organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-1-naphthol

aFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland
*Correspondence e-mail: magdan@amu.edu.pl

(Received 19 October 2009; accepted 28 October 2009; online 31 October 2009)

In the title compound, C10H9NO, the amino and the hydr­oxy groups act both as a single donor and a single acceptor in hydrogen bonding. In the crystal, mol­ecules are connected via chains of inter­molecular ⋯N—H⋯O—H⋯ inter­actions, forming a two-dimensional polymeric structure resembling the hydrogen-bonded mol­ecular assembly found in the crystal structure of naphthalene-1,5-diol. Within this layer, mol­ecules related by a translation along the a axis are arranged into slipped stacks via ππ stacking inter­actions [inter­planar distance = 3.450 (4) Å]. The amino N atom shows sp3 hybridization and the two attached H atoms are located on the same side of the aromatic ring.

Related literature

For the crystal structure of 1,5-dihydroxy­naphthalene, see: Belskii et al. (1990[Belskii, V. K., Kharchenko, E. V., Sobolev, A. N., Zavodnik, V. E., Kolomiets, N. A., Prober, G. S. & Oleksenko, L. P. (1990). Zh. Strukt. Khim. 31, 116-121.]). For amino-hydr­oxy group recognition and packing motifs of aminols, see: Ermer & Eling (1994[Ermer, O. & Eling, A. J. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 925-944.]); Hanessian et al. (1994[Hanessian, S., Gomtsyan, A., Simard, M. & Roelens, S. (1994). J. Am. Chem. Soc. 116, 4495-4496.]); Allen et al. (1997[Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477-3480.]); Dey et al. (2005[Dey, A., Kirchner, M. T., Vangala, V. R., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2005). J. Am. Chem. Soc. 127, 10545-10559.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO

  • Mr = 159.18

  • Orthorhombic, P 21 21 21

  • a = 4.8607 (2) Å

  • b = 12.3175 (6) Å

  • c = 13.0565 (5) Å

  • V = 781.71 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 130 K

  • 0.30 × 0.15 × 0.02 mm

Data collection
  • Kuma KM-4-CCD κ-geometry diffractometer

  • Absorption correction: none

  • 8484 measured reflections

  • 963 independent reflections

  • 726 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.091

  • S = 1.06

  • 963 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11O⋯N12i 0.94 (3) 1.83 (3) 2.749 (3) 167 (3)
N12—H12B⋯O11ii 0.96 (3) 2.09 (3) 3.046 (3) 171 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Amino-hydroxy group recognition has been at the focus of crystal engineering since Ermer & Eling (1994) and Hanessian et al. (1994) noticed the complementarity of hydroxy and amino groups as regards hydrogen-bond donors and acceptors. Shortly after it was demonstrated with simple 1,2- and 1,3-aminophenols that molecular features, such as functional groups, do not necessarily result in a single manner of the molecular arrangement, and that strong N—H···O and O—H···N hydrogen bonding is frequently unable to exclude other factors from controlling the crystal packing (Allen et al., 1997; Dey et al. 2005). Here we report on the crystal structure of a simple aminonaphthol which, as regards the substitution pattern, can be considered as an analogue of 1,4-aminophenol.

The molecular structure of the title compound is shown in Fig. 1, and the geometrical parameters are available in the archived CIF. Whereas 1,4-aminophenol forms a tetrahedral network, via N—H···O and O—H···N hydrogen bonds (Ermer & Eling, 1994), in the title compound the molecules are connected via chains of ···N—H···O—H··· interactions to form a two-dimensional polymeric structure (Fig. 2, Table 1). The two-dimensional assembly of the molecules joined by hydrogen bonding resembles that formed by 1,5-dihydroxynaphthalene (Belskii et al., 1990). One amino H-atom is not involved in hydrogen bonding and does not take part in any other specific interactions.

Related literature top

For the crystal structure of 1,5-dihydroxynaphthalene, see: Belskii et al. (1990). For amino-hydroxy group recognition and packing motifs of aminols, see: Ermer & Eling (1994); Hanessian et al. (1994); Allen et al. (1997); Dey et al. (2005).

Experimental top

Single crystals of the commercially available 5-amino-1-naphthol (Aldrich) were obtained from chloroform solution by slow evaporation.

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were averaged. All H-atoms were located in electron-density difference maps. The H-atoms of the OH and NH groups were freely refined: O-H = 0.94 (3) Å, N-H = 0.95 (3)- 0.96 (3) Å. The C-bound H-atoms were placed at calculated positions, with C—H = 0.93 Å, and refined as riding on their carrier C-atom, with Uiso(H) = 1.2Ueq(C). .

Structure description top

Amino-hydroxy group recognition has been at the focus of crystal engineering since Ermer & Eling (1994) and Hanessian et al. (1994) noticed the complementarity of hydroxy and amino groups as regards hydrogen-bond donors and acceptors. Shortly after it was demonstrated with simple 1,2- and 1,3-aminophenols that molecular features, such as functional groups, do not necessarily result in a single manner of the molecular arrangement, and that strong N—H···O and O—H···N hydrogen bonding is frequently unable to exclude other factors from controlling the crystal packing (Allen et al., 1997; Dey et al. 2005). Here we report on the crystal structure of a simple aminonaphthol which, as regards the substitution pattern, can be considered as an analogue of 1,4-aminophenol.

The molecular structure of the title compound is shown in Fig. 1, and the geometrical parameters are available in the archived CIF. Whereas 1,4-aminophenol forms a tetrahedral network, via N—H···O and O—H···N hydrogen bonds (Ermer & Eling, 1994), in the title compound the molecules are connected via chains of ···N—H···O—H··· interactions to form a two-dimensional polymeric structure (Fig. 2, Table 1). The two-dimensional assembly of the molecules joined by hydrogen bonding resembles that formed by 1,5-dihydroxynaphthalene (Belskii et al., 1990). One amino H-atom is not involved in hydrogen bonding and does not take part in any other specific interactions.

For the crystal structure of 1,5-dihydroxynaphthalene, see: Belskii et al. (1990). For amino-hydroxy group recognition and packing motifs of aminols, see: Ermer & Eling (1994); Hanessian et al. (1994); Allen et al. (1997); Dey et al. (2005).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids shown at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing, viewed along the b-axis, of the title compound, showing the two-dimensional hydrogen-bonded assembly (hydrogen bonds are shown as dashed lines).
5-Amino-1-naphthol top
Crystal data top
C10H9NODx = 1.353 Mg m3
Mr = 159.18Melting point: 461 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2383 reflections
a = 4.8607 (2) Åθ = 4–27°
b = 12.3175 (6) ŵ = 0.09 mm1
c = 13.0565 (5) ÅT = 130 K
V = 781.71 (6) Å3Plate, pale pink
Z = 40.30 × 0.15 × 0.02 mm
F(000) = 336
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer
726 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.4°, θmin = 4.5°
ω scansh = 65
8484 measured reflectionsk = 1515
963 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
963 reflections(Δ/σ)max = 0.001
121 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H9NOV = 781.71 (6) Å3
Mr = 159.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8607 (2) ŵ = 0.09 mm1
b = 12.3175 (6) ÅT = 130 K
c = 13.0565 (5) Å0.30 × 0.15 × 0.02 mm
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer
726 reflections with I > 2σ(I)
8484 measured reflectionsRint = 0.037
963 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.17 e Å3
963 reflectionsΔρmin = 0.21 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2605 (5)0.48405 (18)0.50574 (15)0.0232 (5)
C20.1125 (5)0.57846 (19)0.51109 (17)0.0269 (6)
H20.01350.58870.56380.032*
C30.1504 (5)0.65964 (19)0.43738 (17)0.0268 (6)
H30.04660.72300.44090.032*
C40.3386 (5)0.64703 (19)0.35998 (17)0.0248 (6)
H40.36300.70220.31220.030*
C50.6956 (5)0.53275 (18)0.27339 (16)0.0239 (6)
C60.8417 (5)0.43775 (19)0.26935 (17)0.0265 (6)
H60.97010.42690.21750.032*
C70.7983 (5)0.35673 (19)0.34304 (17)0.0283 (6)
H70.90090.29310.33990.034*
C80.6085 (5)0.36936 (19)0.41937 (17)0.0256 (6)
H80.57950.31410.46670.031*
C90.4571 (5)0.46670 (19)0.42580 (16)0.0215 (5)
C100.4964 (5)0.55036 (18)0.35220 (16)0.0215 (5)
O110.2370 (4)0.40173 (13)0.57550 (11)0.0289 (4)
H11O0.067 (7)0.404 (2)0.609 (2)0.058 (10)*
N120.7265 (5)0.61211 (18)0.19544 (14)0.0275 (5)
H12A0.699 (6)0.685 (2)0.2155 (18)0.044 (8)*
H12B0.899 (6)0.601 (2)0.1610 (19)0.038 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0231 (12)0.0279 (13)0.0186 (10)0.0035 (12)0.0020 (11)0.0014 (10)
C20.0250 (13)0.0332 (14)0.0226 (11)0.0002 (12)0.0011 (11)0.0024 (11)
C30.0261 (13)0.0255 (13)0.0288 (12)0.0028 (12)0.0008 (11)0.0047 (11)
C40.0250 (13)0.0272 (13)0.0223 (11)0.0030 (11)0.0017 (11)0.0001 (10)
C50.0244 (14)0.0283 (13)0.0192 (10)0.0070 (11)0.0053 (10)0.0014 (10)
C60.0232 (13)0.0334 (13)0.0229 (11)0.0006 (12)0.0024 (10)0.0056 (11)
C70.0294 (15)0.0244 (13)0.0311 (12)0.0055 (12)0.0022 (11)0.0044 (11)
C80.0273 (13)0.0278 (13)0.0216 (11)0.0011 (11)0.0013 (11)0.0004 (10)
C90.0187 (12)0.0263 (13)0.0194 (10)0.0006 (11)0.0030 (10)0.0036 (10)
C100.0204 (12)0.0249 (13)0.0191 (10)0.0044 (11)0.0044 (10)0.0006 (10)
O110.0269 (9)0.0356 (10)0.0243 (8)0.0003 (9)0.0036 (8)0.0061 (8)
N120.0271 (12)0.0316 (13)0.0237 (10)0.0025 (12)0.0005 (10)0.0016 (9)
Geometric parameters (Å, º) top
C1—O111.368 (2)C5—C101.430 (3)
C1—C21.369 (3)C6—C71.402 (3)
C1—C91.431 (3)C6—H60.9300
C2—C31.400 (3)C7—C81.367 (3)
C2—H20.9300C7—H70.9300
C3—C41.372 (3)C8—C91.409 (3)
C3—H30.9300C8—H80.9300
C4—C101.420 (3)C9—C101.422 (3)
C4—H40.9300O11—H11O0.94 (3)
C5—C61.370 (3)N12—H12A0.95 (3)
C5—N121.419 (3)N12—H12B0.96 (3)
O11—C1—C2123.5 (2)C7—C6—H6119.9
O11—C1—C9115.5 (2)C8—C7—C6121.4 (2)
C2—C1—C9120.99 (19)C8—C7—H7119.3
C1—C2—C3120.2 (2)C6—C7—H7119.3
C1—C2—H2119.9C7—C8—C9119.5 (2)
C3—C2—H2119.9C7—C8—H8120.2
C4—C3—C2120.9 (2)C9—C8—H8120.2
C4—C3—H3119.6C8—C9—C10120.4 (2)
C2—C3—H3119.6C8—C9—C1121.3 (2)
C3—C4—C10120.5 (2)C10—C9—C1118.3 (2)
C3—C4—H4119.7C4—C10—C9119.1 (2)
C10—C4—H4119.7C4—C10—C5123.0 (2)
C6—C5—N12120.4 (2)C9—C10—C5117.9 (2)
C6—C5—C10120.6 (2)C1—O11—H11O111.6 (18)
N12—C5—C10118.9 (2)C5—N12—H12A116.2 (15)
C5—C6—C7120.2 (2)C5—N12—H12B109.1 (15)
C5—C6—H6119.9H12A—N12—H12B113 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···N12i0.94 (3)1.83 (3)2.749 (3)167 (3)
N12—H12B···O11ii0.96 (3)2.09 (3)3.046 (3)171 (2)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+3/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC10H9NO
Mr159.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)130
a, b, c (Å)4.8607 (2), 12.3175 (6), 13.0565 (5)
V3)781.71 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.15 × 0.02
Data collection
DiffractometerKuma KM-4-CCD κ-geometry
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8484, 963, 726
Rint0.037
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.06
No. of reflections963
No. of parameters121
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···N12i0.94 (3)1.83 (3)2.749 (3)167 (3)
N12—H12B···O11ii0.96 (3)2.09 (3)3.046 (3)171 (2)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+3/2, y+1, z1/2.
 

References

First citationAllen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477–3480.  CSD CrossRef CAS Web of Science Google Scholar
First citationBelskii, V. K., Kharchenko, E. V., Sobolev, A. N., Zavodnik, V. E., Kolomiets, N. A., Prober, G. S. & Oleksenko, L. P. (1990). Zh. Strukt. Khim. 31, 116–121.  CAS Google Scholar
First citationDey, A., Kirchner, M. T., Vangala, V. R., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2005). J. Am. Chem. Soc. 127, 10545–10559.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationErmer, O. & Eling, A. J. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 925–944.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHanessian, S., Gomtsyan, A., Simard, M. & Roelens, S. (1994). J. Am. Chem. Soc. 116, 4495–4496.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds