organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[Pyridine-2,6-diylbis(carbonyl­hydrazono)]di­propanoic acid N,N-di­methyl­formamide disolvate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 21 September 2009; accepted 1 October 2009; online 7 October 2009)

The complete molecule of the title compound, C13H13N5O6·2C3H7NO, is generated by crystallographic twofold rotation with an N and a C atom lying on the axis. The structure is stabilized by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the synthesis and structures of some organotin(IV) complexes of related tridentate hydrazone ligands see: Yin et al. (2008[Yin, H., Cui, J. & Qiao, Y. (2008). Polyhedron, 27, 2157-2166.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N5O6·2C3H7NO

  • Mr = 481.48

  • Monoclinic, C 2/c

  • a = 19.5743 (17) Å

  • b = 10.4041 (11) Å

  • c = 11.7924 (12) Å

  • β = 107.684 (1)°

  • V = 2288.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.40 × 0.39 × 0.17 mm

Data collection
  • Siemens CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.981

  • 5528 measured reflections

  • 2017 independent reflections

  • 1102 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.137

  • S = 1.00

  • 2017 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.82 1.75 2.574 (3) 178

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have reported some organotin(IV) complexes with hydrazone ligands (Yin et al., 2008). As an extension of our work on the structural characterization of hydrazone compounds, the title compound, (I), is reported here.

The two halves of the main molecule are symmetrically related, Fig. 1, with the N1, C4 and H4 atoms of the pyridine ring lying on the two-fold axis to form a helical species. The N3C6 bond length of 1.283 (3) Å (Table 1) conforms to the value for a double bond, while the N2—C1 [1.361 (3) Å] and N2—N3 [1.369 (3) Å] bonds are intermediate between a double bond and a single bond because of conjugation effects in the molecule.

Related literature top

For the synthesis and structures of some organotin(IV) complexes of related tridentate hydrazone ligands see: Yin et al. (2008).

Experimental top

Compound (I) was synthesized by the reaction of pyridine-2,6-dihydrazide (5 mmol) with pyruvic acid (10 mmol). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an N,N-dimethylformamide solution.

Refinement top

The H atoms were positioned geometrically, with methyl C—H distances of 0.96 Å, aromatic and aldehydic C—H distances of 0.93 Å, N—H distances of 0.86 Å and O—H distances of 0.82 Å, and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C, O) for the methyl groups.

Structure description top

Recently, we have reported some organotin(IV) complexes with hydrazone ligands (Yin et al., 2008). As an extension of our work on the structural characterization of hydrazone compounds, the title compound, (I), is reported here.

The two halves of the main molecule are symmetrically related, Fig. 1, with the N1, C4 and H4 atoms of the pyridine ring lying on the two-fold axis to form a helical species. The N3C6 bond length of 1.283 (3) Å (Table 1) conforms to the value for a double bond, while the N2—C1 [1.361 (3) Å] and N2—N3 [1.369 (3) Å] bonds are intermediate between a double bond and a single bond because of conjugation effects in the molecule.

For the synthesis and structures of some organotin(IV) complexes of related tridentate hydrazone ligands see: Yin et al. (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with 50% probability displacement ellipsoids and hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
2,2'-[Pyridine-2,6-diylbis(carbonylhydrazono)]dipropanoic acid N,N-dimethylformamide disolvate top
Crystal data top
C13H13N5O6·2C3H7NOF(000) = 1016
Mr = 481.48Dx = 1.398 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1027 reflections
a = 19.5743 (17) Åθ = 2.2–21.9°
b = 10.4041 (11) ŵ = 0.11 mm1
c = 11.7924 (12) ÅT = 298 K
β = 107.684 (1)°Block, colorless
V = 2288.1 (4) Å30.40 × 0.39 × 0.17 mm
Z = 4
Data collection top
Siemens CCD area-detector
diffractometer
2017 independent reflections
Radiation source: fine-focus sealed tube1102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.957, Tmax = 0.981k = 612
5528 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.8585P]
where P = (Fo2 + 2Fc2)/3
2017 reflections(Δ/σ)max = 0.004
158 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H13N5O6·2C3H7NOV = 2288.1 (4) Å3
Mr = 481.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.5743 (17) ŵ = 0.11 mm1
b = 10.4041 (11) ÅT = 298 K
c = 11.7924 (12) Å0.40 × 0.39 × 0.17 mm
β = 107.684 (1)°
Data collection top
Siemens CCD area-detector
diffractometer
2017 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1102 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.981Rint = 0.041
5528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
2017 reflectionsΔρmin = 0.14 e Å3
158 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.50000.2225 (3)0.75000.0370 (8)
N20.56173 (12)0.3597 (2)0.6173 (2)0.0440 (6)
H20.54540.38940.67210.053*
N30.58981 (11)0.4428 (2)0.55325 (18)0.0414 (6)
N40.71491 (12)1.0005 (2)0.3217 (2)0.0492 (7)
O10.58033 (11)0.18075 (19)0.52026 (18)0.0608 (6)
O20.62171 (12)0.76940 (19)0.54017 (18)0.0615 (6)
O30.64206 (11)0.60873 (17)0.43031 (16)0.0539 (6)
H30.65700.66690.39720.081*
O40.69084 (11)0.78824 (19)0.32604 (17)0.0546 (6)
C10.55919 (15)0.2310 (3)0.5960 (2)0.0414 (7)
C20.52726 (14)0.1563 (2)0.6765 (2)0.0365 (7)
C30.52768 (15)0.0235 (3)0.6730 (2)0.0472 (7)
H3A0.54620.01990.61990.057*
C40.50000.0427 (4)0.75000.0550 (12)
H40.50000.13200.75000.066*
C50.62039 (14)0.6566 (3)0.5162 (2)0.0417 (7)
C60.59176 (14)0.5610 (3)0.5853 (2)0.0394 (7)
C70.56634 (16)0.6134 (3)0.6825 (3)0.0569 (9)
H7A0.51510.60580.66100.085*
H7B0.57970.70230.69500.085*
H7C0.58780.56600.75440.085*
C80.69523 (15)0.8983 (3)0.3682 (3)0.0502 (8)
H80.68360.90880.43850.060*
C90.73224 (17)0.9912 (3)0.2111 (3)0.0645 (10)
H9A0.72450.90460.18180.097*
H9B0.78161.01410.22460.097*
H9C0.70211.04860.15360.097*
C100.7204 (2)1.1255 (3)0.3783 (3)0.0787 (11)
H10A0.69871.12200.44120.118*
H10B0.69611.18840.32060.118*
H10C0.77001.14880.41060.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0357 (18)0.0301 (17)0.0426 (18)0.0000.0078 (15)0.000
N20.0566 (16)0.0331 (13)0.0493 (14)0.0003 (12)0.0264 (12)0.0034 (11)
N30.0420 (14)0.0390 (14)0.0456 (14)0.0005 (12)0.0170 (11)0.0080 (12)
N40.0583 (16)0.0443 (14)0.0490 (15)0.0039 (13)0.0222 (13)0.0069 (13)
O10.0845 (16)0.0466 (13)0.0638 (14)0.0028 (12)0.0410 (12)0.0082 (11)
O20.0899 (17)0.0351 (12)0.0710 (15)0.0122 (12)0.0419 (13)0.0040 (11)
O30.0756 (14)0.0412 (12)0.0559 (13)0.0021 (11)0.0360 (11)0.0046 (10)
O40.0693 (14)0.0457 (13)0.0542 (13)0.0067 (11)0.0268 (11)0.0046 (11)
C10.0444 (17)0.0342 (16)0.0452 (17)0.0023 (14)0.0129 (14)0.0011 (14)
C20.0395 (16)0.0276 (15)0.0402 (16)0.0001 (13)0.0089 (13)0.0028 (13)
C30.0542 (19)0.0338 (16)0.0558 (19)0.0004 (15)0.0202 (15)0.0081 (15)
C40.075 (3)0.025 (2)0.073 (3)0.0000.034 (3)0.000
C50.0407 (17)0.0444 (19)0.0420 (17)0.0004 (15)0.0154 (14)0.0015 (14)
C60.0404 (17)0.0343 (16)0.0459 (16)0.0010 (14)0.0169 (13)0.0038 (14)
C70.075 (2)0.0429 (18)0.065 (2)0.0003 (17)0.0401 (18)0.0006 (16)
C80.055 (2)0.054 (2)0.0442 (17)0.0059 (17)0.0193 (15)0.0034 (16)
C90.081 (2)0.062 (2)0.057 (2)0.0082 (19)0.0322 (18)0.0150 (17)
C100.108 (3)0.048 (2)0.093 (3)0.009 (2)0.049 (2)0.008 (2)
Geometric parameters (Å, º) top
N1—C2i1.339 (3)C3—C41.375 (3)
N1—C21.339 (3)C3—H3A0.9300
N2—C11.361 (3)C4—C3i1.375 (3)
N2—N31.369 (3)C4—H40.9300
N2—H20.8600C5—C61.499 (4)
N3—C61.283 (3)C6—C71.485 (4)
N4—C81.308 (3)C7—H7A0.9600
N4—C91.447 (3)C7—H7B0.9600
N4—C101.451 (4)C7—H7C0.9600
O1—C11.211 (3)C8—H80.9300
O2—C51.205 (3)C9—H9A0.9600
O3—C51.310 (3)C9—H9B0.9600
O3—H30.8200C9—H9C0.9600
O4—C81.241 (3)C10—H10A0.9600
C1—C21.503 (4)C10—H10B0.9600
C2—C31.382 (4)C10—H10C0.9600
C2i—N1—C2118.0 (3)N3—C6—C7126.3 (2)
C1—N2—N3121.2 (2)N3—C6—C5117.3 (2)
C1—N2—H2119.4C7—C6—C5116.4 (2)
N3—N2—H2119.4C6—C7—H7A109.5
C6—N3—N2115.1 (2)C6—C7—H7B109.5
C8—N4—C9120.2 (3)H7A—C7—H7B109.5
C8—N4—C10121.7 (3)C6—C7—H7C109.5
C9—N4—C10118.0 (3)H7A—C7—H7C109.5
C5—O3—H3109.5H7B—C7—H7C109.5
O1—C1—N2124.0 (3)O4—C8—N4125.1 (3)
O1—C1—C2123.0 (2)O4—C8—H8117.4
N2—C1—C2113.0 (2)N4—C8—H8117.4
N1—C2—C3122.8 (3)N4—C9—H9A109.5
N1—C2—C1117.8 (2)N4—C9—H9B109.5
C3—C2—C1119.4 (2)H9A—C9—H9B109.5
C4—C3—C2118.3 (3)N4—C9—H9C109.5
C4—C3—H3A120.9H9A—C9—H9C109.5
C2—C3—H3A120.9H9B—C9—H9C109.5
C3—C4—C3i119.9 (4)N4—C10—H10A109.5
C3—C4—H4120.1N4—C10—H10B109.5
C3i—C4—H4120.1H10A—C10—H10B109.5
O2—C5—O3124.2 (3)N4—C10—H10C109.5
O2—C5—C6120.3 (3)H10A—C10—H10C109.5
O3—C5—C6115.5 (2)H10B—C10—H10C109.5
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.752.574 (3)178

Experimental details

Crystal data
Chemical formulaC13H13N5O6·2C3H7NO
Mr481.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)19.5743 (17), 10.4041 (11), 11.7924 (12)
β (°) 107.684 (1)
V3)2288.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.39 × 0.17
Data collection
DiffractometerSiemens CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
5528, 2017, 1102
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.137, 1.00
No. of reflections2017
No. of parameters158
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.752.574 (3)178.4
 

Acknowledgements

We acknowledge the National Natural Foundation of China (20771053), the Scientific Research Fund of Liaocheng University (X081006) and the Students Science and Technology Innovation Fund of Liaocheng University (SRT08031HX2).

References

First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYin, H., Cui, J. & Qiao, Y. (2008). Polyhedron, 27, 2157–2166.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds