organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,2R)-1,2-Di­phenyl-1,2-bis­­(1H-tetra­zol-1-yl)ethane

aAoyama–Gakuin University, College of Science and Engineering, Department of Chemistry and Biological Science, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558, Japan, and bVienna University of Technology, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060 Vienna, Austria
*Correspondence e-mail: fwerner@mail.zserv.tuwien.ac.at, hasemiki@chem.aoyama.ac.jp

(Received 21 September 2009; accepted 7 October 2009; online 13 October 2009)

The title compound, C16H14N8, is a new chiral ligand designed for applications in supra­molecular chemistry and Fe2+ spin-crossover complexes. The crystal structure shows a herring-bone arrangement of the mol­ecules, which are mutually linked via inter­molecular C—H⋯N inter­actions mainly donated by the alkyl and tetra­zole H atoms.

Related literature

For the general synthetic procedure, see: Kamiya & Saito (1973[Kamiya, T. & Saito, Y. (1973). Offenlegungsschrift 2147023 (Patent).]). For the crystal structure of the chiral starting material, see: Jones et al. (2003[Jones, M. D., Almeida Paz, F. A., Davies, J. E. & Johnson, B. F. G. (2003). Acta Cryst. E59, o455-o457.]). For studies on the crystal structures and packing of di-tetra­zolylalkanes, see: Grunert et al. (2005[Grunert, C. M., Weinberger, P., Schweifer, J., Hampel, C., Stassen, A. F., Mereiter, K. & Linert, W. (2005). J. Mol. Struct. 733, 41-52.]); Absmeier et al. (2006[Absmeier, A., Bartel, M., Carbonera, C., Jameson, G. N. L., Weinberger, P., Caneschi, A., Mereiter, K., Letard, J.-F. & Linert, W. (2006). Chem. Eur. J. 12, 2235-2243.]). For supra­molecular compounds made up of di-tetra­zolylalkanes, see: Liu et al. (2008[Liu, P.-P., Cheng, A.-L., Yue, Q., Liu, N., Sun, W.-W. & Gao, E.-Q. (2008). Cryst. Growth Des. 8, 1668-1674.], 2009[Liu, P.-P., Wang, Y.-Q., Tian, C.-Y., Peng, H.-Q. & Gao, E.-Q. (2009). J. Mol. Struct. 920, 459-465.]); Yu et al. (2008[Yu, J.-H., Mereiter, K., Hassan, N., Feldgitscher, C. & Linert, W. (2008). Cryst. Growth Des. 8, 1535-1540.]). For Fe2+ spin-crossover complexes based on di-tetra­zolylalkanes, see: Grunert et al. (2004[Grunert, M., Schweifer, J., Weinberger, P., Linert, W., Mereiter, K., Hilscher, G., Müller, M., Wiesinger, G. & van Koningsbruggen, P. J. (2004). Inorg. Chem. 43, 155-165.]); Quesada et al. (2007[Quesada, M., Kooijman, H., Gamez, P., Sanchez Costa, J., van Koningsbruggen, P. J., Weinberger, P., Reissner, M., Spek, A. L., Haasnoot, J. G. & Reedijk, J. (2007). Dalton Trans. pp. 5434-5440.]); Bialonska et al. (2008[Bialonska, A., Bronisz, R. & Weselski, M. (2008). Inorg. Chem. 47, 4436-4438.]). The absolute structure of the title compound could not be determined from the diffraction data but was known from the chiral precursor compound (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine, see: Jones et al. (2003[Jones, M. D., Almeida Paz, F. A., Davies, J. E. & Johnson, B. F. G. (2003). Acta Cryst. E59, o455-o457.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N8

  • Mr = 318.35

  • Orthorhombic, P 21 21 21

  • a = 8.3088 (4) Å

  • b = 11.2802 (6) Å

  • c = 16.5187 (9) Å

  • V = 1548.21 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.65 × 0.55 × 0.46 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.86, Tmax = 0.96

  • 17102 measured reflections

  • 2551 independent reflections

  • 2475 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.10

  • 2551 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N7i 0.95 2.70 3.430 (2) 134
C2—H2⋯N7i 1.00 2.55 3.392 (2) 142
C2—H2⋯N8i 1.00 2.53 3.506 (2) 165
C3—H3⋯N3ii 1.00 2.46 3.351 (2) 149
C4—H4⋯N3ii 0.95 2.63 3.315 (2) 130
C4—H4⋯N4ii 0.95 2.67 3.543 (2) 154
C6—H6⋯N2 0.95 2.62 3.256 (2) 124
C7—H7⋯N6iii 0.95 2.63 3.339 (2) 132
C12—H12⋯N2ii 0.95 2.71 3.655 (2) 171
C13—H13⋯N7iv 0.95 2.74 3.379 (2) 125
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bifunctional molecules containing two 1H-tetrazol-1-yl groups at both ends of suitable spacer moieties like flexible alkanes or stiff arenes are of growing interest in supramolecular chemistry (Liu et al., 2008, 2009; Yu et al., 2008) and in the construction of new Fe2+-based spin-crossover complexes (Grunert et al., 2004; Quesada et al., 2007; Bialonska et al., 2008). In continuation of a previous study on the crystal structures and packing of α-ω-bis(tetrazol-1-yl)-alkanes (Grunert et al., 2005; Absmeier et al., 2006) the title compound, (1R,2R)-1,2-diphenyl-1,2-di-(1H-tetrazol-1-yl)ethane, became of interest as an example for a chiral bis-tetrazolyl ligand. It was obtained by a standard reaction (Kamiya & Saito, 1973) from the chiral starting material (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine (cf. experimental).

The title compound crystallizes in the orthorhombic chiral space group P212121, with one molecule in the asymmetric unit (Fig. 1). Bond lengths and bond angles in the molecule are normal. The two tetrazole rings are attached to the central ethane group in a (-)-synclinal geometry [N1—C2—C3—N5 = -53.3 (1)°], the two phenyl rings in a (+)-synclinal geometry [N1—C2—C3—N5 = 60.6 (1)°]. The point group symmetry of the free molecule is C2. In the solid state state it deviates significantly from this symmetry by intermolecular forces, as can be seen particularly from the distinctly differing torsion angles angles [C2—C3—N5—C4 = 114.3 (1)° and C3—C2—N1—C1 = 157.8 (1)°] involving the tetrazolyl groups. The corresponding angles involving the phenyl rings differ less [C3—C2—C5—C6 = 76.0 (1)° and C2—C3—C11—C16 = 52.6 (2)°].

In the crystal the molecules are stacked in a typical herring-bone manner (Fig. 2). π-π-stacking is absent but adjacent molecules are linked by weak intermolecular C—H···N interactions (Table 1) between mainly the alkyl CH groups and the tetrazole nitrogen atoms. These are accompanied by somewhat longer C—H···N interactions of the tetrazole CH groups and some phenyl CH groups (Table 1).

Related literature top

For general synthetic procedure, see: Kamiya & Saito (1973). For the crystal structure of the chiral starting material, see: Jones et al. (2003). For studies on the crystal structures and packing of di-tetrazolylalkanes, see: Grunert et al. (2005); Absmeier et al. (2006). For supramolecular compounds made up of di-tetrazolylalkanes, see: Liu et al. (2008, 2009); Yu et al. (2008). For Fe2+ spin-crossover complexes based on di-tetrazolylalkanes, see: Grunert et al. (2004); Quesada et al. (2007); Bialonska et al. (2008).

Experimental top

The title compound was prepared according to the general procedure given by (Kamiya & Saito, 1973). A solution of 2.0 g of (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine (9.42 mmol, Kanto Chemical), 1.41 g of sodium azide (21.7 mmol, Wako, min. 98.0%) and 4.19 g of triethyl orthoformate (28.3 mmol, Sigma-Aldrich, 98%) in 120 ml of glacial acetic acid (Kanto Chemical, 99.5%), was stirred for 2 h at a temperature of 343 - 353 K. After cooling down to rt the solvent was distilled off and 20 ml of distilled water were added, whereupon a yellow solid precipitated. The suspension was stored in the refrigerator overnight, then the product was obtained by suction filtration and was washed with distilled water. Drying under vacuum yielded 0.291 g (9.7%) of the title compound as a colourless microcrystalline powder. Crystals suitable for X-ray difraction were obtained by recrystallization from methanol. Elemental analysis (Micro Corder JM10, J-Science Lab): C (calculated 60.37%/found 59.96%), H (4.43/4.56), N (35.20/34.80). NMR (Bruker DPX-200): 1H (DMSO-d6): δ 7.26–7.37 (m, 3 H, Ph—H), 7.50 (s, 1 H, CH), 7.66–7.70 (m, 2 H, Ph—H), 9.55 (s, 1 H, tetrazole). 13C (DMSO-d6): δ 63.8 (CH); 128.5, 129.1, 129.5, 134.0 (Ph); 143.7 (tetrazole).

Refinement top

The absolute structure of the title compound could not be determined from the diffraction data but was known from the chiral precursor compound (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine. In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf " set to zero. All the H-atoms were placed in calculated positions and treated as riding: C- H = 0.95 - 1.0 Å, with Uiso(H) = 1.2Ueq(C).

Structure description top

Bifunctional molecules containing two 1H-tetrazol-1-yl groups at both ends of suitable spacer moieties like flexible alkanes or stiff arenes are of growing interest in supramolecular chemistry (Liu et al., 2008, 2009; Yu et al., 2008) and in the construction of new Fe2+-based spin-crossover complexes (Grunert et al., 2004; Quesada et al., 2007; Bialonska et al., 2008). In continuation of a previous study on the crystal structures and packing of α-ω-bis(tetrazol-1-yl)-alkanes (Grunert et al., 2005; Absmeier et al., 2006) the title compound, (1R,2R)-1,2-diphenyl-1,2-di-(1H-tetrazol-1-yl)ethane, became of interest as an example for a chiral bis-tetrazolyl ligand. It was obtained by a standard reaction (Kamiya & Saito, 1973) from the chiral starting material (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine (cf. experimental).

The title compound crystallizes in the orthorhombic chiral space group P212121, with one molecule in the asymmetric unit (Fig. 1). Bond lengths and bond angles in the molecule are normal. The two tetrazole rings are attached to the central ethane group in a (-)-synclinal geometry [N1—C2—C3—N5 = -53.3 (1)°], the two phenyl rings in a (+)-synclinal geometry [N1—C2—C3—N5 = 60.6 (1)°]. The point group symmetry of the free molecule is C2. In the solid state state it deviates significantly from this symmetry by intermolecular forces, as can be seen particularly from the distinctly differing torsion angles angles [C2—C3—N5—C4 = 114.3 (1)° and C3—C2—N1—C1 = 157.8 (1)°] involving the tetrazolyl groups. The corresponding angles involving the phenyl rings differ less [C3—C2—C5—C6 = 76.0 (1)° and C2—C3—C11—C16 = 52.6 (2)°].

In the crystal the molecules are stacked in a typical herring-bone manner (Fig. 2). π-π-stacking is absent but adjacent molecules are linked by weak intermolecular C—H···N interactions (Table 1) between mainly the alkyl CH groups and the tetrazole nitrogen atoms. These are accompanied by somewhat longer C—H···N interactions of the tetrazole CH groups and some phenyl CH groups (Table 1).

For general synthetic procedure, see: Kamiya & Saito (1973). For the crystal structure of the chiral starting material, see: Jones et al. (2003). For studies on the crystal structures and packing of di-tetrazolylalkanes, see: Grunert et al. (2005); Absmeier et al. (2006). For supramolecular compounds made up of di-tetrazolylalkanes, see: Liu et al. (2008, 2009); Yu et al. (2008). For Fe2+ spin-crossover complexes based on di-tetrazolylalkanes, see: Grunert et al. (2004); Quesada et al. (2007); Bialonska et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view, along the a-axis, of the crystal packing of the title compound. The shortest hydrogen bonds (C3—H3···N3) are represented by cyan dashed lines.
(1R,2R)-1,2-Diphenyl-1,2-bis(1H-tetrazol-1-yl)ethane top
Crystal data top
C16H14N8F(000) = 664
Mr = 318.35Dx = 1.366 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6154 reflections
a = 8.3088 (4) Åθ = 2.5–30.0°
b = 11.2802 (6) ŵ = 0.09 mm1
c = 16.5187 (9) ÅT = 100 K
V = 1548.21 (14) Å3Prism, colourless
Z = 40.65 × 0.55 × 0.46 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube2475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω and φ scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.86, Tmax = 0.96k = 1514
17102 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.1943P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2551 reflectionsΔρmax = 0.33 e Å3
217 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: known from the chirality of the precursor used; Friedel pairs merged
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H14N8V = 1548.21 (14) Å3
Mr = 318.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3088 (4) ŵ = 0.09 mm1
b = 11.2802 (6) ÅT = 100 K
c = 16.5187 (9) Å0.65 × 0.55 × 0.46 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2475 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.96Rint = 0.018
17102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.10Δρmax = 0.33 e Å3
2551 reflectionsΔρmin = 0.30 e Å3
217 parametersAbsolute structure: known from the chirality of the precursor used; Friedel pairs merged
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.98462 (13)0.55207 (9)0.07313 (6)0.01376 (19)
N21.00108 (15)0.64765 (10)0.02443 (7)0.0189 (2)
N31.14022 (15)0.63675 (11)0.01065 (7)0.0210 (2)
N41.21530 (15)0.53546 (11)0.01269 (7)0.0220 (2)
N50.85774 (13)0.73023 (9)0.18013 (6)0.0135 (2)
N60.90650 (14)0.71246 (10)0.25717 (6)0.0176 (2)
N70.99083 (15)0.80496 (10)0.27687 (7)0.0192 (2)
N80.99906 (15)0.88385 (10)0.21407 (7)0.0200 (2)
C11.11653 (16)0.48451 (12)0.06448 (8)0.0189 (2)
H11.13560.41150.09150.023*
C20.83462 (14)0.52879 (10)0.11786 (7)0.0125 (2)
H20.86130.48690.16950.015*
C30.74954 (14)0.64654 (10)0.13802 (7)0.0123 (2)
H30.71710.68400.08560.015*
C40.91482 (17)0.83523 (11)0.15502 (8)0.0173 (2)
H40.89740.86910.10310.021*
C50.72240 (15)0.45132 (11)0.06816 (7)0.0141 (2)
C60.69622 (17)0.47520 (12)0.01377 (7)0.0175 (2)
H60.75310.53800.03930.021*
C70.58752 (18)0.40772 (13)0.05813 (8)0.0214 (3)
H70.57140.42360.11400.026*
C80.50251 (19)0.31696 (12)0.02063 (9)0.0237 (3)
H80.42700.27150.05070.028*
C90.52807 (18)0.29277 (12)0.06099 (9)0.0239 (3)
H90.46990.23080.08670.029*
C100.63881 (17)0.35930 (11)0.10515 (8)0.0193 (2)
H100.65720.34170.16060.023*
C110.59769 (15)0.62608 (11)0.18692 (7)0.0144 (2)
C120.45409 (17)0.67425 (12)0.15886 (8)0.0188 (3)
H120.45290.71890.11010.023*
C130.31198 (17)0.65725 (13)0.20212 (9)0.0240 (3)
H130.21440.69090.18300.029*
C140.31241 (18)0.59140 (14)0.27300 (9)0.0257 (3)
H140.21550.58040.30260.031*
C150.45537 (19)0.54143 (13)0.30064 (9)0.0249 (3)
H150.45550.49530.34870.030*
C160.59844 (17)0.55868 (12)0.25815 (8)0.0198 (3)
H160.69590.52490.27740.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0135 (4)0.0139 (4)0.0139 (4)0.0001 (4)0.0009 (4)0.0007 (3)
N20.0194 (5)0.0180 (5)0.0192 (5)0.0002 (4)0.0040 (4)0.0050 (4)
N30.0196 (5)0.0222 (5)0.0214 (5)0.0008 (4)0.0051 (4)0.0015 (4)
N40.0176 (5)0.0245 (6)0.0238 (5)0.0014 (4)0.0047 (4)0.0003 (4)
N50.0126 (4)0.0143 (4)0.0134 (4)0.0007 (4)0.0011 (4)0.0005 (3)
N60.0184 (5)0.0212 (5)0.0132 (4)0.0027 (4)0.0027 (4)0.0006 (4)
N70.0191 (5)0.0201 (5)0.0186 (4)0.0014 (4)0.0019 (4)0.0035 (4)
N80.0196 (5)0.0168 (5)0.0235 (5)0.0016 (4)0.0041 (4)0.0014 (4)
C10.0155 (5)0.0192 (6)0.0219 (6)0.0029 (5)0.0017 (5)0.0008 (5)
C20.0111 (5)0.0139 (5)0.0124 (4)0.0007 (4)0.0011 (4)0.0006 (4)
C30.0110 (5)0.0135 (5)0.0124 (4)0.0006 (4)0.0006 (4)0.0006 (4)
C40.0172 (6)0.0143 (5)0.0204 (5)0.0016 (4)0.0030 (4)0.0013 (4)
C50.0129 (5)0.0135 (5)0.0157 (5)0.0004 (4)0.0002 (4)0.0017 (4)
C60.0183 (6)0.0188 (5)0.0155 (5)0.0001 (5)0.0003 (4)0.0011 (4)
C70.0228 (6)0.0226 (6)0.0189 (5)0.0018 (5)0.0037 (5)0.0057 (5)
C80.0221 (6)0.0177 (6)0.0314 (7)0.0001 (5)0.0072 (6)0.0067 (5)
C90.0233 (6)0.0169 (6)0.0315 (7)0.0056 (5)0.0027 (5)0.0007 (5)
C100.0206 (6)0.0160 (5)0.0213 (5)0.0029 (5)0.0018 (5)0.0019 (5)
C110.0130 (5)0.0152 (5)0.0151 (5)0.0016 (4)0.0019 (4)0.0031 (4)
C120.0146 (6)0.0195 (6)0.0223 (6)0.0002 (4)0.0003 (4)0.0018 (5)
C130.0133 (6)0.0265 (7)0.0324 (7)0.0001 (5)0.0035 (5)0.0054 (6)
C140.0197 (6)0.0262 (7)0.0310 (7)0.0059 (5)0.0106 (5)0.0075 (6)
C150.0264 (7)0.0262 (7)0.0222 (6)0.0056 (5)0.0090 (5)0.0002 (5)
C160.0190 (6)0.0222 (6)0.0183 (5)0.0013 (5)0.0025 (5)0.0006 (5)
Geometric parameters (Å, º) top
N1—C11.3425 (16)C6—C71.3900 (18)
N1—N21.3521 (14)C6—H60.9500
N1—C21.4725 (15)C7—C81.389 (2)
N2—N31.2991 (16)C7—H70.9500
N3—N41.3577 (17)C8—C91.392 (2)
N4—C11.3176 (17)C8—H80.9500
N5—C41.3416 (16)C9—C101.3935 (18)
N5—N61.3504 (14)C9—H90.9500
N5—C31.4777 (15)C10—H100.9500
N6—N71.2984 (16)C11—C121.3906 (18)
N7—N81.3685 (15)C11—C161.4008 (17)
N8—C41.3199 (17)C12—C131.3934 (19)
C1—H10.9500C12—H120.9500
C2—C51.5188 (16)C13—C141.387 (2)
C2—C31.5410 (16)C13—H130.9500
C2—H21.0000C14—C151.392 (2)
C3—C111.5158 (17)C14—H140.9500
C3—H31.0000C15—C161.3941 (19)
C4—H40.9500C15—H150.9500
C5—C101.3903 (17)C16—H160.9500
C5—C61.3971 (16)
C1—N1—N2107.87 (11)C7—C6—C5120.41 (12)
C1—N1—C2130.02 (10)C7—C6—H6119.8
N2—N1—C2121.76 (10)C5—C6—H6119.8
N3—N2—N1106.26 (11)C8—C7—C6119.93 (12)
N2—N3—N4111.21 (11)C8—C7—H7120.0
C1—N4—N3105.39 (11)C6—C7—H7120.0
C4—N5—N6108.45 (10)C7—C8—C9119.91 (13)
C4—N5—C3129.31 (10)C7—C8—H8120.0
N6—N5—C3122.09 (10)C9—C8—H8120.0
N7—N6—N5106.19 (10)C8—C9—C10120.14 (13)
N6—N7—N8111.07 (10)C8—C9—H9119.9
C4—N8—N7105.28 (10)C10—C9—H9119.9
N4—C1—N1109.26 (11)C5—C10—C9120.13 (12)
N4—C1—H1125.4C5—C10—H10119.9
N1—C1—H1125.4C9—C10—H10119.9
N1—C2—C5110.55 (9)C12—C11—C16119.73 (12)
N1—C2—C3110.06 (9)C12—C11—C3118.49 (11)
C5—C2—C3109.34 (9)C16—C11—C3121.77 (11)
N1—C2—H2109.0C11—C12—C13120.15 (13)
C5—C2—H2109.0C11—C12—H12119.9
C3—C2—H2109.0C13—C12—H12119.9
N5—C3—C11110.66 (9)C14—C13—C12120.31 (13)
N5—C3—C2111.92 (9)C14—C13—H13119.8
C11—C3—C2111.46 (10)C12—C13—H13119.8
N5—C3—H3107.5C13—C14—C15119.75 (12)
C11—C3—H3107.5C13—C14—H14120.1
C2—C3—H3107.5C15—C14—H14120.1
N8—C4—N5109.01 (11)C14—C15—C16120.40 (13)
N8—C4—H4125.5C14—C15—H15119.8
N5—C4—H4125.5C16—C15—H15119.8
C10—C5—C6119.47 (12)C15—C16—C11119.65 (13)
C10—C5—C2119.92 (10)C15—C16—H16120.2
C6—C5—C2120.55 (11)C11—C16—H16120.2
C1—N1—N2—N30.94 (14)C3—N5—C4—N8175.92 (12)
C2—N1—N2—N3174.78 (10)N1—C2—C5—C10137.82 (11)
N1—N2—N3—N40.90 (14)C3—C2—C5—C10100.87 (13)
N2—N3—N4—C10.50 (15)N1—C2—C5—C645.31 (15)
C4—N5—N6—N70.14 (14)C3—C2—C5—C676.01 (13)
C3—N5—N6—N7176.11 (11)C10—C5—C6—C70.03 (19)
N5—N6—N7—N80.09 (14)C2—C5—C6—C7176.86 (12)
N6—N7—N8—C40.30 (14)C5—C6—C7—C80.9 (2)
N3—N4—C1—N10.11 (15)C6—C7—C8—C90.9 (2)
N2—N1—C1—N40.66 (15)C7—C8—C9—C100.1 (2)
C2—N1—C1—N4173.81 (12)C6—C5—C10—C90.98 (19)
C1—N1—C2—C581.28 (15)C2—C5—C10—C9175.93 (12)
N2—N1—C2—C591.05 (13)C8—C9—C10—C51.0 (2)
C1—N1—C2—C3157.83 (12)N5—C3—C11—C12108.50 (12)
N2—N1—C2—C329.83 (14)C2—C3—C11—C12126.26 (12)
C4—N5—C3—C11120.73 (14)N5—C3—C11—C1672.66 (14)
N6—N5—C3—C1154.32 (14)C2—C3—C11—C1652.57 (15)
C4—N5—C3—C2114.30 (13)C16—C11—C12—C131.08 (19)
N6—N5—C3—C270.65 (13)C3—C11—C12—C13179.94 (12)
N1—C2—C3—N553.30 (12)C11—C12—C13—C140.6 (2)
C5—C2—C3—N5174.92 (9)C12—C13—C14—C150.5 (2)
N1—C2—C3—C11177.83 (9)C13—C14—C15—C161.0 (2)
C5—C2—C3—C1160.56 (12)C14—C15—C16—C110.4 (2)
N7—N8—C4—N50.38 (15)C12—C11—C16—C150.58 (19)
N6—N5—C4—N80.34 (15)C3—C11—C16—C15179.40 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N7i0.952.703.430 (2)134
C2—H2···N7i1.002.553.392 (2)142
C2—H2···N8i1.002.533.506 (2)165
C3—H3···N3ii1.002.463.351 (2)149
C4—H4···N3ii0.952.633.315 (2)130
C4—H4···N4ii0.952.673.543 (2)154
C6—H6···N20.952.623.256 (2)124
C7—H7···N6iii0.952.633.339 (2)132
C12—H12···N2ii0.952.713.655 (2)171
C13—H13···N7iv0.952.743.379 (2)125
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1/2, y+3/2, z; (iii) x+3/2, y+1, z1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14N8
Mr318.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.3088 (4), 11.2802 (6), 16.5187 (9)
V3)1548.21 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.65 × 0.55 × 0.46
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.86, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
17102, 2551, 2475
Rint0.018
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.10
No. of reflections2551
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.30
Absolute structureKnown from the chirality of the precursor used; Friedel pairs merged

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N7i0.952.703.430 (2)134
C2—H2···N7i1.002.553.392 (2)142
C2—H2···N8i1.002.533.506 (2)165
C3—H3···N3ii1.002.463.351 (2)149
C4—H4···N3ii0.952.633.315 (2)130
C4—H4···N4ii0.952.673.543 (2)154
C6—H6···N20.952.623.256 (2)124
C7—H7···N6iii0.952.633.339 (2)132
C12—H12···N2ii0.952.713.655 (2)171
C13—H13···N7iv0.952.743.379 (2)125
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1/2, y+3/2, z; (iii) x+3/2, y+1, z1/2; (iv) x1, y, z.
 

Footnotes

Present address: Vienna University of Technology, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060 Vienna, Austria.

Acknowledgements

FW is grateful to the Japan Society for the Promotion of Science for financial support through a fellowship. MH acknowledges support from a Grant-in-Aid for Young Scientists A (No. 20685011) and a High-Tech Research Center project for private universities with the matching fund subsidy of MEXT in Japan.

References

First citationAbsmeier, A., Bartel, M., Carbonera, C., Jameson, G. N. L., Weinberger, P., Caneschi, A., Mereiter, K., Letard, J.-F. & Linert, W. (2006). Chem. Eur. J. 12, 2235–2243.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBialonska, A., Bronisz, R. & Weselski, M. (2008). Inorg. Chem. 47, 4436–4438.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrunert, M., Schweifer, J., Weinberger, P., Linert, W., Mereiter, K., Hilscher, G., Müller, M., Wiesinger, G. & van Koningsbruggen, P. J. (2004). Inorg. Chem. 43, 155–165.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGrunert, C. M., Weinberger, P., Schweifer, J., Hampel, C., Stassen, A. F., Mereiter, K. & Linert, W. (2005). J. Mol. Struct. 733, 41–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationJones, M. D., Almeida Paz, F. A., Davies, J. E. & Johnson, B. F. G. (2003). Acta Cryst. E59, o455–o457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKamiya, T. & Saito, Y. (1973). Offenlegungsschrift 2147023 (Patent).  Google Scholar
First citationLiu, P.-P., Cheng, A.-L., Yue, Q., Liu, N., Sun, W.-W. & Gao, E.-Q. (2008). Cryst. Growth Des. 8, 1668–1674.  Web of Science CrossRef CAS Google Scholar
First citationLiu, P.-P., Wang, Y.-Q., Tian, C.-Y., Peng, H.-Q. & Gao, E.-Q. (2009). J. Mol. Struct. 920, 459–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuesada, M., Kooijman, H., Gamez, P., Sanchez Costa, J., van Koningsbruggen, P. J., Weinberger, P., Reissner, M., Spek, A. L., Haasnoot, J. G. & Reedijk, J. (2007). Dalton Trans. pp. 5434–5440.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, J.-H., Mereiter, K., Hassan, N., Feldgitscher, C. & Linert, W. (2008). Cryst. Growth Des. 8, 1535–1540.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds