 (16)0.0137 (13)0.0178 (15)
O50.0421 (14)0.0672 (17)0.0668 (18)0.0069 (12)0.0093 (12)0.0081 (14)
N20.0524 (17)0.0380 (15)0.0472 (17)0.0036 (12)0.0142 (14)0.0113 (13)
Geometric parameters (Å, º) top
O1—C31.180 (4)C2—H2B0.9700
O2—C31.312 (4)C7—C81.349 (8)
O2—H20.8200C7—C61.352 (8)
N1—C11.492 (4)C7—H70.9300
N1—H1A0.8837C8—C91.401 (7)
N1—H1B0.8848C8—H80.9300
N1—H1C0.8849C5—C61.396 (6)
C3—C21.512 (5)C5—H50.9300
C4—C91.375 (5)C9—H90.9300
C4—C51.378 (5)C6—H60.9300
C4—C11.519 (5)O3—N21.237 (4)
C1—C21.513 (5)O4—N21.235 (4)
C1—H10.9800O5—N21.260 (4)
C2—H2A0.9700
C3—O2—H2109.5C3—C2—H2B109.3
C1—N1—H1A109.0C1—C2—H2B109.3
C1—N1—H1B109.4H2A—C2—H2B108.0
H1A—N1—H1B109.4C8—C7—C6119.2 (4)
C1—N1—H1C110.4C8—C7—H7120.4
H1A—N1—H1C109.4C6—C7—H7120.4
H1B—N1—H1C109.3C7—C8—C9121.7 (5)
O1—C3—O2124.4 (3)C7—C8—H8119.2
O1—C3—C2122.4 (3)C9—C8—H8119.2
O2—C3—C2113.2 (3)C4—C5—C6120.0 (5)
C9—C4—C5119.1 (4)C4—C5—H5120.0
C9—C4—C1118.9 (4)C6—C5—H5120.0
C5—C4—C1122.0 (3)C4—C9—C8119.2 (5)
N1—C1—C2109.3 (3)C4—C9—H9120.4
N1—C1—C4110.3 (3)C8—C9—H9120.4
C2—C1—C4113.3 (3)C7—C6—C5121.0 (5)
N1—C1—H1107.9C7—C6—H6119.5
C2—C1—H1107.9C5—C6—H6119.5
C4—C1—H1107.9O4—N2—O3120.2 (3)
C3—C2—C1111.5 (3)O4—N2—O5119.3 (3)
C3—C2—H2A109.3O3—N2—O5120.5 (3)
C1—C2—H2A109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.563.414 (5)152
C2—H2A···O4ii0.972.463.256 (5)140
O2—H2···O5iii0.822.012.743 (4)148
N1—H1C···O5ii0.882.132.979 (4)160
N1—H1C···O4ii0.882.413.129 (4)139
N1—H1B···O1iv0.881.972.830 (4)166
N1—H1A···O40.882.393.101 (4)138
N1—H1A···O30.882.072.933 (4)165
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H12NO2+·NO3
Mr228.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.2017 (12), 10.313 (2), 18.077 (4)
β (°) 105.36 (3)
V3)1114.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.30 × 0.15
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.960, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
11050, 2549, 1652
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.231, 1.11
No. of reflections2549
No. of parameters149
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.23

Computer programs: CrystalClear (Rigaku 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.563.414 (5)152.3
C2—H2A···O4ii0.972.463.256 (5)139.5
O2—H2···O5iii0.822.012.743 (4)147.7
N1—H1C···O5ii0.882.132.979 (4)159.8
N1—H1C···O4ii0.882.413.129 (4)139.2
N1—H1B···O1iv0.881.972.830 (4)165.5
N1—H1A···O40.882.393.101 (4)137.9
N1—H1A···O30.882.072.933 (4)165.2
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Technical Fund Financing Projects (No. 9207042464 and 9207041482) from Southeast University to ZRQ.

References

First citationCohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977–1981.  Web of Science CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationQu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. F., Liu, Z.-G. & Xue, Z.-L. (2004). Chem. Eur. J. 10, 54–60.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds