metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-(5-hydr­­oxy-2-[1-(hy­droxy­imino)eth­yl]phenolato-κ2O1,N}nickel(II) N,N-di­methyl­formamide disolvate

aDepartment of Chemistry & Chemical Engineering, Binzhou University, Binzhou 256600, People's Republic of China
*Correspondence e-mail: yanqiudang@163.com

(Received 6 September 2009; accepted 27 September 2009; online 3 October 2009)

The Ni atom of the title complex, [Ni(C8H8NO3)2]·2C3H7NO, lies on a center of inversion in a square-planar N2O2 coordination environment. An intra­molecular O—H⋯O hydrogen bond exists between the oximic hydr­oxy group of one ligand and the metal-coordinated O atom of the symmetry-related ligand. The dimethyl­formamide solvent mol­ecules are connected to the phenolate groups of the complex via O—H⋯O hydrogen bonds.

Related literature

For general background to the applications of 2-hydroxy­aryl­oxime complexes in extractive metallurgy and biology, see: Keeney et al. (1984[Keeney, M. E., Osseo-Asare, K. & Woode, K. A. (1984). Coord. Chem. Rev. 59, 141-201.]); Elo & Lumme (1985[Elo, H. & Lumme, P. (1985). Cancer Treat. Rep. 69, 1021-1022.]); Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-190.]); Milios et al. (2007[Milios, C. J., Inglis, R., Vinslava, A., Bagai, R., Wernsdorfer, W., Parsons, S., Perlepes, S. P., Christou, G. & Brechin, E. K. (2007). J. Am. Chem. Soc. 129, 12505-12511.]). For related structures, see: Hatzidimitriou et al. (1997[Hatzidimitriou, A. G., Uddin, M. & Lalia-Kantouri, M. (1997). Z. Anorg. Allg. Chem. 623, 627-632.]); Voutsas et al. (1999[Voutsas, G. P., Keramidas, K. G., Dova, E., Lalia-Kantouri, M. & Hartophylles, M. (1999). Z. Kristallogr. New Cryst. Struct. 214, 33-34.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H8NO3)2]·2C3H7NO

  • Mr = 537.21

  • Monoclinic, P 21 /c

  • a = 13.2905 (10) Å

  • b = 5.8649 (4) Å

  • c = 15.9345 (12) Å

  • β = 99.129 (1)°

  • V = 1226.32 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 295 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.677, Tmax = 0.786

  • 6243 measured reflections

  • 2398 independent reflections

  • 2067 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.083

  • S = 1.04

  • 2398 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.82 1.84 2.622 (2) 159
O3—H3⋯O2i 0.82 1.85 2.4857 (19) 134
Symmetry code: (i) -x, -y, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-Hydroxyaryloximes are important organic ligands and their complexes found to have many applications, especially in extractive metallurgy and biology (Chaudhuri, 2003; Elo & Lumme, 1985; Keeney et al., 1984; Milios et al., 2007). Structures of nickel complexes based on the hydroxyoxime ligands 2-[1-(hydroxyimino)ethyl]phenol, bis[2-(1-(hydroxyimino)ethyl)phenolato]nickel (Hatzidimitriou et al., 1997), and bis[2-(5-methyl-1-(hydroxyimino)ethyl)phenolato]nickel (Voutsas et al., 1999), have been reported. As a continuation of these studies, the structure of the title complex, (I), is described herein.

The Ni atom in (I), Fig. 1, is four-coordinate and lies on a center of inversion in a square-planar coordination geometry with the O2—Ni1—N1 angle = 91.84 (6)° and O2—Ni1—N1i = 88.16 (6)°; i: -x, -y, -z. The distances of the Ni1—O2 and Ni1—N1 bonds is similar to those observed in the Ni complexes cited above. The deprotonated phenolato oxygen atom O2 is intramolecularly hydrogen bonded to the oximic hydroxyl group of the opposite ligand, Table 1. The complex and the solvent N,N-dimethylformamide molecules are linked by the O—H···O hydrogen bonds, Table 1.

Related literature top

For general background to the applications of 2-hydroxyaryloxime complexes in extractive metallurgy and biology, see: Keeney et al. (1984); Elo & Lumme (1985); Chaudhuri (2003); Milios et al. (2007). For related structures, see: Hatzidimitriou et al. (1997); Voutsas et al. (1999).

Experimental top

Nickel perchlorate hexahydrate (0.36 g, 1 mmol), 1-(2,4-dihydroxyphenyl)ethanone oxime (0.17 g, 1 mmol), H2O (6 ml) and DMF (6 ml) were placed in a 20 ml Teflon-lined autoclave. The autoclave was heated at 393 K for 2 days. The autoclave was cooled over a period of 5 h at a rate of 20 K per hour. Green crystals were collected by filtration, washed with methanol, and dried in air; yield 38% based on Ni.

Refinement top

H atoms were placed at calculated positions (C—H = 0.93–0.96 Å and O—H = 0.82 Å) and refined in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C or O).

Structure description top

2-Hydroxyaryloximes are important organic ligands and their complexes found to have many applications, especially in extractive metallurgy and biology (Chaudhuri, 2003; Elo & Lumme, 1985; Keeney et al., 1984; Milios et al., 2007). Structures of nickel complexes based on the hydroxyoxime ligands 2-[1-(hydroxyimino)ethyl]phenol, bis[2-(1-(hydroxyimino)ethyl)phenolato]nickel (Hatzidimitriou et al., 1997), and bis[2-(5-methyl-1-(hydroxyimino)ethyl)phenolato]nickel (Voutsas et al., 1999), have been reported. As a continuation of these studies, the structure of the title complex, (I), is described herein.

The Ni atom in (I), Fig. 1, is four-coordinate and lies on a center of inversion in a square-planar coordination geometry with the O2—Ni1—N1 angle = 91.84 (6)° and O2—Ni1—N1i = 88.16 (6)°; i: -x, -y, -z. The distances of the Ni1—O2 and Ni1—N1 bonds is similar to those observed in the Ni complexes cited above. The deprotonated phenolato oxygen atom O2 is intramolecularly hydrogen bonded to the oximic hydroxyl group of the opposite ligand, Table 1. The complex and the solvent N,N-dimethylformamide molecules are linked by the O—H···O hydrogen bonds, Table 1.

For general background to the applications of 2-hydroxyaryloxime complexes in extractive metallurgy and biology, see: Keeney et al. (1984); Elo & Lumme (1985); Chaudhuri (2003); Milios et al. (2007). For related structures, see: Hatzidimitriou et al. (1997); Voutsas et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids are drawn at the 50% probability level. The dashed lines denote hydrogen bonds. The complex is located on a center of inversion; i: -x, -y, -z.
Bis{2-(5-hydroxy-2-[1-(hydroxyimino)ethyl]phenolato- κ2O1,N}nickel(II) N,N-dimethylformamide disolvate top
Crystal data top
[Ni(C8H8NO3)2]·2C3H7NOF(000) = 564
Mr = 537.21Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5624 reflections
a = 13.2905 (10) Åθ = 2.2–26.5°
b = 5.8649 (4) ŵ = 0.85 mm1
c = 15.9345 (12) ÅT = 295 K
β = 99.129 (1)°Block, brown
V = 1226.32 (16) Å30.50 × 0.40 × 0.30 mm
Z = 2
Data collection top
Bruker SMART APEX area-detector
diffractometer
2398 independent reflections
Radiation source: fine-focus sealed tube2067 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS, Bruker, 2002)
h = 1614
Tmin = 0.677, Tmax = 0.786k = 76
6243 measured reflectionsl = 1913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.4293P]
where P = (Fo2 + 2Fc2)/3
2398 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Ni(C8H8NO3)2]·2C3H7NOV = 1226.32 (16) Å3
Mr = 537.21Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.2905 (10) ŵ = 0.85 mm1
b = 5.8649 (4) ÅT = 295 K
c = 15.9345 (12) Å0.50 × 0.40 × 0.30 mm
β = 99.129 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
2398 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2002)
2067 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.786Rint = 0.017
6243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2398 reflectionsΔρmin = 0.20 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.03529 (12)
O10.36927 (11)0.3031 (3)0.28775 (9)0.0573 (4)
H10.38310.40800.32170.086*
O20.11298 (11)0.0218 (2)0.08068 (10)0.0512 (4)
O30.16273 (10)0.2912 (3)0.00960 (10)0.0600 (4)
H30.18060.19770.02810.090*
O40.45924 (14)0.6291 (3)0.38447 (11)0.0733 (5)
N10.06182 (11)0.2487 (3)0.04612 (10)0.0401 (4)
N20.57279 (13)0.9128 (3)0.41807 (11)0.0477 (4)
C10.14012 (14)0.1839 (3)0.13806 (11)0.0370 (4)
C20.23725 (14)0.1673 (3)0.18586 (11)0.0412 (4)
H20.27860.04440.17730.049*
C30.27296 (14)0.3301 (3)0.24559 (12)0.0412 (4)
C40.21144 (16)0.5124 (3)0.26013 (14)0.0472 (5)
H40.23500.62250.30050.057*
C50.11510 (16)0.5279 (3)0.21400 (13)0.0444 (4)
H50.07440.65070.22410.053*
C60.07536 (14)0.3672 (3)0.15236 (11)0.0359 (4)
C70.02770 (14)0.3901 (3)0.10657 (11)0.0371 (4)
C80.09685 (17)0.5748 (4)0.12913 (15)0.0539 (5)
H8A0.16640.52470.11640.081*
H8B0.08800.70940.09680.081*
H8C0.08040.60850.18870.081*
C90.62892 (19)0.7952 (4)0.49118 (15)0.0622 (6)
H9A0.63810.89580.53930.093*
H9B0.69430.74920.47870.093*
H9C0.59140.66310.50380.093*
C100.60887 (19)1.1364 (4)0.39838 (18)0.0678 (7)
H10A0.60671.23680.44560.102*
H10B0.56621.19570.34900.102*
H10C0.67771.12480.38750.102*
C110.49409 (16)0.8175 (4)0.37059 (14)0.0533 (5)
H110.46260.89770.32330.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03338 (19)0.0364 (2)0.03341 (19)0.00408 (13)0.00300 (12)0.00579 (13)
O10.0471 (8)0.0590 (9)0.0575 (9)0.0005 (7)0.0175 (7)0.0137 (7)
O20.0461 (8)0.0486 (8)0.0520 (8)0.0128 (6)0.0136 (6)0.0206 (6)
O30.0393 (8)0.0685 (10)0.0646 (10)0.0185 (7)0.0148 (7)0.0263 (8)
O40.0707 (11)0.0620 (11)0.0790 (12)0.0240 (9)0.0133 (9)0.0079 (9)
N10.0331 (8)0.0433 (8)0.0408 (8)0.0070 (6)0.0033 (6)0.0046 (7)
N20.0420 (9)0.0450 (9)0.0548 (10)0.0038 (7)0.0031 (7)0.0094 (8)
C10.0397 (9)0.0376 (9)0.0319 (9)0.0009 (8)0.0000 (7)0.0030 (7)
C20.0403 (10)0.0417 (10)0.0394 (10)0.0037 (8)0.0005 (8)0.0039 (8)
C30.0404 (10)0.0440 (10)0.0364 (9)0.0059 (8)0.0018 (8)0.0010 (8)
C40.0500 (11)0.0434 (11)0.0453 (11)0.0072 (9)0.0013 (9)0.0120 (8)
C50.0466 (11)0.0396 (10)0.0460 (11)0.0014 (8)0.0041 (9)0.0084 (8)
C60.0391 (9)0.0363 (9)0.0319 (9)0.0004 (7)0.0046 (7)0.0007 (7)
C70.0415 (10)0.0370 (10)0.0330 (9)0.0036 (8)0.0069 (7)0.0004 (7)
C80.0506 (12)0.0528 (12)0.0563 (13)0.0135 (10)0.0025 (10)0.0134 (10)
C90.0567 (13)0.0743 (16)0.0517 (13)0.0062 (12)0.0034 (10)0.0073 (11)
C100.0595 (14)0.0498 (13)0.0917 (19)0.0088 (11)0.0048 (13)0.0066 (12)
C110.0470 (11)0.0536 (12)0.0553 (12)0.0024 (10)0.0046 (9)0.0093 (10)
Geometric parameters (Å, º) top
Ni1—O2i1.8197 (14)C3—C41.387 (3)
Ni1—O21.8197 (14)C4—C51.375 (3)
Ni1—N1i1.8801 (15)C4—H40.9300
Ni1—N11.8801 (15)C5—C61.403 (3)
O1—C31.357 (2)C5—H50.9300
O1—H10.8200C6—C71.452 (2)
O2—C11.328 (2)C7—C81.501 (3)
O3—N11.3970 (19)C8—H8A0.9600
O3—H30.8200C8—H8B0.9600
O4—C111.232 (3)C8—H8C0.9600
N1—C71.297 (2)C9—H9A0.9600
N2—C111.315 (3)C9—H9B0.9600
N2—C101.447 (3)C9—H9C0.9600
N2—C91.454 (3)C10—H10A0.9600
C1—C21.394 (2)C10—H10B0.9600
C1—C61.418 (2)C10—H10C0.9600
C2—C31.378 (3)C11—H110.9300
C2—H20.9300
O2i—Ni1—O2180.00 (14)C6—C5—H5118.5
O2i—Ni1—N1i91.84 (6)C5—C6—C1116.83 (17)
O2—Ni1—N1i88.16 (6)C5—C6—C7120.64 (16)
O2i—Ni1—N188.16 (6)C1—C6—C7122.52 (16)
O2—Ni1—N191.84 (6)N1—C7—C6120.30 (16)
N1i—Ni1—N1180.00 (11)N1—C7—C8118.96 (17)
C3—O1—H1109.5C6—C7—C8120.74 (16)
C1—O2—Ni1129.80 (12)C7—C8—H8A109.5
N1—O3—H3109.5C7—C8—H8B109.5
C7—N1—O3113.25 (14)H8A—C8—H8B109.5
C7—N1—Ni1131.56 (13)C7—C8—H8C109.5
O3—N1—Ni1115.19 (11)H8A—C8—H8C109.5
C11—N2—C10121.4 (2)H8B—C8—H8C109.5
C11—N2—C9121.3 (2)N2—C9—H9A109.5
C10—N2—C9117.25 (18)N2—C9—H9B109.5
O2—C1—C2116.94 (16)H9A—C9—H9B109.5
O2—C1—C6123.20 (16)N2—C9—H9C109.5
C2—C1—C6119.86 (16)H9A—C9—H9C109.5
C3—C2—C1121.11 (17)H9B—C9—H9C109.5
C3—C2—H2119.4N2—C10—H10A109.5
C1—C2—H2119.4N2—C10—H10B109.5
O1—C3—C2117.08 (17)H10A—C10—H10B109.5
O1—C3—C4122.81 (17)N2—C10—H10C109.5
C2—C3—C4120.11 (17)H10A—C10—H10C109.5
C5—C4—C3119.03 (17)H10B—C10—H10C109.5
C5—C4—H4120.5O4—C11—N2124.5 (2)
C3—C4—H4120.5O4—C11—H11117.8
C4—C5—C6123.04 (18)N2—C11—H11117.8
C4—C5—H5118.5
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.842.622 (2)159
O3—H3···O2i0.821.852.4857 (19)134
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H8NO3)2]·2C3H7NO
Mr537.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.2905 (10), 5.8649 (4), 15.9345 (12)
β (°) 99.129 (1)
V3)1226.32 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART APEX area-detector
Absorption correctionMulti-scan
(SADABS, Bruker, 2002)
Tmin, Tmax0.677, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
6243, 2398, 2067
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.083, 1.04
No. of reflections2398
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.842.622 (2)159
O3—H3···O2i0.821.852.4857 (19)134
Symmetry code: (i) x, y, z.
 

Acknowledgements

The author thanks the Science Foundation of Binzhou University for supporting this work (BZXYG0901 and BZXYQNLG200820).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–190.  Web of Science CrossRef CAS Google Scholar
First citationElo, H. & Lumme, P. (1985). Cancer Treat. Rep. 69, 1021–1022.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHatzidimitriou, A. G., Uddin, M. & Lalia-Kantouri, M. (1997). Z. Anorg. Allg. Chem. 623, 627–632.  CSD CrossRef CAS Google Scholar
First citationKeeney, M. E., Osseo-Asare, K. & Woode, K. A. (1984). Coord. Chem. Rev. 59, 141–201.  CrossRef CAS Web of Science Google Scholar
First citationMilios, C. J., Inglis, R., Vinslava, A., Bagai, R., Wernsdorfer, W., Parsons, S., Perlepes, S. P., Christou, G. & Brechin, E. K. (2007). J. Am. Chem. Soc. 129, 12505–12511.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVoutsas, G. P., Keramidas, K. G., Dova, E., Lalia-Kantouri, M. & Hartophylles, M. (1999). Z. Kristallogr. New Cryst. Struct. 214, 33–34.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds