metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzyl phenyl sulfoxide-κO)di­chloridodi­phenyl­tin(IV)

aDepartment of Chemistry & Chemical Engineering, Binzhou University, Binzhou 256600, People's Republic of China
*Correspondence e-mail: yanqiudang@163.com

(Received 7 September 2009; accepted 27 September 2009; online 3 October 2009)

The mol­ecule of the title compound, [Sn(C6H5)2Cl2(C13H12OS)2], has crystallographic twofold symmetry. The SnIV atom is six-coordinate within a distored octa­hedral geometry defined by a C2Cl2O2 donor set.

Related literature

For general background to organotin compounds and their applications, see: Davies (2004[Davies, A. G. (2004). Organotin Chemistry, 2nd ed. Weinheim: John Wiley & Sons.]); Tian et al. (2005[Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646-1652.]); Hadjikakou & Hadjiliadis (2009[Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 235-249.]). For related structures, see: Ng & Rheingold (1989[Ng, S. W. & Rheingold, A. L. (1989). J. Organomet. Chem. 378, 339-345.]); Boa et al. (1995[Boa, J. C., Shao, P. X., Wang, R. J., Wang, H. G. & Yao, X. K. (1995). Polyhedron, 14, 927-933.]); Tian et al. (1998[Tian, L., Zhou, Z., Zhao, B. & Yu, W. (1998). Polyhedron, 17, 1275-1279.]); Sadiq-ur-Rehman et al. (2007[Sadiq-ur-Rehman, Saeed, S., Ali, S., Shahzadi, S. & Helliwell, M. (2007). Acta Cryst. E63, m1788.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2Cl2(C13H12OS)2]

  • Mr = 776.40

  • Monoclinic, C 2/c

  • a = 22.7485 (19) Å

  • b = 11.5478 (14) Å

  • c = 16.984 (2) Å

  • β = 126.633 (6)°

  • V = 3580.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 295 K

  • 0.25 × 0.22 × 0.11 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.786, Tmax = 0.897

  • 9821 measured reflections

  • 3512 independent reflections

  • 3003 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.076

  • S = 1.03

  • 3512 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organotin compounds have received considerable attention due to their structural diversity as well as due to their industrial, agricultural and biological applications (Davies, 2004; Hadjikakou & Hadjiliadis, 2009; Tian et al., 2005). Several structures of organotin sulfoxide complexes, such as dichlorobis(dimethylsulfoxide-O)diphenyltin (Rehman et al., 2007), dichlorodimethyl(dibenzylsulfoxide-O)tin (Ng & Rheingold, 1989), [bis(phenylsulfinyl)ethane-O,O]dichlorodiphenyltin (Boa et al., 1995), and trichloro(dibutylsulfoxide)(ethoxycarbonylethyl)tin (Tian et al., 1998) have been reported. As a continuation of these studies, the structure of the title compound, (I), is described herein.

The molecule of (I), Fig. 1, has crystallographic twofold symmetry. The Sn atom is six-coordinate within a distorted C2Cl2O2 octahedral geometry with trans phenyl groups, cis sulfoxides-O atoms, and cis chlorides. The Sn—C and Sn—Cl bond distances are similar to those found in dichlorobis(dimethylsulfoxide-O)diphenyltin (Rehman et al., 2007), but the Sn—O length is longer. The C1—Sn1—C1i and O1—Sn1—Cli angles are 162.98 (14) and 172.95 (5)°, respectively; i: 2 - x, y, 1/2 - z. The dihedral angle between the phenyl rings in the sulfoxide ligand is 46.8 (3)°.

Related literature top

For general background to organotin compounds and their applications, see: Davies (2004); Tian et al. (2005); Hadjikakou & Hadjiliadis (2009). For related structures, see: Ng & Rheingold (1989); Boa et al. (1995); Tian et al. (1998); Rehman et al. (2007).

Experimental top

Benzylphenylsulfoxide (0.865 g, 4 mmol) and diphenyltin dichloride (0.687 g, 2 mmol) in ethanol (30 ml) were refluxed for 1 h, and then the colourless solution was condensed and cooled. The solid product was filtered off and recrystallized from methanol. The colourless crystals suitable for X-ray analysis were obtained from the same solvent by slow evaporation (yield 72%; m.p. 383–384 K).

Refinement top

H atoms were placed at calculated positions with C—H = 0.93—0.93 Å, and refined in the riding model approximation with Uiso(H) = 1.2Ueq(C).

Structure description top

Organotin compounds have received considerable attention due to their structural diversity as well as due to their industrial, agricultural and biological applications (Davies, 2004; Hadjikakou & Hadjiliadis, 2009; Tian et al., 2005). Several structures of organotin sulfoxide complexes, such as dichlorobis(dimethylsulfoxide-O)diphenyltin (Rehman et al., 2007), dichlorodimethyl(dibenzylsulfoxide-O)tin (Ng & Rheingold, 1989), [bis(phenylsulfinyl)ethane-O,O]dichlorodiphenyltin (Boa et al., 1995), and trichloro(dibutylsulfoxide)(ethoxycarbonylethyl)tin (Tian et al., 1998) have been reported. As a continuation of these studies, the structure of the title compound, (I), is described herein.

The molecule of (I), Fig. 1, has crystallographic twofold symmetry. The Sn atom is six-coordinate within a distorted C2Cl2O2 octahedral geometry with trans phenyl groups, cis sulfoxides-O atoms, and cis chlorides. The Sn—C and Sn—Cl bond distances are similar to those found in dichlorobis(dimethylsulfoxide-O)diphenyltin (Rehman et al., 2007), but the Sn—O length is longer. The C1—Sn1—C1i and O1—Sn1—Cli angles are 162.98 (14) and 172.95 (5)°, respectively; i: 2 - x, y, 1/2 - z. The dihedral angle between the phenyl rings in the sulfoxide ligand is 46.8 (3)°.

For general background to organotin compounds and their applications, see: Davies (2004); Tian et al. (2005); Hadjikakou & Hadjiliadis (2009). For related structures, see: Ng & Rheingold (1989); Boa et al. (1995); Tian et al. (1998); Rehman et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids are drawn at the 30% probability level. The H atoms have been omitted for clarity. The molecule has crystallographic twofold symmetry. Symmetry operation i: 2 - x, y, 1/2 - z.
Bis(benzyl phenyl sulfoxide-κO)dichloridodiphenyltin(IV) top
Crystal data top
[Sn(C6H5)2Cl2(C13H12OS)2]F(000) = 1576
Mr = 776.40Dx = 1.440 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3086 reflections
a = 22.7485 (19) Åθ = 2.7–24.9°
b = 11.5478 (14) ŵ = 1.01 mm1
c = 16.984 (2) ÅT = 295 K
β = 126.633 (6)°Block, colourless
V = 3580.3 (7) Å30.25 × 0.22 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube3003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2428
Tmin = 0.786, Tmax = 0.897k = 1412
9821 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.727P]
where P = (Fo2 + 2Fc2)/3
3512 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Sn(C6H5)2Cl2(C13H12OS)2]V = 3580.3 (7) Å3
Mr = 776.40Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.7485 (19) ŵ = 1.01 mm1
b = 11.5478 (14) ÅT = 295 K
c = 16.984 (2) Å0.25 × 0.22 × 0.11 mm
β = 126.633 (6)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
3512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3003 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.897Rint = 0.031
9821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
3512 reflectionsΔρmin = 0.37 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn11.00000.87434 (2)0.25000.03980 (10)
Cl10.90700 (5)1.01568 (7)0.21844 (6)0.0683 (2)
S10.84234 (4)0.71126 (7)0.15603 (5)0.0544 (2)
O10.92338 (10)0.72512 (16)0.23458 (13)0.0499 (5)
C11.04788 (14)0.8471 (2)0.40104 (18)0.0396 (6)
C21.06132 (16)0.9415 (2)0.45947 (19)0.0489 (7)
H21.05261.01580.43340.059*
C31.08741 (18)0.9272 (3)0.5554 (2)0.0600 (8)
H31.09540.99160.59360.072*
C41.10169 (17)0.8184 (3)0.5954 (2)0.0589 (8)
H41.11970.80890.66050.071*
C51.08941 (18)0.7241 (3)0.5389 (2)0.0585 (8)
H51.09890.65020.56580.070*
C61.06288 (16)0.7378 (2)0.4418 (2)0.0493 (7)
H61.05520.67320.40400.059*
C70.82742 (17)0.5595 (3)0.1480 (2)0.0558 (8)
C80.7599 (2)0.5161 (4)0.0741 (3)0.0748 (10)
H80.72220.56550.02870.090*
C90.7489 (3)0.3981 (4)0.0682 (4)0.0967 (15)
H90.70280.36800.01980.116*
C100.8041 (3)0.3252 (4)0.1318 (4)0.0978 (15)
H100.79600.24570.12650.117*
C110.8722 (3)0.3686 (3)0.2041 (3)0.0867 (13)
H110.91030.31840.24720.104*
C120.8842 (2)0.4863 (3)0.2131 (2)0.0645 (9)
H120.93010.51610.26240.077*
C130.79848 (19)0.7551 (3)0.2128 (3)0.0685 (9)
H13A0.80460.83810.22360.082*
H13B0.74640.74000.16660.082*
C140.82573 (17)0.6978 (2)0.3077 (2)0.0537 (7)
C150.8879 (2)0.7370 (3)0.3947 (3)0.0699 (10)
H150.91470.79720.39400.084*
C160.9109 (2)0.6882 (4)0.4823 (3)0.0849 (12)
H160.95260.71600.54070.102*
C170.8720 (2)0.5978 (3)0.4837 (3)0.0789 (11)
H170.88730.56460.54310.095*
C180.8116 (2)0.5575 (3)0.3988 (3)0.0715 (10)
H180.78550.49630.40000.086*
C190.7882 (2)0.6056 (3)0.3109 (3)0.0637 (9)
H190.74690.57620.25290.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04550 (17)0.04045 (16)0.03513 (15)0.0000.02496 (13)0.000
Cl10.0833 (6)0.0662 (5)0.0587 (5)0.0318 (4)0.0441 (5)0.0117 (4)
S10.0453 (4)0.0608 (5)0.0503 (4)0.0038 (3)0.0249 (4)0.0146 (3)
O10.0448 (11)0.0542 (12)0.0485 (11)0.0061 (9)0.0266 (10)0.0059 (9)
C10.0386 (15)0.0442 (15)0.0390 (14)0.0034 (11)0.0248 (13)0.0039 (11)
C20.0582 (19)0.0468 (16)0.0419 (15)0.0056 (14)0.0301 (15)0.0013 (12)
C30.062 (2)0.070 (2)0.0458 (17)0.0032 (17)0.0311 (16)0.0098 (16)
C40.0514 (19)0.086 (2)0.0390 (16)0.0066 (17)0.0267 (15)0.0091 (16)
C50.061 (2)0.0587 (19)0.0521 (18)0.0103 (15)0.0313 (17)0.0199 (15)
C60.0501 (17)0.0461 (16)0.0485 (16)0.0052 (13)0.0277 (15)0.0004 (13)
C70.059 (2)0.065 (2)0.0481 (17)0.0162 (16)0.0346 (16)0.0010 (15)
C80.058 (2)0.100 (3)0.065 (2)0.026 (2)0.0362 (19)0.015 (2)
C90.105 (4)0.110 (4)0.095 (3)0.063 (3)0.070 (3)0.043 (3)
C100.156 (5)0.071 (3)0.108 (4)0.045 (3)0.101 (4)0.023 (3)
C110.123 (4)0.064 (2)0.074 (3)0.012 (2)0.060 (3)0.0100 (19)
C120.074 (2)0.058 (2)0.0545 (19)0.0076 (17)0.0350 (19)0.0064 (16)
C130.058 (2)0.059 (2)0.095 (3)0.0126 (16)0.049 (2)0.0185 (18)
C140.0533 (19)0.0466 (17)0.075 (2)0.0061 (14)0.0458 (18)0.0034 (15)
C150.076 (2)0.065 (2)0.094 (3)0.0187 (18)0.064 (2)0.019 (2)
C160.078 (3)0.121 (3)0.066 (2)0.013 (2)0.049 (2)0.020 (2)
C170.097 (3)0.086 (3)0.080 (3)0.005 (2)0.067 (3)0.005 (2)
C180.088 (3)0.060 (2)0.086 (3)0.0102 (19)0.063 (2)0.0022 (19)
C190.063 (2)0.058 (2)0.077 (2)0.0051 (16)0.046 (2)0.0049 (16)
Geometric parameters (Å, º) top
Sn1—C12.129 (2)C8—H80.9300
Sn1—C1i2.129 (2)C9—C101.355 (7)
Sn1—O12.3519 (18)C9—H90.9300
Sn1—O1i2.3519 (18)C10—C111.375 (6)
Sn1—Cl1i2.4645 (8)C10—H100.9300
Sn1—Cl12.4645 (8)C11—C121.376 (4)
S1—O11.506 (2)C11—H110.9300
S1—C71.775 (3)C12—H120.9300
S1—C131.824 (3)C13—C141.492 (4)
C1—C61.380 (4)C13—H13A0.9700
C1—C21.381 (4)C13—H13B0.9700
C2—C31.372 (4)C14—C151.377 (5)
C2—H20.9300C14—C191.386 (4)
C3—C41.372 (4)C15—C161.370 (5)
C3—H30.9300C15—H150.9300
C4—C51.364 (4)C16—C171.379 (5)
C4—H40.9300C16—H160.9300
C5—C61.387 (4)C17—C181.349 (5)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—C191.369 (5)
C7—C81.374 (4)C18—H180.9300
C7—C121.379 (4)C19—H190.9300
C8—C91.379 (5)
C1—Sn1—C1i162.98 (14)C7—C8—C9118.8 (4)
C1—Sn1—O180.68 (8)C7—C8—H8120.6
C1i—Sn1—O186.85 (8)C9—C8—H8120.6
C1—Sn1—O1i86.85 (8)C10—C9—C8121.0 (4)
C1i—Sn1—O1i80.68 (8)C10—C9—H9119.5
O1—Sn1—O1i85.78 (10)C8—C9—H9119.5
C1—Sn1—Cl1i94.61 (7)C9—C10—C11120.0 (4)
C1i—Sn1—Cl1i96.64 (7)C9—C10—H10120.0
O1—Sn1—Cl1i172.95 (5)C11—C10—H10120.0
O1i—Sn1—Cl1i88.74 (6)C10—C11—C12120.2 (4)
C1—Sn1—Cl196.64 (7)C10—C11—H11119.9
C1i—Sn1—Cl194.61 (7)C12—C11—H11119.9
O1—Sn1—Cl188.74 (6)C11—C12—C7119.2 (4)
O1i—Sn1—Cl1172.95 (5)C11—C12—H12120.4
Cl1i—Sn1—Cl197.05 (5)C7—C12—H12120.4
O1—S1—C7104.46 (13)C14—C13—S1116.2 (2)
O1—S1—C13105.59 (14)C14—C13—H13A108.2
C7—S1—C13100.05 (14)S1—C13—H13A108.2
S1—O1—Sn1127.62 (10)C14—C13—H13B108.2
C6—C1—C2118.6 (2)S1—C13—H13B108.2
C6—C1—Sn1122.35 (19)H13A—C13—H13B107.4
C2—C1—Sn1118.93 (18)C15—C14—C19118.2 (3)
C3—C2—C1120.8 (3)C15—C14—C13120.8 (3)
C3—C2—H2119.6C19—C14—C13121.0 (3)
C1—C2—H2119.6C16—C15—C14120.8 (3)
C4—C3—C2120.3 (3)C16—C15—H15119.6
C4—C3—H3119.9C14—C15—H15119.6
C2—C3—H3119.9C15—C16—C17119.9 (4)
C5—C4—C3119.7 (3)C15—C16—H16120.1
C5—C4—H4120.2C17—C16—H16120.1
C3—C4—H4120.2C18—C17—C16119.8 (3)
C4—C5—C6120.4 (3)C18—C17—H17120.1
C4—C5—H5119.8C16—C17—H17120.1
C6—C5—H5119.8C17—C18—C19120.7 (3)
C1—C6—C5120.2 (3)C17—C18—H18119.6
C1—C6—H6119.9C19—C18—H18119.6
C5—C6—H6119.9C18—C19—C14120.5 (3)
C8—C7—C12120.8 (3)C18—C19—H19119.7
C8—C7—S1119.2 (3)C14—C19—H19119.7
C12—C7—S1119.9 (2)
C7—S1—O1—Sn1151.62 (14)C13—S1—C7—C878.8 (3)
C13—S1—O1—Sn1103.37 (15)O1—S1—C7—C125.1 (3)
C1—Sn1—O1—S1143.25 (16)C13—S1—C7—C12104.0 (3)
C1i—Sn1—O1—S148.38 (15)C12—C7—C8—C92.5 (5)
O1i—Sn1—O1—S1129.25 (17)S1—C7—C8—C9179.7 (3)
Cl1—Sn1—O1—S146.31 (14)C7—C8—C9—C102.3 (6)
O1—Sn1—C1—C645.7 (2)C8—C9—C10—C110.6 (7)
O1i—Sn1—C1—C640.5 (2)C9—C10—C11—C120.9 (6)
Cl1i—Sn1—C1—C6129.0 (2)C10—C11—C12—C70.7 (6)
Cl1—Sn1—C1—C6133.3 (2)C8—C7—C12—C111.0 (5)
C1i—Sn1—C1—C2174.6 (2)S1—C7—C12—C11178.2 (3)
O1—Sn1—C1—C2131.2 (2)O1—S1—C13—C1452.3 (3)
O1i—Sn1—C1—C2142.6 (2)C7—S1—C13—C1455.9 (3)
Cl1i—Sn1—C1—C254.1 (2)S1—C13—C14—C1582.2 (4)
Cl1—Sn1—C1—C243.6 (2)S1—C13—C14—C1999.3 (3)
C6—C1—C2—C31.5 (4)C19—C14—C15—C161.9 (5)
Sn1—C1—C2—C3175.5 (2)C13—C14—C15—C16176.6 (3)
C1—C2—C3—C41.1 (5)C14—C15—C16—C170.9 (6)
C2—C3—C4—C50.4 (5)C15—C16—C17—C180.2 (6)
C3—C4—C5—C60.2 (5)C16—C17—C18—C190.2 (6)
C2—C1—C6—C51.4 (4)C17—C18—C19—C140.9 (5)
Sn1—C1—C6—C5175.6 (2)C15—C14—C19—C181.9 (5)
C4—C5—C6—C10.7 (5)C13—C14—C19—C18176.6 (3)
O1—S1—C7—C8172.1 (2)
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2Cl2(C13H12OS)2]
Mr776.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)22.7485 (19), 11.5478 (14), 16.984 (2)
β (°) 126.633 (6)
V3)3580.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.25 × 0.22 × 0.11
Data collection
DiffractometerBruker SMART APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.786, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
9821, 3512, 3003
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.03
No. of reflections3512
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.37

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The author thanks the Science Foundation of Binzhou University for supporting this work (BZXYG0901 and BZXYQNLG200820).

References

First citationBoa, J. C., Shao, P. X., Wang, R. J., Wang, H. G. & Yao, X. K. (1995). Polyhedron, 14, 927–933.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavies, A. G. (2004). Organotin Chemistry, 2nd ed. Weinheim: John Wiley & Sons.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 235–249.  Web of Science CrossRef CAS Google Scholar
First citationNg, S. W. & Rheingold, A. L. (1989). J. Organomet. Chem. 378, 339–345.  CAS Google Scholar
First citationSadiq-ur-Rehman, Saeed, S., Ali, S., Shahzadi, S. & Helliwell, M. (2007). Acta Cryst. E63, m1788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646–1652.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTian, L., Zhou, Z., Zhao, B. & Yu, W. (1998). Polyhedron, 17, 1275–1279.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds