organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ammonium 1,1′,3,3′-tetra­methyl-2,2′,4,4′,6,6′-hexa­oxoperhydro-5,5′-bi­pyrimidine-5,5′-diide monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Science, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 September 2009; accepted 1 October 2009; online 7 October 2009)

In the title hydrated salt, 2NH4+·C12H12N4O62−·H2O, the two hexa­hydro­pyrimidine rings in the dianion are inclined to one another at a dihedral angle of 62.76 (5)°. In the crystal structure, the anions and water mol­ecules are linked into sheets parallel to the bc plane by inter­molecular O—H⋯O hydrogen bonds and sustained by C—H⋯O contacts. The linking of the anions and water mol­ecules with the cations by N—H⋯O hydrogen bonds creates a three-dimensional extended network. The crystal structure is further stabilized by very weak C—H⋯π inter­actions.

Related literature

For general background to and applications of barbituric acid derivatives, see: Negwer (2001[Negwer, M. (2001). Organic-Chemical Drugs and their Synonyms, 7th Rev. and Engl. Ed., Vol. 4, pp. 2873-2957. Berlin: Akademie.]). For related structures, see: Rezende et al. (2005[Rezende, M. C., Dominguez, M., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o306-o311.]); da Silva et al. (2005[Silva, E. T. da, Ribiero, R. S., Lima, E. L. S., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o15-o20.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2NH4+·C12H12N4O62−·H2O

  • Mr = 362.36

  • Monoclinic, P c

  • a = 8.5345 (1) Å

  • b = 12.1579 (2) Å

  • c = 7.7482 (1) Å

  • β = 100.595 (1)°

  • V = 790.26 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.46 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.975

  • 15091 measured reflections

  • 3387 independent reflections

  • 3237 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.083

  • S = 1.05

  • 3387 reflections

  • 270 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1N5⋯O1i 0.87 (2) 2.04 (2) 2.7629 (14) 141 (2)
N5—H1N5⋯O6i 0.87 (2) 2.52 (2) 3.1697 (14) 132.9 (19)
N5—H2N5⋯O1ii 0.85 (2) 1.97 (2) 2.8116 (14) 173 (2)
N5—H3N5⋯O5 0.94 (3) 1.90 (3) 2.8312 (14) 176.1 (19)
N5—H4N5⋯O6iii 0.89 (2) 1.90 (2) 2.7819 (14) 173 (2)
N6—H1N6⋯O1W 0.88 (2) 2.10 (2) 2.9126 (15) 152 (2)
N6—H2N6⋯O2iv 0.93 (3) 2.03 (2) 2.9074 (15) 157.8 (19)
N6—H3N6⋯O4v 0.84 (2) 1.95 (2) 2.7665 (14) 164 (2)
N6—H4N6⋯O3 0.88 (2) 1.92 (2) 2.7597 (14) 158 (2)
O1W—H1W1⋯O3v 0.84 (3) 1.96 (2) 2.7602 (13) 158 (2)
O1W—H2W1⋯O4vi 0.78 (3) 2.01 (3) 2.7563 (14) 161 (3)
C9—H9A⋯O1Wvii 0.96 2.51 3.3658 (17) 148
C10—H10CCg1v 0.96 2.96 3.8822 (15) 162
Symmetry codes: (i) [x-1, -y, z-{\script{1\over 2}}]; (ii) x-1, y, z-1; (iii) x-1, y, z; (iv) [x-1, -y+1, z-{\script{1\over 2}}]; (v) [x, -y+1, z-{\script{1\over 2}}]; (vi) x, y, z-1; (vii) x+1, y, z+1. Cg1 is the centroid the the C1/N1/C2/N2/C3/C4 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Barbituric acid derivatives show high hypnotic and sedative activity (Negwer, 2001).

The asymmetric unit of the title hydrated salt (I, Fig. 1) contains two ammonium cations, a 1,1',3,3'-tetramethyl-2,2',4,4',6,6'-hexaoxooctahydro-1H, 1'H-5,5'-bipyrimidine-5,5'-diide dianion and a water molecule. Two protons transfer from the C4 and C5 atoms to the ammonia molecules resulted in the formation of salts. The dianion is built up from one dimethylbarbiturate anion connected to the other one through the Csp3—Csp3 (C4—C5) bond. The two hexahydropyrimidine rings are essentially planar, with maximum deviations of 0.036 (1) Å for atom C1 and 0.018 (1) Å for atom N3, respectively, for rings with atom sequence C1/N1/C2/N2/C3/C4 and C5/C6/N3/C7/N4/C8. These two rings are inclined to one another at a dihedral angle of 62.76 (5)°. The bond lengths and angles are comparable to those found in related structures (Rezende et al., 2005; da Silva et al., 2005).

The crystal structure of (I) is mainly stabilized by a network of N—H···O, and O—H···O hydrogen bonds as well as C—H···O and C—H···π contacts. Each ammonium H-atom participates in intermolecular hydrogen bonds. In the crystal structure (Fig. 2), the anions and water molecules are linked into sheets parallel to the bc plane by O—H···O hydrogen bonds and sustained by C—H···O contacts (Table 1). The ammonium cations act as bridges between the anions and water molecules via N—H···O hydrogen bonds (Table 1) to create a three-dimensional extended network. The crystal structure is further stabilized by weak intermolecular C10—H10C···Cg1 interactions (Table 1).

Related literature top

For general background to and applications of barbituric acid derivatives, see: Negwer (2001). For related structures, see: Rezende et al. (2005); da Silva et al. (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid the the C1/N1/C2/N2/C3/C4 ring.

Experimental top

A solution of 1,3-dimethylbarbituric acid was refluxed in acetonitrile at 363 K for 2 h (monitored by TLC). After completion of the reaction, excess of solvent was distilled off. The solid product obtained was washed with mixture of ether and acetone, and dried. The purity of the crude product was checked through TLC and recrystallized using chloroform and benzene mixture. M.p. 515–517 K.

Refinement top

The H-atoms bound to atoms N5, N6 and O1W were located from the difference Fourier map and allowed to refine freely. The other H-atoms were placed in calculated positions, with C—H = 0.96 Å, Uiso = 1.5Ueq(C). Rotating models were used for the methyl groups. In the absence of significant anomalous dispersion, 2042 Friedel pairs were merged for the final refinement.

Structure description top

Barbituric acid derivatives show high hypnotic and sedative activity (Negwer, 2001).

The asymmetric unit of the title hydrated salt (I, Fig. 1) contains two ammonium cations, a 1,1',3,3'-tetramethyl-2,2',4,4',6,6'-hexaoxooctahydro-1H, 1'H-5,5'-bipyrimidine-5,5'-diide dianion and a water molecule. Two protons transfer from the C4 and C5 atoms to the ammonia molecules resulted in the formation of salts. The dianion is built up from one dimethylbarbiturate anion connected to the other one through the Csp3—Csp3 (C4—C5) bond. The two hexahydropyrimidine rings are essentially planar, with maximum deviations of 0.036 (1) Å for atom C1 and 0.018 (1) Å for atom N3, respectively, for rings with atom sequence C1/N1/C2/N2/C3/C4 and C5/C6/N3/C7/N4/C8. These two rings are inclined to one another at a dihedral angle of 62.76 (5)°. The bond lengths and angles are comparable to those found in related structures (Rezende et al., 2005; da Silva et al., 2005).

The crystal structure of (I) is mainly stabilized by a network of N—H···O, and O—H···O hydrogen bonds as well as C—H···O and C—H···π contacts. Each ammonium H-atom participates in intermolecular hydrogen bonds. In the crystal structure (Fig. 2), the anions and water molecules are linked into sheets parallel to the bc plane by O—H···O hydrogen bonds and sustained by C—H···O contacts (Table 1). The ammonium cations act as bridges between the anions and water molecules via N—H···O hydrogen bonds (Table 1) to create a three-dimensional extended network. The crystal structure is further stabilized by weak intermolecular C10—H10C···Cg1 interactions (Table 1).

For general background to and applications of barbituric acid derivatives, see: Negwer (2001). For related structures, see: Rezende et al. (2005); da Silva et al. (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid the the C1/N1/C2/N2/C3/C4 ring.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of (I) viewed along the b axis, showing the three-dimensional network. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Diammonium 1,1',3,3'-tetramethyl-2,2',4,4',6,6'-hexaoxoperhydro- 5,5'-bipyrimidine-5,5'-diide monohydrate top
Crystal data top
2NH4+·C12H12N4O62·H2OF(000) = 384
Mr = 362.36Dx = 1.523 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 9975 reflections
a = 8.5345 (1) Åθ = 3.0–34.6°
b = 12.1579 (2) ŵ = 0.13 mm1
c = 7.7482 (1) ÅT = 100 K
β = 100.595 (1)°Block, yellow
V = 790.26 (2) Å30.46 × 0.24 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3387 independent reflections
Radiation source: fine-focus sealed tube3237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 34.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.945, Tmax = 0.975k = 1919
15091 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.0092P]
where P = (Fo2 + 2Fc2)/3
3387 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
2NH4+·C12H12N4O62·H2OV = 790.26 (2) Å3
Mr = 362.36Z = 2
Monoclinic, PcMo Kα radiation
a = 8.5345 (1) ŵ = 0.13 mm1
b = 12.1579 (2) ÅT = 100 K
c = 7.7482 (1) Å0.46 × 0.24 × 0.20 mm
β = 100.595 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3387 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3237 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.975Rint = 0.026
15091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
3387 reflectionsΔρmin = 0.22 e Å3
270 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.03560 (11)0.14592 (7)1.07661 (12)0.01241 (15)
O21.29186 (11)0.47147 (8)1.22084 (12)0.01554 (17)
O30.81723 (11)0.48152 (7)0.83916 (11)0.01375 (16)
O40.58471 (11)0.32057 (7)0.97921 (12)0.01402 (16)
O50.41464 (11)0.06573 (8)0.55640 (12)0.01527 (17)
O60.94414 (10)0.14952 (7)0.66677 (12)0.01358 (16)
N11.16599 (12)0.30914 (8)1.13935 (13)0.01118 (16)
N21.05010 (13)0.47550 (7)1.03408 (14)0.01113 (16)
N30.50054 (11)0.19796 (8)0.76033 (12)0.01090 (16)
N40.67803 (12)0.11318 (8)0.60677 (13)0.01124 (16)
C11.03474 (13)0.24831 (9)1.05040 (14)0.00980 (17)
C21.17569 (14)0.42182 (9)1.13520 (15)0.01120 (18)
C30.92023 (13)0.42115 (9)0.93130 (15)0.01017 (17)
C40.91423 (13)0.30599 (9)0.93888 (15)0.00967 (17)
C50.77985 (13)0.24525 (9)0.83177 (14)0.00979 (18)
C60.62473 (13)0.25855 (9)0.86409 (14)0.01016 (17)
C70.52552 (13)0.12277 (9)0.63627 (15)0.01075 (18)
C80.80944 (13)0.17050 (9)0.70160 (15)0.01024 (17)
C91.29964 (15)0.25137 (11)1.24737 (16)0.0154 (2)
H9A1.39820.28371.22990.023*
H9B1.29720.17521.21420.023*
H9C1.29120.25731.36890.023*
C101.04993 (17)0.59583 (9)1.03645 (19)0.0170 (2)
H10A1.14710.62181.10730.025*
H10B0.96080.62161.08480.025*
H10C1.04180.62310.91890.025*
C110.34045 (15)0.20432 (11)0.80192 (18)0.0174 (2)
H11A0.26270.19520.69640.026*
H11B0.32610.27470.85300.026*
H11C0.32740.14720.88370.026*
C120.70481 (16)0.04107 (12)0.46407 (19)0.0201 (2)
H12A0.60550.00870.40920.030*
H12B0.77850.01590.51030.030*
H12C0.74800.08310.37890.030*
N50.08583 (12)0.04901 (9)0.41174 (14)0.01257 (17)
H1N50.061 (3)0.020 (2)0.410 (3)0.027 (6)*
H2N50.067 (3)0.083 (2)0.315 (3)0.029 (5)*
H3N50.195 (3)0.0572 (17)0.456 (3)0.020 (5)*
H4N50.035 (3)0.0832 (18)0.486 (3)0.025 (5)*
N60.56158 (13)0.46002 (9)0.56578 (14)0.01434 (18)
H1N60.566 (3)0.4075 (16)0.488 (3)0.016 (4)*
H2N60.465 (3)0.4638 (17)0.604 (3)0.022 (5)*
H3N60.568 (3)0.5221 (19)0.520 (3)0.023 (5)*
H4N60.641 (3)0.4479 (18)0.654 (3)0.023 (5)*
O1W0.69194 (13)0.30906 (8)0.33669 (14)0.01932 (18)
H1W10.753 (3)0.364 (2)0.346 (3)0.026 (5)*
H2W10.667 (3)0.297 (2)0.236 (4)0.033 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0146 (4)0.0091 (3)0.0126 (3)0.0000 (3)0.0001 (3)0.0007 (3)
O20.0123 (4)0.0164 (4)0.0170 (4)0.0048 (3)0.0002 (3)0.0031 (3)
O30.0144 (4)0.0107 (3)0.0147 (4)0.0010 (3)0.0010 (3)0.0005 (3)
O40.0141 (4)0.0137 (4)0.0147 (4)0.0001 (3)0.0039 (3)0.0042 (3)
O50.0098 (3)0.0165 (4)0.0179 (4)0.0020 (3)0.0017 (3)0.0043 (3)
O60.0096 (3)0.0153 (4)0.0158 (4)0.0003 (3)0.0024 (3)0.0037 (3)
N10.0091 (4)0.0118 (4)0.0117 (4)0.0009 (3)0.0005 (3)0.0001 (3)
N20.0107 (4)0.0087 (3)0.0133 (4)0.0016 (3)0.0002 (3)0.0012 (3)
N30.0081 (4)0.0126 (4)0.0119 (4)0.0000 (3)0.0016 (3)0.0014 (3)
N40.0092 (4)0.0112 (4)0.0128 (4)0.0003 (3)0.0009 (3)0.0041 (3)
C10.0086 (4)0.0109 (4)0.0098 (4)0.0006 (3)0.0014 (3)0.0008 (3)
C20.0105 (4)0.0122 (4)0.0110 (4)0.0027 (4)0.0025 (3)0.0010 (3)
C30.0098 (4)0.0103 (4)0.0102 (4)0.0009 (3)0.0015 (3)0.0010 (3)
C40.0090 (4)0.0090 (4)0.0104 (4)0.0004 (3)0.0001 (3)0.0015 (3)
C50.0097 (4)0.0089 (4)0.0102 (4)0.0004 (3)0.0002 (3)0.0011 (3)
C60.0100 (4)0.0092 (4)0.0107 (4)0.0006 (3)0.0004 (3)0.0001 (3)
C70.0096 (4)0.0095 (4)0.0124 (4)0.0003 (3)0.0001 (3)0.0002 (3)
C80.0101 (4)0.0090 (4)0.0109 (4)0.0009 (3)0.0001 (3)0.0003 (3)
C90.0112 (4)0.0172 (5)0.0160 (5)0.0002 (4)0.0023 (4)0.0023 (4)
C100.0188 (5)0.0099 (4)0.0211 (5)0.0024 (4)0.0004 (4)0.0014 (4)
C110.0102 (5)0.0222 (6)0.0204 (5)0.0007 (4)0.0044 (4)0.0033 (4)
C120.0133 (5)0.0243 (6)0.0224 (6)0.0025 (4)0.0027 (4)0.0145 (5)
N50.0120 (4)0.0126 (4)0.0130 (4)0.0014 (3)0.0018 (3)0.0006 (3)
N60.0141 (4)0.0137 (4)0.0147 (4)0.0007 (3)0.0013 (3)0.0008 (3)
O1W0.0220 (5)0.0170 (4)0.0176 (4)0.0044 (3)0.0001 (3)0.0003 (3)
Geometric parameters (Å, º) top
O1—C11.2611 (14)C9—H9A0.9600
O2—C21.2433 (14)C9—H9B0.9600
O3—C31.2611 (14)C9—H9C0.9600
O4—C61.2620 (14)C10—H10A0.9600
O5—C71.2427 (13)C10—H10B0.9600
O6—C81.2544 (14)C10—H10C0.9600
N1—C21.3733 (15)C11—H11A0.9600
N1—C11.4117 (14)C11—H11B0.9600
N1—C91.4642 (15)C11—H11C0.9600
N2—C21.3710 (15)C12—H12A0.9600
N2—C31.4052 (15)C12—H12B0.9600
N2—C101.4631 (14)C12—H12C0.9600
N3—C71.3713 (15)N5—H1N50.86 (2)
N3—C61.4139 (14)N5—H2N50.85 (3)
N3—C111.4623 (15)N5—H3N50.94 (2)
N4—C71.3672 (15)N5—H4N50.89 (2)
N4—C81.4072 (14)N6—H1N60.88 (2)
N4—C121.4616 (16)N6—H2N60.93 (2)
C1—C41.4033 (15)N6—H3N60.84 (2)
C3—C41.4028 (15)N6—H4N60.88 (2)
C4—C51.4830 (15)O1W—H1W10.84 (3)
C5—C61.4013 (15)O1W—H2W10.79 (3)
C5—C81.4143 (15)
C2—N1—C1123.86 (10)N1—C9—H9B109.5
C2—N1—C9116.61 (10)H9A—C9—H9B109.5
C1—N1—C9119.51 (10)N1—C9—H9C109.5
C2—N2—C3123.53 (9)H9A—C9—H9C109.5
C2—N2—C10118.11 (10)H9B—C9—H9C109.5
C3—N2—C10118.34 (10)N2—C10—H10A109.5
C7—N3—C6123.30 (9)N2—C10—H10B109.5
C7—N3—C11117.50 (10)H10A—C10—H10B109.5
C6—N3—C11118.70 (9)N2—C10—H10C109.5
C7—N4—C8124.21 (9)H10A—C10—H10C109.5
C7—N4—C12117.63 (10)H10B—C10—H10C109.5
C8—N4—C12118.14 (10)N3—C11—H11A109.5
O1—C1—C4125.05 (10)N3—C11—H11B109.5
O1—C1—N1117.25 (10)H11A—C11—H11B109.5
C4—C1—N1117.69 (9)N3—C11—H11C109.5
O2—C2—N2122.47 (10)H11A—C11—H11C109.5
O2—C2—N1121.16 (11)H11B—C11—H11C109.5
N2—C2—N1116.36 (10)N4—C12—H12A109.5
O3—C3—C4125.29 (10)N4—C12—H12B109.5
O3—C3—N2116.25 (10)H12A—C12—H12B109.5
C4—C3—N2118.46 (10)N4—C12—H12C109.5
C3—C4—C1119.76 (10)H12A—C12—H12C109.5
C3—C4—C5120.26 (9)H12B—C12—H12C109.5
C1—C4—C5119.97 (9)H1N5—N5—H2N5117 (2)
C6—C5—C8120.00 (9)H1N5—N5—H3N5109.6 (19)
C6—C5—C4120.09 (9)H2N5—N5—H3N5107 (2)
C8—C5—C4119.86 (10)H1N5—N5—H4N5108 (2)
O4—C6—C5125.63 (10)H2N5—N5—H4N5108 (2)
O4—C6—N3116.18 (10)H3N5—N5—H4N5107 (2)
C5—C6—N3118.19 (9)H1N6—N6—H2N6113.9 (19)
O5—C7—N4122.03 (11)H1N6—N6—H3N6110.3 (19)
O5—C7—N3121.25 (10)H2N6—N6—H3N6103 (2)
N4—C7—N3116.71 (10)H1N6—N6—H4N6106.3 (19)
O6—C8—N4117.44 (10)H2N6—N6—H4N6111 (2)
O6—C8—C5125.09 (10)H3N6—N6—H4N6112 (2)
N4—C8—C5117.44 (10)H1W1—O1W—H2W1106 (3)
N1—C9—H9A109.5
C2—N1—C1—O1174.49 (10)C3—C4—C5—C8117.68 (12)
C9—N1—C1—O13.76 (15)C1—C4—C5—C863.31 (14)
C2—N1—C1—C45.98 (15)C8—C5—C6—O4178.22 (11)
C9—N1—C1—C4175.76 (10)C4—C5—C6—O40.76 (17)
C3—N2—C2—O2177.67 (11)C8—C5—C6—N31.73 (15)
C10—N2—C2—O23.67 (17)C4—C5—C6—N3179.19 (9)
C3—N2—C2—N13.18 (16)C7—N3—C6—O4176.44 (10)
C10—N2—C2—N1175.47 (10)C11—N3—C6—O44.80 (15)
C1—N1—C2—O2177.56 (10)C7—N3—C6—C53.52 (15)
C9—N1—C2—O20.74 (16)C11—N3—C6—C5175.16 (10)
C1—N1—C2—N21.60 (16)C8—N4—C7—O5175.66 (11)
C9—N1—C2—N2179.90 (10)C12—N4—C7—O56.19 (17)
C2—N2—C3—O3176.92 (10)C8—N4—C7—N33.66 (16)
C10—N2—C3—O34.43 (16)C12—N4—C7—N3174.49 (11)
C2—N2—C3—C43.31 (17)C6—N3—C7—O5174.96 (10)
C10—N2—C3—C4175.34 (10)C11—N3—C7—O53.22 (16)
O3—C3—C4—C1178.39 (11)C6—N3—C7—N44.37 (15)
N2—C3—C4—C11.36 (16)C11—N3—C7—N4176.11 (10)
O3—C3—C4—C50.63 (18)C7—N4—C8—O6176.38 (10)
N2—C3—C4—C5179.62 (9)C12—N4—C8—O65.48 (16)
O1—C1—C4—C3174.85 (11)C7—N4—C8—C52.08 (16)
N1—C1—C4—C35.66 (15)C12—N4—C8—C5176.06 (11)
O1—C1—C4—C54.17 (17)C6—C5—C8—O6177.28 (11)
N1—C1—C4—C5175.32 (9)C4—C5—C8—O60.18 (17)
C3—C4—C5—C664.86 (14)C6—C5—C8—N41.05 (15)
C1—C4—C5—C6114.15 (12)C4—C5—C8—N4178.51 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1N5···O1i0.87 (2)2.04 (2)2.7629 (14)141 (2)
N5—H1N5···O6i0.87 (2)2.52 (2)3.1697 (14)132.9 (19)
N5—H2N5···O1ii0.85 (2)1.97 (2)2.8116 (14)173 (2)
N5—H3N5···O50.94 (3)1.90 (3)2.8312 (14)176.1 (19)
N5—H4N5···O6iii0.89 (2)1.90 (2)2.7819 (14)173 (2)
N6—H1N6···O1W0.88 (2)2.10 (2)2.9126 (15)152 (2)
N6—H2N6···O2iv0.93 (3)2.03 (2)2.9074 (15)157.8 (19)
N6—H3N6···O4v0.84 (2)1.95 (2)2.7665 (14)164 (2)
N6—H4N6···O30.88 (2)1.92 (2)2.7597 (14)158 (2)
O1W—H1W1···O3v0.84 (3)1.96 (2)2.7602 (13)158 (2)
O1W—H2W1···O4vi0.78 (3)2.01 (3)2.7563 (14)161 (3)
C9—H9A···O1Wvii0.962.513.3658 (17)148
C10—H10C···Cg1v0.962.963.8822 (15)162
Symmetry codes: (i) x1, y, z1/2; (ii) x1, y, z1; (iii) x1, y, z; (iv) x1, y+1, z1/2; (v) x, y+1, z1/2; (vi) x, y, z1; (vii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula2NH4+·C12H12N4O62·H2O
Mr362.36
Crystal system, space groupMonoclinic, Pc
Temperature (K)100
a, b, c (Å)8.5345 (1), 12.1579 (2), 7.7482 (1)
β (°) 100.595 (1)
V3)790.26 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.46 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.945, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
15091, 3387, 3237
Rint0.026
(sin θ/λ)max1)0.800
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.083, 1.05
No. of reflections3387
No. of parameters270
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1N5···O1i0.87 (2)2.04 (2)2.7629 (14)141 (2)
N5—H1N5···O6i0.87 (2)2.52 (2)3.1697 (14)132.9 (19)
N5—H2N5···O1ii0.85 (2)1.97 (2)2.8116 (14)173 (2)
N5—H3N5···O50.94 (3)1.90 (3)2.8312 (14)176.1 (19)
N5—H4N5···O6iii0.89 (2)1.90 (2)2.7819 (14)173 (2)
N6—H1N6···O1W0.88 (2)2.10 (2)2.9126 (15)152 (2)
N6—H2N6···O2iv0.93 (3)2.03 (2)2.9074 (15)157.8 (19)
N6—H3N6···O4v0.84 (2)1.95 (2)2.7665 (14)164 (2)
N6—H4N6···O30.88 (2)1.92 (2)2.7597 (14)158 (2)
O1W—H1W1···O3v0.84 (3)1.96 (2)2.7602 (13)158 (2)
O1W—H2W1···O4vi0.78 (3)2.01 (3)2.7563 (14)161 (3)
C9—H9A···O1Wvii0.96002.51003.3658 (17)148.00
C10—H10C···Cg1v0.96002.963.8822 (15)162
Symmetry codes: (i) x1, y, z1/2; (ii) x1, y, z1; (iii) x1, y, z; (iv) x1, y+1, z1/2; (v) x, y+1, z1/2; (vi) x, y, z1; (vii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Golden Goose Grant (No. 1001/PFIZIK/811012). JHG thanks USM for the award of a USM Fellowship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNegwer, M. (2001). Organic-Chemical Drugs and their Synonyms, 7th Rev. and Engl. Ed., Vol. 4, pp. 2873–2957. Berlin: Akademie.  Google Scholar
First citationRezende, M. C., Dominguez, M., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o306–o311.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, E. T. da, Ribiero, R. S., Lima, E. L. S., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o15–o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds