metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperazine-1,4-diium bis­­[tetra­chlorido­aurate(III)] dihydrate

aInstitute of Chemistry FEB RAS, 159 Prospekt Stoletiya, Vladivostok 690022, Russian Federation
*Correspondence e-mail: pumalych@ich.dvo.ru

(Received 30 September 2009; accepted 8 October 2009; online 17 October 2009)

In the title compound, (C4H12N2)[AuCl4]2·2H2O, the AuIII atom has a square-planar geometry. The piperazinium dication lies on an inversion centre and adopts a typical chair conformation. In the crystal, a combination of N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds results in the formation of a three-dimensional network.

Related literature

For bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For similar compounds, see: Kefi & Nasr (2005[Kefi, R. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 241-242.]); Sharutin et al. (2008[Sharutin, V. V., Senchurin, V. S., Fastovets, O. A., Pakusina, A. P. & Sharutina, O. K. (2008). Russ. J. Coord. Chem. 34, 367-373.]); Sutherland & Harrison (2009[Sutherland, P. A. & Harrison, W. T. A. (2009). Acta Cryst. E65, m565.]); Zhang et al. (2006[Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)[AuCl4]2·2H2O

  • Mr = 801.72

  • Monoclinic, P 21 /c

  • a = 7.7327 (11) Å

  • b = 10.1114 (15) Å

  • c = 11.9024 (18) Å

  • β = 105.565 (3)°

  • V = 896.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 17.53 mm−1

  • T = 296 K

  • 0.33 × 0.23 × 0.08 mm

Data collection
  • Bruker SMART CCD 1000 diffractometer

  • Absorption correction: gaussian (XPREP and SADABS; Bruker, 2003[Bruker (2003). XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.043, Tmax = 0.251

  • 6689 measured reflections

  • 2630 independent reflections

  • 2446 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.044

  • S = 1.09

  • 2630 reflections

  • 89 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.90 1.97 2.815 (3) 155
N1—H1B⋯O1ii 0.90 2.39 2.960 (3) 121
O1—H2⋯Cl1iii 0.839 (13) 2.57 (2) 3.3035 (19) 147 (3)
O1—H2⋯Cl4iii 0.839 (13) 2.83 (3) 3.445 (2) 131 (3)
O1—H1⋯Cl4 0.822 (14) 2.71 (3) 3.382 (2) 140 (3)
O1—H1⋯Cl3 0.822 (14) 2.67 (3) 3.268 (2) 131 (3)
N1—H1A⋯Cl1 0.90 2.60 3.373 (2) 144
N1—H1A⋯Cl2 0.90 2.81 3.575 (2) 143
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The asymmetric unit of the title compound consists of a discrete [AuCl4]- complex anion, one water molecule and one-half of a diprotonated piperazinium dication (Fig. 1). The Au atom in the tetrachloridoaurate anion exhibits a square-planar coordination. A similar geometry has been observed, for exemple, in tetraphenylantimony(V) tetrachloroaurate (Sharutin et al., 2008) and bipyridinium tetrachloroaurate (Zhang et al., 2006). The Au—Cl bond lengths are in the range of 2.2802 (6) - 2.2842 (7) Å. In the crystal structure, the anions are stacked into columns along the a axis, parallel to each other. The distances between anion planes are ca. 3.734 and 3.999 Å. The organic piperazinium dication lies at an inversion centre and adopts a typical chair geometry with normal valence bond lengths (Allen et al., 1987) and angles, as observed in the structures of piperazinediium tetrachloridozincate (Sutherland & Harrison, 2009) and piperazinediium tetrachloridozincate monohydrate (Kefi & Nasr, 2005).

The piperazinium dications and water molecules are linked by intermolecular bifurcated N—H···O hydrogen bonds to form chains proagagting along the [100] direction (Fig. 2). The water-piperaziniun chains and the anion stacks form a three-dimensional framework (Fig. 3) via bifurcated N—H···Cl and O—H···Cl hydrogen bonds (Table 1).

Related literature top

For bond distances, see: Allen et al. (1987). For similar compounds, see: Kefi & Nasr (2005); Sharutin et al. (2008); Sutherland & Harrison (2009); Zhang et al. (2006).

Experimental top

The chemicals used were of reagent grade. Ciprofloxacin hydrochloride (37 mg, 0.1 mmol) and gold(III) chloride (AuCl3 30 mg, 0.1 mmol) were dissolved in 10 ml of 32% of HCl. Yellow crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation in air at rt, after a few days.

Refinement top

The water H-atoms were located from difference electron-density maps and were refined with distance restraints of O—H = 0.85 (2) Å and Uiso(H) = 1.5Ueq(O). All the other H-atoms were positioned geometrically and allowed to ride on their parent atoms: N—H = 0.90 Å, C—H = 0.97 Å with Uiso(H)= 1.2Ueq(parent N or C atom).

Structure description top

The asymmetric unit of the title compound consists of a discrete [AuCl4]- complex anion, one water molecule and one-half of a diprotonated piperazinium dication (Fig. 1). The Au atom in the tetrachloridoaurate anion exhibits a square-planar coordination. A similar geometry has been observed, for exemple, in tetraphenylantimony(V) tetrachloroaurate (Sharutin et al., 2008) and bipyridinium tetrachloroaurate (Zhang et al., 2006). The Au—Cl bond lengths are in the range of 2.2802 (6) - 2.2842 (7) Å. In the crystal structure, the anions are stacked into columns along the a axis, parallel to each other. The distances between anion planes are ca. 3.734 and 3.999 Å. The organic piperazinium dication lies at an inversion centre and adopts a typical chair geometry with normal valence bond lengths (Allen et al., 1987) and angles, as observed in the structures of piperazinediium tetrachloridozincate (Sutherland & Harrison, 2009) and piperazinediium tetrachloridozincate monohydrate (Kefi & Nasr, 2005).

The piperazinium dications and water molecules are linked by intermolecular bifurcated N—H···O hydrogen bonds to form chains proagagting along the [100] direction (Fig. 2). The water-piperaziniun chains and the anion stacks form a three-dimensional framework (Fig. 3) via bifurcated N—H···Cl and O—H···Cl hydrogen bonds (Table 1).

For bond distances, see: Allen et al. (1987). For similar compounds, see: Kefi & Nasr (2005); Sharutin et al. (2008); Sutherland & Harrison (2009); Zhang et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Fragment of the water-piperazinium hydrogen bonded chain, with the hydrogen bonds indicated by dotted lines. Symmetry codes are the same as in Table 1.
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title compound, with the hydrogen bonds shown as dotted lines. All the C-bound H atoms have been omitted for clarity. Symmetry codes are the same as in Table 1.
Piperazine-1,4-diium bis[tetrachloridoaurate(III)] dihydrate top
Crystal data top
(C4H12N2)[AuCl4]2·2H2OF(000) = 728
Mr = 801.72Dx = 2.970 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1008 reflections
a = 7.7327 (11) Åθ = 3.4–30.6°
b = 10.1114 (15) ŵ = 17.53 mm1
c = 11.9024 (18) ÅT = 296 K
β = 105.565 (3)°Prism, yellow
V = 896.5 (2) Å30.33 × 0.23 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD 1000
diffractometer
2630 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.33 pixels mm-1θmax = 31.5°, θmin = 2.7°
ω scansh = 109
Absorption correction: gaussian
(XPREP and SADABS; Bruker, 2003)
k = 1312
Tmin = 0.043, Tmax = 0.251l = 1417
6689 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0203P)2 + 0.7643P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
2630 reflectionsΔρmax = 1.36 e Å3
89 parametersΔρmin = 0.75 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.01512 (17)
Crystal data top
(C4H12N2)[AuCl4]2·2H2OV = 896.5 (2) Å3
Mr = 801.72Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7327 (11) ŵ = 17.53 mm1
b = 10.1114 (15) ÅT = 296 K
c = 11.9024 (18) Å0.33 × 0.23 × 0.08 mm
β = 105.565 (3)°
Data collection top
Bruker SMART CCD 1000
diffractometer
2630 independent reflections
Absorption correction: gaussian
(XPREP and SADABS; Bruker, 2003)
2446 reflections with I > 2σ(I)
Tmin = 0.043, Tmax = 0.251Rint = 0.018
6689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0182 restraints
wR(F2) = 0.044H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.36 e Å3
2630 reflectionsΔρmin = 0.75 e Å3
89 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.258077 (10)0.481141 (8)0.040268 (7)0.03248 (2)
Cl10.22668 (9)0.31457 (6)0.16243 (5)0.04886 (14)
Cl20.12348 (9)0.34990 (6)0.11438 (5)0.04885 (15)
Cl30.29217 (10)0.64504 (6)0.08394 (6)0.05264 (16)
Cl40.39054 (10)0.60981 (7)0.19756 (6)0.05297 (16)
O10.5108 (2)0.88550 (19)0.07637 (17)0.0495 (4)
H10.499 (5)0.8047 (14)0.075 (3)0.074*
H20.546 (5)0.890 (4)0.1494 (12)0.074*
N10.1859 (2)0.02747 (18)0.01336 (18)0.0360 (4)
H1A0.18820.11630.01880.043*
H1B0.29850.00040.01900.043*
C20.1246 (3)0.0285 (2)0.1115 (2)0.0390 (5)
H2A0.20180.00290.18490.047*
H2B0.13300.12420.11060.047*
C30.0679 (3)0.0117 (2)0.1018 (2)0.0384 (5)
H3A0.10870.03050.16320.046*
H3B0.07410.10670.11130.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.03239 (3)0.02880 (4)0.03751 (4)0.00020 (3)0.01157 (3)0.00039 (3)
Cl10.0685 (3)0.0368 (3)0.0414 (3)0.0146 (2)0.0150 (2)0.0013 (2)
Cl20.0623 (3)0.0419 (3)0.0398 (3)0.0061 (3)0.0092 (2)0.0053 (2)
Cl30.0701 (4)0.0397 (3)0.0488 (3)0.0048 (3)0.0172 (3)0.0087 (2)
Cl40.0677 (3)0.0412 (3)0.0463 (3)0.0155 (3)0.0088 (3)0.0056 (2)
O10.0402 (7)0.0474 (9)0.0594 (10)0.0011 (7)0.0107 (7)0.0196 (8)
N10.0297 (7)0.0361 (9)0.0450 (9)0.0024 (6)0.0151 (7)0.0022 (7)
C20.0357 (9)0.0425 (12)0.0386 (11)0.0013 (8)0.0096 (8)0.0047 (8)
C30.0371 (9)0.0442 (11)0.0382 (10)0.0045 (8)0.0176 (8)0.0048 (8)
Geometric parameters (Å, º) top
Au1—Cl12.2802 (6)N1—H1A0.9000
Au1—Cl22.2813 (6)N1—H1B0.9000
Au1—Cl32.2827 (7)C2—C31.517 (3)
Au1—Cl42.2842 (7)C2—H2A0.9700
O1—H10.822 (14)C2—H2B0.9700
O1—H20.839 (13)C3—H3A0.9700
N1—C3i1.482 (3)C3—H3B0.9700
N1—C21.486 (3)
Cl1—Au1—Cl288.92 (3)N1—C2—C3110.55 (18)
Cl1—Au1—Cl3178.87 (3)N1—C2—H2A109.5
Cl2—Au1—Cl390.39 (3)C3—C2—H2A109.5
Cl1—Au1—Cl489.95 (3)N1—C2—H2B109.5
Cl2—Au1—Cl4178.82 (2)C3—C2—H2B109.5
Cl3—Au1—Cl490.74 (3)H2A—C2—H2B108.1
H1—O1—H294 (3)N1i—C3—C2110.31 (19)
C3i—N1—C2112.20 (17)N1i—C3—H3A109.6
C3i—N1—H1A109.2C2—C3—H3A109.6
C2—N1—H1A109.2N1i—C3—H3B109.6
C3i—N1—H1B109.2C2—C3—H3B109.6
C2—N1—H1B109.2H3A—C3—H3B108.1
H1A—N1—H1B107.9
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1ii0.901.972.815 (3)155
N1—H1B···O1iii0.902.392.960 (3)121
O1—H2···Cl1iv0.84 (1)2.57 (2)3.3035 (19)147 (3)
O1—H2···Cl4iv0.84 (1)2.83 (3)3.445 (2)131 (3)
O1—H1···Cl40.82 (1)2.71 (3)3.382 (2)140 (3)
O1—H1···Cl30.82 (1)2.67 (3)3.268 (2)131 (3)
N1—H1A···Cl10.902.603.373 (2)144
N1—H1A···Cl20.902.813.575 (2)143
Symmetry codes: (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C4H12N2)[AuCl4]2·2H2O
Mr801.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.7327 (11), 10.1114 (15), 11.9024 (18)
β (°) 105.565 (3)
V3)896.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)17.53
Crystal size (mm)0.33 × 0.23 × 0.08
Data collection
DiffractometerBruker SMART CCD 1000
Absorption correctionGaussian
(XPREP and SADABS; Bruker, 2003)
Tmin, Tmax0.043, 0.251
No. of measured, independent and
observed [I > 2σ(I)] reflections
6689, 2630, 2446
Rint0.018
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.044, 1.09
No. of reflections2630
No. of parameters89
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.36, 0.75

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.901.972.815 (3)155
N1—H1B···O1ii0.902.392.960 (3)121
O1—H2···Cl1iii0.839 (13)2.57 (2)3.3035 (19)147 (3)
O1—H2···Cl4iii0.839 (13)2.83 (3)3.445 (2)131 (3)
O1—H1···Cl40.822 (14)2.71 (3)3.382 (2)140 (3)
O1—H1···Cl30.822 (14)2.67 (3)3.268 (2)131 (3)
N1—H1A···Cl10.902.603.373 (2)144
N1—H1A···Cl20.902.813.575 (2)143
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2003). XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKefi, R. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 241–242.  CAS Google Scholar
First citationSharutin, V. V., Senchurin, V. S., Fastovets, O. A., Pakusina, A. P. & Sharutina, O. K. (2008). Russ. J. Coord. Chem. 34, 367–373.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutherland, P. A. & Harrison, W. T. A. (2009). Acta Cryst. E65, m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds