metal-organic compounds
Nitrosyltris(pyridine-2-thiolato-κ2N,S)molybdenum(II) dihydrate
aDepartment of Applied Science, Faculty of Science, Kochi University, Akebono-cho, Kochi 780-8520, Japan
*Correspondence e-mail: yonemura@kochi-u.ac.jp
In the title compound, [Mo(C5H4NS)3(NO)]·2H2O, the Mo atom is coordinated by a nitrosyl ligand and three monoanionic N,S-bidentate ligands in a distorted MoN4S3 pentagonal-bipyramidal molecular geometry. The pyridine N atom of one pyridine-2-thiolate (pyt) ligand is coordinated to the Mo atom in the trans position relative to the NO ligand [N(pyt)—Mo—N(NO) = 170.62 (19)°]. The compound has Cs symmetry, with a mirror plane that includes one pyt ring and the NO group. The S—Mo—N(NO) and N(pyt)—Mo—N(NO) angles [97.24 (12) and 91.87 (8)°, respectively] are large relative to the ideal angles of 90°. In the crystal, the molecules pack in a zigzag arrangement. The cavities between the molecules are occupied by disordered water molecules of crystallization.
Related literature
For the synthesis and chemistry of similar nitrosyl, pyridinethilato, or pyrimidinethiolato derivative complexes, see: Halpenny & Mascharak (2009); Rose et al. (2007); Cini et al. (2003); Maurya et al. (2006); Kunkely & Vogler (2003); Ford et al. (1998); Proust et al. (1994); Ardon & Cohen (1993); Calderon et al. (1969); Yonemura et al. (2006, 2001); Bucher et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: WinAFC (Rigaku/MSC, 2000); cell WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.
Supporting information
https://doi.org/10.1107/S1600536809043712/su2152sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809043712/su2152Isup2.hkl
A solution of [Mo(pyt)2(NO)2] (0.25 g, 0.65 mmol) in N,N-dimethylformamide (DMF) and PPh3 (0.37 g, 1.41 mmol) in tetrahydrofuran (THF) was stirred at rt for 4 days to produce an orange solution. Yellow precipitates of [{(ON)Mo(pyt)2}2(µ-OH)2] and [Mo(pyt)3(NO)] were obtained by allowing the reaction solution to stand in a refrigerator for a few days. The resulting orange-yellow crystals were collected by filtration. The filtrate was then poured into water, and the precipitate produced was collected by filtration and recrystallized from an acetone solution to give orange-yellow crystals of the title compound (23% yield). Anal. Calcd for [Mo(pyt)3(NO)] = C16H16MoN4O2S3: C 25.53, H 1.55, N 22.13%, Found: C 25.70, H 1.61, N 21.98%. IR [KBr; νmax,, cm-1]: 1644 (NO), 1582, 1551(CC, CN), 1447, 1420 (NC, CH), 1260 (CS). 13C NMR (acetone-d6): δ 176.5, 149.1, 148.2, 140.3, 140.1, 126.8, 126.5, 119.9, 118.7.
The water molecules of solvent of crystallization are disordered with occupancies of 0.5 each, and it was not possible to locate their H-atoms. The C-bound H-atom were included in calculated positions and treated as riding: C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C).
In recent years, pyridinethiolate- or pyrimidinethiolate-type ligands and their complexes have been investigated as antimetabolite and antiviral agents, as well as for their unique photochemical properties (Halpenny & Mascharak, 2009; Rose et al., 2007; Cini et al., 2003). For example, attempts to regulate NO in vivo have prompted studies of NO scavengers and NO-releasing drugs. Although some photoinduced NO-releasing reactions of mononitrosyl complexes have been reported, relatively little is known about the analogous reactions of dinitrosyl complexes in this respect (Maurya et al., 2006; Kunkely & Vogler, 2003; Ford et al., 1998). We previously reported on the preparation, characterization and interesting photo-dimerization reactions of some dinitrosyl-molybdenum complexes containing thiolate ligands, which were accompanied by NO cleavage (Yonemura et al., 2001, 2006). This highlighted the need to further study the reactivities and properties of these dinitrosyl-molybdenum complexes. That communication described a novel reaction of dinitrosyl-molybdenum [Mo(bidentate-N,S)2(NO)2]-type complexes with PPh3 (Yonemura, et al., 2006). This reaction, which uses pyridine-2-thiolate (pyt) as a thiolate ligand, was shown to form [Mo(pyt)3(NO)], [{(ON)Mo(pyt)2}2(µ-OH)2], and Ph3PO. In this paper, we report on the structure of [Mo(pyt)3(NO)] Dihydrate.
In the title compound the molybdenum atom is coordinated to a nitrosyl ligand and three monoanionic N,S- bidentate ligands, producing a distorted MoN5S2 pentagonal bipyramidal molecular geometry (Fig. 1 and Table 1). The geometrical parameters are available in the archived
This complex is derived from the elimination of one NO ligand from [Mo(pyt)2(NO)2] and the introduction of a third pyt ligand, giving rise to a Mo atom surrounded by three pyt ligands and one NO ligand. The complex adopts a seven-coordinate structure with a distorted pentagonal bipyramidal coordination geometry about the Mo atom. Both the N and S atoms of two pyt ligands and an S atom of the third pyt ligand occupy the equatorial positions of the complex. The remaining N-atom of the third pyt ligand occupies one of the axial sites. The NO ligand occupies the other axial site in its linear mode [Mo1—N3—O1 = 179.6 (4)°], indicating that the NO ligand is coordinated as NO+ (Proust et al., 1994; Ardon & Cohen, 1993; Calderon et al., 1969). Therefore, the of the molybdenum atom in the title compound is formally +II; that is, the molybdenum atom is oxidized from 0 to +II.The Mo—S distances are 2.5240 (12) and 2.4815 (16) Å, compared to 2.497 (3) and 2.477 (3) Å in complex [Mo(pymt)2(NO)2] (Yonemura et al., 2001), and 2.4870 (7) Å in [Mo(aet)2(NO)2] (Bucher et al., 2008). In this latter complex, the Mo—N2 distance ( 2.228 (3) Å), corresponding to the N trans to the NO ligand, is almost the same as the other Mo—N distance in the title compound (Mo1—N1 = 2.218 (5) Å). The Mo1—NO distance ( 1.777 (5) Å) in the title compound is significantly shorter than those in complex es [Mo(pymt)2(NO)2] (1.814 (8) and 1.84 (1) Å), and [Mo(aet)2(NO)2] (1.828 (2) and 1.837 (2) Å). However, the Mo1—NO distance is almost the same as that in complex [{(ON)Mo(pyt)2}2(µ-OH)2], that is 1.756 (2) Å (Yonemura et al., 2001). The S1—Mo1—N3(NO) and N1—Mo1—N3(NO) angles (97.24 (12) and 91.87 (8)°, respectively) are large compared to the corresponding angles (95.71 (6), 94.48 (7) and 86.36 (8), 88.12 (8)°, respectively) in [{(ON)Mo(pyt)2}2(µ-OH)2].
In the crystal the molecules pack in a zigzag arrangement (Fig. 2). The cavities between the molecules are occupied by disordered water molecules of crystallization.
For
the synthesis and chemistry of similar nitrosyl, pyridinethilato, or pyrimidinethiolato derivative complexes, see: Halpenny & Mascharak (2009); Rose et al. (2007); Cini et al. (2003); Maurya et al. (2006); Kunkely & Vogler (2003); Ford et al. (1998); Proust et al. (1994); Ardon & Cohen (1993); Calderon et al. (1969); Yonemura et al. (2006, 2001); Bucher et al. (2008).
Data collection: WinAFC (Rigaku/MSC, 2000); cell
WinAFC (Rigaku/MSC, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2007).[Mo(C5H4NS)3(NO)]·2H2O | F(000) = 992.00 |
Mr = 492.44 | Dx = 1.540 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 25 reflections |
a = 15.7519 (16) Å | θ = 15.4–17.4° |
b = 14.8889 (14) Å | µ = 0.93 mm−1 |
c = 9.0535 (12) Å | T = 296 K |
V = 2123.3 (4) Å3 | Prismatic, orange |
Z = 4 | 0.45 × 0.40 × 0.25 mm |
Rigaku AFC-7S diffractometer | Rint = 0.023 |
ω–2θ scans | θmax = 27.5° |
Absorption correction: ψ scan (North et al., 1968) | h = 0→20 |
Tmin = 0.727, Tmax = 0.792 | k = −10→19 |
3681 measured reflections | l = −11→6 |
2540 independent reflections | 3 standard reflections every 150 reflections |
2088 reflections with F2 > 2σ(F2) | intensity decay: −1.3% |
Refinement on F2 | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0621P)2 + 2.5132P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.126 | (Δ/σ)max = 0.002 |
S = 1.13 | Δρmax = 1.14 e Å−3 |
2540 reflections | Δρmin = −0.64 e Å−3 |
144 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008) |
0 restraints | Extinction coefficient: 0.0029 (5) |
[Mo(C5H4NS)3(NO)]·2H2O | V = 2123.3 (4) Å3 |
Mr = 492.44 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 15.7519 (16) Å | µ = 0.93 mm−1 |
b = 14.8889 (14) Å | T = 296 K |
c = 9.0535 (12) Å | 0.45 × 0.40 × 0.25 mm |
Rigaku AFC-7S diffractometer | 2088 reflections with F2 > 2σ(F2) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.023 |
Tmin = 0.727, Tmax = 0.792 | 3 standard reflections every 150 reflections |
3681 measured reflections | intensity decay: −1.3% |
2540 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.13 | Δρmax = 1.14 e Å−3 |
2540 reflections | Δρmin = −0.64 e Å−3 |
144 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mo1 | 0.17875 (3) | 0.25000 | 0.95698 (4) | 0.0359 (1) | |
S1 | 0.07755 (7) | 0.15176 (7) | 1.10056 (12) | 0.0512 (3) | |
S2 | 0.25067 (10) | 0.25000 | 0.71312 (17) | 0.0516 (4) | |
O1 | 0.3191 (3) | 0.25000 | 1.1749 (5) | 0.0667 (14) | |
N1 | 0.0907 (3) | 0.25000 | 0.7658 (5) | 0.0427 (12) | |
N2 | 0.1905 (2) | 0.1024 (2) | 0.9222 (3) | 0.0427 (9) | |
N3 | 0.2627 (3) | 0.25000 | 1.0881 (5) | 0.0423 (12) | |
C1 | 0.1292 (2) | 0.0662 (2) | 1.0080 (4) | 0.0420 (10) | |
C2 | 0.1159 (3) | −0.0257 (2) | 1.0145 (4) | 0.0520 (12) | |
C3 | 0.1680 (3) | −0.0801 (3) | 0.9319 (5) | 0.0627 (14) | |
C4 | 0.2315 (3) | −0.0437 (3) | 0.8467 (5) | 0.0653 (16) | |
C5 | 0.2415 (2) | 0.0478 (3) | 0.8434 (5) | 0.0560 (12) | |
C6 | 0.1452 (4) | 0.25000 | 0.6512 (6) | 0.0477 (14) | |
C7 | 0.0065 (4) | 0.25000 | 0.7415 (8) | 0.0570 (17) | |
C8 | −0.0257 (5) | 0.25000 | 0.5987 (9) | 0.077 (3) | |
C9 | 0.0308 (6) | 0.25000 | 0.4820 (8) | 0.080 (3) | |
C10 | 0.1160 (5) | 0.25000 | 0.5066 (7) | 0.066 (2) | |
O21 | −0.0333 (11) | 0.4696 (10) | 0.609 (2) | 0.258 (12) | 0.500 |
O22 | 0.0678 (7) | 0.5119 (9) | 0.5891 (12) | 0.128 (5) | 0.500 |
H1 | 0.07300 | −0.04980 | 1.07300 | 0.0630* | |
H2 | 0.16030 | −0.14210 | 0.93360 | 0.0750* | |
H3 | 0.26730 | −0.08070 | 0.79200 | 0.0780* | |
H4 | 0.28430 | 0.07260 | 0.78550 | 0.0670* | |
H5 | −0.03070 | 0.25000 | 0.82130 | 0.0690* | |
H6 | −0.08390 | 0.25000 | 0.58200 | 0.0920* | |
H7 | 0.01040 | 0.25000 | 0.38570 | 0.0960* | |
H8 | 0.15400 | 0.25000 | 0.42800 | 0.0790* | |
H9 | −0.01120 | 0.48460 | 0.54280 | 0.3170* | 0.500 |
H10 | −0.05690 | 0.48240 | 0.65730 | 0.3170* | 0.500 |
H11 | 0.02840 | 0.51090 | 0.60270 | 0.1900* | 0.500 |
H12 | 0.08240 | 0.49480 | 0.49830 | 0.1900* | 0.500 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.0365 (2) | 0.0382 (2) | 0.0330 (2) | 0.0000 | 0.0017 (2) | 0.0000 |
S1 | 0.0579 (5) | 0.0446 (5) | 0.0510 (5) | −0.0049 (4) | 0.0178 (4) | −0.0019 (4) |
S2 | 0.0495 (7) | 0.0588 (8) | 0.0464 (7) | 0.0000 | 0.0145 (6) | 0.0000 |
O1 | 0.066 (2) | 0.074 (3) | 0.060 (2) | 0.0000 | −0.025 (2) | 0.0000 |
N1 | 0.045 (2) | 0.049 (2) | 0.034 (2) | 0.0000 | −0.0012 (18) | 0.0000 |
N2 | 0.0440 (16) | 0.0440 (17) | 0.0401 (15) | 0.0014 (13) | 0.0003 (12) | −0.0030 (13) |
N3 | 0.044 (2) | 0.042 (2) | 0.041 (2) | 0.0000 | −0.0001 (19) | 0.0000 |
C1 | 0.0457 (19) | 0.0416 (18) | 0.0387 (17) | 0.0002 (15) | −0.0037 (15) | −0.0016 (14) |
C2 | 0.063 (2) | 0.044 (2) | 0.049 (2) | −0.0051 (19) | −0.0008 (19) | 0.0026 (17) |
C3 | 0.085 (3) | 0.039 (2) | 0.064 (2) | 0.004 (2) | −0.011 (2) | −0.0020 (19) |
C4 | 0.072 (3) | 0.051 (2) | 0.073 (3) | 0.017 (2) | 0.007 (2) | −0.008 (2) |
C5 | 0.054 (2) | 0.056 (2) | 0.058 (2) | 0.0076 (19) | 0.0063 (19) | −0.004 (2) |
C6 | 0.057 (3) | 0.047 (2) | 0.039 (2) | 0.0000 | 0.005 (2) | 0.0000 |
C7 | 0.047 (3) | 0.068 (3) | 0.056 (3) | 0.0000 | −0.003 (2) | 0.0000 |
C8 | 0.070 (4) | 0.099 (6) | 0.061 (4) | 0.0000 | −0.023 (3) | 0.0000 |
C9 | 0.095 (6) | 0.103 (6) | 0.043 (3) | 0.0000 | −0.019 (3) | 0.0000 |
C10 | 0.084 (5) | 0.079 (4) | 0.034 (2) | 0.0000 | 0.006 (3) | 0.0000 |
O21 | 0.213 (18) | 0.132 (13) | 0.43 (3) | 0.100 (12) | −0.21 (2) | −0.171 (17) |
O22 | 0.104 (7) | 0.164 (11) | 0.117 (7) | 0.009 (7) | −0.024 (6) | 0.001 (8) |
Mo1—S1 | 2.5240 (12) | N2—C5 | 1.347 (5) |
Mo1—S2 | 2.4815 (16) | C1—C2 | 1.386 (4) |
Mo1—N1 | 2.218 (5) | C2—C3 | 1.374 (6) |
Mo1—N2 | 2.228 (3) | C3—C4 | 1.375 (7) |
Mo1—N3 | 1.777 (5) | C4—C5 | 1.372 (6) |
Mo1—S1i | 2.5240 (12) | C6—C10 | 1.388 (9) |
Mo1—N2i | 2.228 (3) | C7—C8 | 1.389 (11) |
S1—C1 | 1.728 (3) | C8—C9 | 1.381 (12) |
S2—C6 | 1.753 (6) | C9—C10 | 1.360 (12) |
O1—N3 | 1.186 (7) | C2—H1 | 0.9300 |
O21—O22 | 1.72 (2) | C3—H2 | 0.9300 |
O21—H10 | 0.6000 | C4—H3 | 0.9300 |
O21—H9 | 0.7300 | C5—H4 | 0.9300 |
O22—H12 | 0.8900 | C7—H5 | 0.9300 |
O22—H11 | 0.6300 | C8—H6 | 0.9300 |
N1—C6 | 1.347 (7) | C9—H7 | 0.9300 |
N1—C7 | 1.344 (8) | C10—H8 | 0.9300 |
N2—C1 | 1.351 (4) | ||
S1—Mo1—S2 | 138.29 (3) | Mo1—N3—O1 | 179.6 (4) |
S1—Mo1—N1 | 90.40 (10) | N2—C1—C2 | 121.8 (3) |
S1—Mo1—N2 | 63.49 (8) | S1—C1—N2 | 108.7 (2) |
S1—Mo1—N3 | 97.24 (12) | S1—C1—C2 | 129.5 (3) |
S1—Mo1—S1i | 70.83 (4) | C1—C2—C3 | 118.0 (4) |
S1—Mo1—N2i | 134.18 (8) | C2—C3—C4 | 120.5 (4) |
S2—Mo1—N1 | 65.87 (13) | C3—C4—C5 | 119.2 (4) |
S2—Mo1—N2 | 80.58 (7) | N2—C5—C4 | 121.3 (4) |
S2—Mo1—N3 | 104.75 (15) | N1—C6—C10 | 121.0 (6) |
S1i—Mo1—S2 | 138.29 (3) | S2—C6—N1 | 111.0 (4) |
S2—Mo1—N2i | 80.58 (7) | S2—C6—C10 | 128.0 (5) |
N1—Mo1—N2 | 86.66 (8) | N1—C7—C8 | 120.8 (6) |
N1—Mo1—N3 | 170.62 (19) | C7—C8—C9 | 118.5 (7) |
S1i—Mo1—N1 | 90.40 (10) | C8—C9—C10 | 120.7 (7) |
N1—Mo1—N2i | 86.66 (8) | C6—C10—C9 | 118.8 (6) |
N2—Mo1—N3 | 91.87 (8) | C1—C2—H1 | 121.00 |
S1i—Mo1—N2 | 134.18 (8) | C3—C2—H1 | 121.00 |
N2—Mo1—N2i | 161.13 (11) | C2—C3—H2 | 120.00 |
S1i—Mo1—N3 | 97.24 (12) | C4—C3—H2 | 120.00 |
N2i—Mo1—N3 | 91.87 (8) | C5—C4—H3 | 120.00 |
S1i—Mo1—N2i | 63.49 (8) | C3—C4—H3 | 120.00 |
Mo1—S1—C1 | 83.12 (11) | N2—C5—H4 | 119.00 |
Mo1—S2—C6 | 81.48 (19) | C4—C5—H4 | 119.00 |
H9—O21—H10 | 142.00 | N1—C7—H5 | 120.00 |
H11—O22—H12 | 115.00 | C8—C7—H5 | 120.00 |
Mo1—N1—C6 | 101.7 (4) | C7—C8—H6 | 121.00 |
C6—N1—C7 | 120.2 (5) | C9—C8—H6 | 121.00 |
Mo1—N1—C7 | 138.1 (4) | C8—C9—H7 | 120.00 |
Mo1—N2—C5 | 136.0 (3) | C10—C9—H7 | 120.00 |
C1—N2—C5 | 119.3 (3) | C9—C10—H8 | 121.00 |
Mo1—N2—C1 | 104.6 (2) | C6—C10—H8 | 121.00 |
S2—Mo1—S1—C1 | 32.54 (14) | Mo1—S1—C1—N2 | 1.4 (2) |
N1—Mo1—S1—C1 | 85.19 (14) | Mo1—S1—C1—C2 | −179.6 (4) |
N2—Mo1—S1—C1 | −0.87 (14) | Mo1—S2—C6—N1 | 0.00 |
N3—Mo1—S1—C1 | −89.34 (15) | Mo1—S2—C6—C10 | 180.00 |
S1i—Mo1—S1—C1 | 175.48 (12) | Mo1—N1—C6—S2 | 0.00 |
N2i—Mo1—S1—C1 | 170.92 (16) | Mo1—N1—C6—C10 | 180.00 |
S1—Mo1—S2—C6 | 60.58 (6) | C7—N1—C6—S2 | 180.00 |
N1—Mo1—S2—C6 | 0.00 | C7—N1—C6—C10 | 0.00 |
N2—Mo1—S2—C6 | 90.55 (8) | Mo1—N1—C7—C8 | 180.00 |
N3—Mo1—S2—C6 | −180.00 | C6—N1—C7—C8 | 0.00 |
S1—Mo1—N1—C6 | −144.58 (2) | Mo1—N2—C1—S1 | −1.6 (3) |
S1—Mo1—N1—C7 | 35.42 (2) | Mo1—N2—C1—C2 | 179.3 (3) |
S2—Mo1—N1—C6 | 0.00 | C5—N2—C1—S1 | 177.5 (3) |
S2—Mo1—N1—C7 | 180.00 | C5—N2—C1—C2 | −1.6 (5) |
N2—Mo1—N1—C6 | −81.17 (8) | Mo1—N2—C5—C4 | 179.9 (3) |
N2—Mo1—N1—C7 | 98.83 (8) | C1—N2—C5—C4 | 1.1 (6) |
S1—Mo1—N2—C1 | 1.14 (19) | S1—C1—C2—C3 | −178.1 (3) |
S1—Mo1—N2—C5 | −177.8 (4) | N2—C1—C2—C3 | 0.8 (6) |
S2—Mo1—N2—C1 | −157.1 (2) | C1—C2—C3—C4 | 0.4 (6) |
S2—Mo1—N2—C5 | 24.1 (3) | C2—C3—C4—C5 | −0.9 (7) |
N1—Mo1—N2—C1 | −91.0 (2) | C3—C4—C5—N2 | 0.2 (7) |
N1—Mo1—N2—C5 | 90.1 (4) | S2—C6—C10—C9 | 180.00 |
N3—Mo1—N2—C1 | 98.3 (3) | N1—C6—C10—C9 | 0.00 |
N3—Mo1—N2—C5 | −80.6 (4) | N1—C7—C8—C9 | 0.00 |
S1i—Mo1—N2—C1 | −3.7 (3) | C7—C8—C9—C10 | 0.00 |
S1i—Mo1—N2—C5 | 177.4 (3) | C8—C9—C10—C6 | 0.00 |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O21—H9···O22 | 0.73 | 1.37 | 1.72 (2) | 106 |
C5—H4···S2 | 0.93 | 2.77 | 3.237 (5) | 112 |
Experimental details
Crystal data | |
Chemical formula | [Mo(C5H4NS)3(NO)]·2H2O |
Mr | 492.44 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 296 |
a, b, c (Å) | 15.7519 (16), 14.8889 (14), 9.0535 (12) |
V (Å3) | 2123.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.93 |
Crystal size (mm) | 0.45 × 0.40 × 0.25 |
Data collection | |
Diffractometer | Rigaku AFC-7S |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.727, 0.792 |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 3681, 2540, 2088 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.126, 1.13 |
No. of reflections | 2540 |
No. of parameters | 144 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.14, −0.64 |
Computer programs: WinAFC (Rigaku/MSC, 2000), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
Mo1—S1 | 2.5240 (12) | Mo1—N2 | 2.228 (3) |
Mo1—S2 | 2.4815 (16) | Mo1—N3 | 1.777 (5) |
Mo1—N1 | 2.218 (5) | ||
S1—Mo1—S2 | 138.29 (3) | S1i—Mo1—S2 | 138.29 (3) |
S1—Mo1—N1 | 90.40 (10) | N1—Mo1—N2 | 86.66 (8) |
S1—Mo1—N3 | 97.24 (12) | N1—Mo1—N3 | 170.62 (19) |
S2—Mo1—N2 | 80.58 (7) | N2—Mo1—N3 | 91.87 (8) |
Symmetry code: (i) x, −y+1/2, z. |
Acknowledgements
This work was partially supported by Grants-in-Aid for Scientific Research C (No. 20550138) from the Japanese Society for the Promotion of Science (JSPS). The authors are grateful to Kochi University for financial support (The Kochi University President's Discretionary Grant 2009).
References
Ardon, M. & Cohen, S. (1993). Inorg. Chem. 32, 3241–3243. CrossRef CAS Web of Science Google Scholar
Bucher, J., Blacque, O., Schmalle, H. W. & Berke, H. (2008). Acta Cryst. C64, m87–m90. Web of Science CSD CrossRef IUCr Journals Google Scholar
Calderon, J. L., Cotton, F. A. & Legzdins, P. (1969). J. Am. Chem. Soc. 91, 2528–2535. CSD CrossRef CAS Web of Science Google Scholar
Cini, R., Tamasi, G., Defazio, S., Corsini, M., Zanello, P., Messori, L., Marcon, G., Piccioli, F. & Orioli, P. (2003). Inorg. Chem. 42, 8038–8052. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ford, P. C., Bourassa, J., Mianda, K., Lee, B., Lorkovic, I., Boggs, S., Kudo, S. & Laverman, L. (1998). Coord. Chem. Rev. 171, 185–202. CrossRef CAS Google Scholar
Halpenny, G. M. & Mascharak, P. K. (2009). Inorg. Chem. 48, 1490–1497. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kunkely, H. & Vogler, A. (2003). Inorg. Chim. Acta, 346, 275–277. Web of Science CrossRef CAS Google Scholar
Maurya, R. C., Pandey, A., Chaurasia, J. & Martin, H. (2006). J. Mol. Struct. 798, 89–101. Web of Science CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Proust, A., Gouzerh, P. & Robert, F. (1994). J. Chem. Soc. Dalton Trans. pp. 825–833. CSD CrossRef Web of Science Google Scholar
Rigaku/MSC (2000). WinAFC. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Rose, M. J., Patra, A. K. & Mascharak, P. K. (2007). Inorg. Chem. 46, 2328–2338. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yonemura, T., Hashimoto, T., Hasegawa, M., Ikenoue, T., Ama, T. & Kawaguchi, H. (2006). Inorg. Chem. Commun. 9, 183–186. Web of Science CSD CrossRef CAS Google Scholar
Yonemura, T., Nakata, J., Kadoda, M., Hasegawa, M., Okamoto, K., Ama, T., Kawaguchi, H. & Yasui, T. (2001). Inorg. Chem. Commun. 4, 661–663. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, pyridinethiolate- or pyrimidinethiolate-type ligands and their complexes have been investigated as antimetabolite and antiviral agents, as well as for their unique photochemical properties (Halpenny & Mascharak, 2009; Rose et al., 2007; Cini et al., 2003). For example, attempts to regulate NO in vivo have prompted studies of NO scavengers and NO-releasing drugs. Although some photoinduced NO-releasing reactions of mononitrosyl complexes have been reported, relatively little is known about the analogous reactions of dinitrosyl complexes in this respect (Maurya et al., 2006; Kunkely & Vogler, 2003; Ford et al., 1998). We previously reported on the preparation, characterization and interesting photo-dimerization reactions of some dinitrosyl-molybdenum complexes containing thiolate ligands, which were accompanied by NO cleavage (Yonemura et al., 2001, 2006). This highlighted the need to further study the reactivities and properties of these dinitrosyl-molybdenum complexes. That communication described a novel reaction of dinitrosyl-molybdenum [Mo(bidentate-N,S)2(NO)2]-type complexes with PPh3 (Yonemura, et al., 2006). This reaction, which uses pyridine-2-thiolate (pyt) as a thiolate ligand, was shown to form [Mo(pyt)3(NO)], [{(ON)Mo(pyt)2}2(µ-OH)2], and Ph3PO. In this paper, we report on the structure of [Mo(pyt)3(NO)] Dihydrate.
In the title compound the molybdenum atom is coordinated to a nitrosyl ligand and three monoanionic N,S- bidentate ligands, producing a distorted MoN5S2 pentagonal bipyramidal molecular geometry (Fig. 1 and Table 1). The geometrical parameters are available in the archived CIF. This complex is derived from the elimination of one NO ligand from [Mo(pyt)2(NO)2] and the introduction of a third pyt ligand, giving rise to a Mo atom surrounded by three pyt ligands and one NO ligand. The complex adopts a seven-coordinate structure with a distorted pentagonal bipyramidal coordination geometry about the Mo atom. Both the N and S atoms of two pyt ligands and an S atom of the third pyt ligand occupy the equatorial positions of the complex. The remaining N-atom of the third pyt ligand occupies one of the axial sites. The NO ligand occupies the other axial site in its linear mode [Mo1—N3—O1 = 179.6 (4)°], indicating that the NO ligand is coordinated as NO+ (Proust et al., 1994; Ardon & Cohen, 1993; Calderon et al., 1969). Therefore, the oxidation state of the molybdenum atom in the title compound is formally +II; that is, the molybdenum atom is oxidized from 0 to +II.
The Mo—S distances are 2.5240 (12) and 2.4815 (16) Å, compared to 2.497 (3) and 2.477 (3) Å in complex [Mo(pymt)2(NO)2] (Yonemura et al., 2001), and 2.4870 (7) Å in [Mo(aet)2(NO)2] (Bucher et al., 2008). In this latter complex, the Mo—N2 distance ( 2.228 (3) Å), corresponding to the N trans to the NO ligand, is almost the same as the other Mo—N distance in the title compound (Mo1—N1 = 2.218 (5) Å). The Mo1—NO distance ( 1.777 (5) Å) in the title compound is significantly shorter than those in complex es [Mo(pymt)2(NO)2] (1.814 (8) and 1.84 (1) Å), and [Mo(aet)2(NO)2] (1.828 (2) and 1.837 (2) Å). However, the Mo1—NO distance is almost the same as that in complex [{(ON)Mo(pyt)2}2(µ-OH)2], that is 1.756 (2) Å (Yonemura et al., 2001). The S1—Mo1—N3(NO) and N1—Mo1—N3(NO) angles (97.24 (12) and 91.87 (8)°, respectively) are large compared to the corresponding angles (95.71 (6), 94.48 (7) and 86.36 (8), 88.12 (8)°, respectively) in [{(ON)Mo(pyt)2}2(µ-OH)2].
In the crystal the molecules pack in a zigzag arrangement (Fig. 2). The cavities between the molecules are occupied by disordered water molecules of crystallization.