organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­quinoline-3-carbaldehyde

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2009; accepted 6 October 2009; online 10 October 2009)

The quinolinyl fused ring system of the title compound, C10H6ClNO, is planar (r.m.s. deviation = 0.018 Å); the formyl group is slightly bent out of the plane of the fused ring system [C—C—C—O torsion angle = 8.2 (3)°].

Related literature

For the synthesis of 2-chloro­quinoline-3-carbaldehyde by Vilsmeier–Haack cyclization, see: Ali et al. (2001[Ali, M. M., Tasneem, Rajanna, K. C. & Prakash, P. K. S. (2001). Synlett, pp. 251-253.], 2002[Ali, M. M., Sana, S., Tasneem, Rajanna, K. C. & Saiprakash, P. K. (2002). Synth. Commun. 32, 1351-1356.]); Mogilaiah et al. (2002[Mogilaiah, K., Reddy, N. V. & Rao, R. B. (2002). Indian J. Heterocycl. Chem. 11, 253-254. .]); Pawar et al. (1990[Pawar, R. A., Bajare, P. B. & Mundade, S. B. (1990). J. Indian Chem. Soc. 67, 685-686.]); Srivastava & Singh (2005[Srivastava, A. & Singh, R. M. (2005). Indian J. Chem. Sect. B, 44, 1868-1875.]). For a review of the synthesis of quinolines by this reaction, see: Meth-Cohn (1993[Meth-Cohn, O. (1993). Heterocycles, 35, 539-557.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6ClNO

  • Mr = 191.61

  • Monoclinic, P 21 /n

  • a = 11.8784 (9) Å

  • b = 3.9235 (3) Å

  • c = 18.1375 (12) Å

  • β = 101.365 (4)°

  • V = 828.72 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 290 K

  • 0.24 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.908, Tmax = 0.945

  • 6886 measured reflections

  • 1889 independent reflections

  • 1626 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.145

  • S = 1.19

  • 1889 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the synthesis of 2-chloroquinoline-3-carbaldehyde by Vilsmeier–Haack cyclization, see: Ali et al. (2001, 2002); Mogilaiah et al. (2002); Pawar et al. (1990); Srivastava & Singh (2005). For a review of the synthesis of quinolines by this reaction, see: Meth-Cohn (1993).

Experimental top

A Vilsmeier-Haack adduct prepared from phosphorus oxytrichloride (6.5 ml, 70 mmol) and N,N-dimethylformamide (2.3 ml, 30 mmol) at 273 K was added to N-phenylacetamide (1.35 g, 10 mmol), heated at 353 K for 15 h. The mixture was then poured onto ice, and the white product was collected and dried. The compound was purified by recrystallization from a petroleum ether/ethyl acetate mixture.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C).

Structure description top

For the synthesis of 2-chloroquinoline-3-carbaldehyde by Vilsmeier–Haack cyclization, see: Ali et al. (2001, 2002); Mogilaiah et al. (2002); Pawar et al. (1990); Srivastava & Singh (2005). For a review of the synthesis of quinolines by this reaction, see: Meth-Cohn (1993).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C10H6ClNO at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chloroquinoline-3-carbaldehyde top
Crystal data top
C10H6ClNOF(000) = 392
Mr = 191.61Dx = 1.536 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 781 reflections
a = 11.8784 (9) Åθ = 2.1–24.3°
b = 3.9235 (3) ŵ = 0.41 mm1
c = 18.1375 (12) ÅT = 290 K
β = 101.365 (4)°Block, colorless
V = 828.72 (10) Å30.24 × 0.18 × 0.14 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
1889 independent reflections
Radiation source: fine-focus sealed tube1626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.908, Tmax = 0.945k = 35
6886 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0923P)2 + 0.077P]
where P = (Fo2 + 2Fc2)/3
1889 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H6ClNOV = 828.72 (10) Å3
Mr = 191.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8784 (9) ŵ = 0.41 mm1
b = 3.9235 (3) ÅT = 290 K
c = 18.1375 (12) Å0.24 × 0.18 × 0.14 mm
β = 101.365 (4)°
Data collection top
Bruker SMART area-detector
diffractometer
1889 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1626 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.945Rint = 0.021
6886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.19Δρmax = 0.36 e Å3
1889 reflectionsΔρmin = 0.29 e Å3
118 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24556 (4)0.22180 (12)0.67041 (2)0.0464 (2)
O10.51095 (11)0.8482 (4)0.61287 (8)0.0550 (4)
N10.15508 (12)0.2731 (3)0.52950 (9)0.0353 (3)
C10.24476 (14)0.3582 (4)0.57833 (9)0.0319 (4)
C20.34039 (13)0.5468 (4)0.56384 (9)0.0323 (4)
C30.33695 (13)0.6369 (4)0.49061 (9)0.0334 (4)
H30.39770.75850.47810.040*
C40.24263 (13)0.5477 (4)0.43407 (9)0.0324 (4)
C50.23434 (16)0.6341 (5)0.35765 (10)0.0419 (4)
H50.29440.74830.34240.050*
C60.13859 (17)0.5504 (5)0.30635 (10)0.0481 (5)
H60.13340.60770.25600.058*
C70.04727 (17)0.3774 (6)0.32911 (11)0.0493 (5)
H70.01800.32430.29350.059*
C80.05247 (16)0.2861 (5)0.40222 (12)0.0436 (4)
H80.00820.16990.41620.052*
C90.15087 (13)0.3697 (4)0.45629 (9)0.0325 (4)
C100.43810 (15)0.6537 (5)0.62315 (10)0.0407 (4)
H100.44320.56450.67120.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0587 (3)0.0522 (3)0.0308 (3)0.00331 (19)0.0147 (2)0.00444 (16)
O10.0435 (8)0.0681 (10)0.0499 (8)0.0161 (6)0.0004 (6)0.0003 (7)
N10.0363 (7)0.0355 (7)0.0355 (8)0.0016 (5)0.0107 (6)0.0029 (5)
C10.0381 (8)0.0310 (8)0.0283 (7)0.0020 (6)0.0107 (6)0.0004 (6)
C20.0335 (8)0.0312 (8)0.0321 (8)0.0024 (6)0.0062 (6)0.0007 (6)
C30.0329 (8)0.0332 (8)0.0349 (8)0.0001 (6)0.0089 (6)0.0018 (7)
C40.0362 (8)0.0317 (8)0.0299 (8)0.0056 (6)0.0077 (6)0.0005 (6)
C50.0489 (10)0.0444 (9)0.0332 (9)0.0076 (8)0.0101 (7)0.0039 (7)
C60.0591 (11)0.0544 (11)0.0289 (8)0.0166 (9)0.0039 (8)0.0021 (8)
C70.0454 (10)0.0560 (11)0.0407 (10)0.0110 (8)0.0058 (8)0.0141 (9)
C80.0356 (9)0.0467 (10)0.0466 (11)0.0012 (7)0.0037 (8)0.0120 (8)
C90.0331 (8)0.0320 (8)0.0329 (8)0.0032 (6)0.0072 (6)0.0052 (6)
C100.0414 (9)0.0459 (10)0.0332 (9)0.0003 (7)0.0031 (7)0.0017 (7)
Geometric parameters (Å, º) top
Cl1—C11.7519 (16)C4—C91.418 (2)
O1—C101.196 (2)C5—C61.360 (3)
N1—C11.288 (2)C5—H50.9300
N1—C91.372 (2)C6—C71.409 (3)
C1—C21.423 (2)C6—H60.9300
C2—C31.367 (2)C7—C81.363 (3)
C2—C101.479 (2)C7—H70.9300
C3—C41.406 (2)C8—C91.409 (2)
C3—H30.9300C8—H80.9300
C4—C51.411 (2)C10—H100.9300
C1—N1—C9117.48 (14)C5—C6—C7120.28 (17)
N1—C1—C2126.15 (15)C5—C6—H6119.9
N1—C1—Cl1115.14 (12)C7—C6—H6119.9
C2—C1—Cl1118.71 (12)C8—C7—C6121.46 (17)
C3—C2—C1116.22 (14)C8—C7—H7119.3
C3—C2—C10120.14 (15)C6—C7—H7119.3
C1—C2—C10123.62 (15)C7—C8—C9119.23 (18)
C2—C3—C4120.74 (14)C7—C8—H8120.4
C2—C3—H3119.6C9—C8—H8120.4
C4—C3—H3119.6N1—C9—C8118.45 (15)
C3—C4—C5123.22 (15)N1—C9—C4121.83 (14)
C3—C4—C9117.52 (14)C8—C9—C4119.71 (16)
C5—C4—C9119.24 (15)O1—C10—C2123.76 (16)
C6—C5—C4120.07 (17)O1—C10—H10118.1
C6—C5—H5120.0C2—C10—H10118.1
C4—C5—H5120.0
C9—N1—C1—C20.6 (2)C5—C6—C7—C80.8 (3)
C9—N1—C1—Cl1179.13 (11)C6—C7—C8—C90.7 (3)
N1—C1—C2—C31.8 (2)C1—N1—C9—C8178.61 (14)
Cl1—C1—C2—C3177.90 (11)C1—N1—C9—C41.8 (2)
N1—C1—C2—C10176.39 (16)C7—C8—C9—N1179.43 (15)
Cl1—C1—C2—C103.9 (2)C7—C8—C9—C40.1 (3)
C1—C2—C3—C40.6 (2)C3—C4—C9—N12.9 (2)
C10—C2—C3—C4177.67 (14)C5—C4—C9—N1178.69 (15)
C2—C3—C4—C5179.92 (15)C3—C4—C9—C8177.57 (15)
C2—C3—C4—C91.5 (2)C5—C4—C9—C80.9 (2)
C3—C4—C5—C6177.55 (16)C3—C2—C10—O18.2 (3)
C9—C4—C5—C60.8 (3)C1—C2—C10—O1170.0 (2)
C4—C5—C6—C70.0 (3)

Experimental details

Crystal data
Chemical formulaC10H6ClNO
Mr191.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)11.8784 (9), 3.9235 (3), 18.1375 (12)
β (°) 101.365 (4)
V3)828.72 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.24 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.908, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
6886, 1889, 1626
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.145, 1.19
No. of reflections1889
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.29

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA-DST program. FNK thanks the DST for Fast Track Proposal funding. We thank VIT University and the University of Malaya for supporting this study.

References

First citationAli, M. M., Sana, S., Tasneem, Rajanna, K. C. & Saiprakash, P. K. (2002). Synth. Commun. 32, 1351–1356.  Web of Science CrossRef CAS Google Scholar
First citationAli, M. M., Tasneem, Rajanna, K. C. & Prakash, P. K. S. (2001). Synlett, pp. 251–253.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeth-Cohn, O. (1993). Heterocycles, 35, 539–557.  CrossRef CAS Google Scholar
First citationMogilaiah, K., Reddy, N. V. & Rao, R. B. (2002). Indian J. Heterocycl. Chem. 11, 253–254. .  CAS Google Scholar
First citationPawar, R. A., Bajare, P. B. & Mundade, S. B. (1990). J. Indian Chem. Soc. 67, 685-686.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, A. & Singh, R. M. (2005). Indian J. Chem. Sect. B, 44, 1868–1875.  Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds