organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-6-methyl­quinoline-3-carbaldehyde

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2009; accepted 6 October 2009; online 10 October 2009)

The quinolinyl fused-ring of the title compound, C11H8ClNO, is almost planar (r.m.s. deviation = 0.013 Å); the formyl group is slightly bent out of the plane of the fused ring system [C—C—C—O torsion angle = 13.5 (4)°].

Related literature

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993[Meth-Cohn, O. (1993). Heterocycles, 35, 539-557.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8ClNO

  • Mr = 205.63

  • Monoclinic, P c

  • a = 5.944 (1) Å

  • b = 3.9210 (19) Å

  • c = 20.390 (2) Å

  • β = 101.377 (15)°

  • V = 465.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 290 K

  • 0.25 × 0.15 × 0.15 mm

Data collection
  • Oxford Diffraction Excalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.913, Tmax = 0.947

  • 5980 measured reflections

  • 2052 independent reflections

  • 1831 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 1.00

  • 2052 reflections

  • 128 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 990 Friedel pairs

  • Flack parameter: 0.02 (6)

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Experimental top

A Vilsmeier-Haack adduct prepared from phosphorus oxytrichloride (6.5 ml, 70 mmol) and N,N-dimethylformamide (2.3 ml, 30 mmol) at 273 K was added to N-(4-tolyl)acetamide (1.49 g, 10 mmol), and heated at 353 K for 15 h. The mixture was then poured onto ice, and the white product was collected and dried. The compound was purified by recrystallization from a petroleum ether/ethyl acetate mixture.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C).

Structure description top

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C11H8ClNO at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chloro-6-methylquinoline-3-carbaldehyde top
Crystal data top
C11H8ClNOF(000) = 212
Mr = 205.63Dx = 1.466 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 1352 reflections
a = 5.944 (1) Åθ = 2.0–20.7°
b = 3.9210 (19) ŵ = 0.37 mm1
c = 20.390 (2) ÅT = 290 K
β = 101.377 (15)°Block, colorless
V = 465.9 (2) Å30.25 × 0.15 × 0.15 mm
Z = 2
Data collection top
Oxford Diffraction Excalibur
diffractometer
2052 independent reflections
Radiation source: fine-focus sealed tube1831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 77
Tmin = 0.913, Tmax = 0.947k = 55
5980 measured reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0584P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2052 reflectionsΔρmax = 0.19 e Å3
128 parametersΔρmin = 0.17 e Å3
2 restraintsAbsolute structure: Flack (1983), 990 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (6)
Crystal data top
C11H8ClNOV = 465.9 (2) Å3
Mr = 205.63Z = 2
Monoclinic, PcMo Kα radiation
a = 5.944 (1) ŵ = 0.37 mm1
b = 3.9210 (19) ÅT = 290 K
c = 20.390 (2) Å0.25 × 0.15 × 0.15 mm
β = 101.377 (15)°
Data collection top
Oxford Diffraction Excalibur
diffractometer
2052 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1831 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.947Rint = 0.028
5980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.19 e Å3
S = 1.00Δρmin = 0.17 e Å3
2052 reflectionsAbsolute structure: Flack (1983), 990 Friedel pairs
128 parametersAbsolute structure parameter: 0.02 (6)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.00002 (8)1.11653 (14)0.50000 (3)0.04862 (17)
O10.4626 (4)0.5444 (6)0.55814 (8)0.0676 (6)
N10.7865 (3)0.9885 (5)0.37983 (9)0.0382 (4)
C10.7703 (3)0.9492 (5)0.44201 (10)0.0351 (5)
C20.5905 (3)0.7858 (5)0.46557 (10)0.0340 (4)
C30.4137 (4)0.6644 (5)0.41837 (10)0.0341 (4)
H30.29060.55610.43150.041*
C40.4163 (3)0.7021 (5)0.34984 (10)0.0320 (4)
C50.2378 (4)0.5831 (5)0.29839 (10)0.0366 (4)
H50.10960.47920.30940.044*
C60.2519 (4)0.6196 (5)0.23214 (10)0.0383 (5)
C70.4490 (4)0.7786 (6)0.21674 (10)0.0454 (5)
H70.45980.80190.17210.054*
C80.6212 (4)0.8971 (6)0.26419 (11)0.0441 (5)
H80.74741.00150.25210.053*
C90.6099 (4)0.8627 (5)0.33289 (10)0.0335 (4)
C100.5895 (4)0.7365 (7)0.53783 (11)0.0470 (5)
H100.69300.86150.56880.056*
C110.0664 (4)0.4932 (7)0.17678 (10)0.0501 (6)
H11A0.03980.35620.19520.075*
H11B0.13320.35840.14630.075*
H11C0.01310.68410.15340.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0366 (3)0.0578 (3)0.0488 (3)0.0066 (3)0.00193 (19)0.0056 (3)
O10.0607 (12)0.1037 (15)0.0375 (9)0.0252 (12)0.0074 (8)0.0170 (10)
N10.0348 (9)0.0388 (8)0.0428 (10)0.0031 (7)0.0118 (7)0.0002 (7)
C10.0309 (11)0.0349 (11)0.0389 (11)0.0019 (8)0.0056 (8)0.0021 (8)
C20.0325 (11)0.0377 (10)0.0325 (9)0.0060 (9)0.0083 (8)0.0028 (8)
C30.0310 (10)0.0375 (10)0.0354 (11)0.0007 (8)0.0106 (8)0.0031 (8)
C40.0327 (10)0.0302 (10)0.0337 (10)0.0022 (8)0.0077 (8)0.0012 (8)
C50.0346 (11)0.0376 (11)0.0375 (10)0.0002 (8)0.0067 (8)0.0003 (8)
C60.0412 (12)0.0384 (11)0.0348 (10)0.0030 (9)0.0062 (9)0.0016 (8)
C70.0575 (15)0.0519 (12)0.0294 (10)0.0032 (11)0.0148 (10)0.0014 (9)
C80.0480 (13)0.0471 (12)0.0421 (11)0.0048 (10)0.0207 (10)0.0018 (10)
C90.0355 (10)0.0326 (10)0.0337 (10)0.0021 (8)0.0099 (8)0.0003 (8)
C100.0412 (13)0.0631 (14)0.0350 (10)0.0026 (11)0.0035 (9)0.0021 (11)
C110.0573 (15)0.0555 (13)0.0346 (11)0.0024 (12)0.0019 (10)0.0041 (10)
Geometric parameters (Å, º) top
Cl1—C11.748 (2)C5—H50.9300
O1—C101.196 (3)C6—C71.416 (3)
N1—C11.300 (2)C6—C111.498 (3)
N1—C91.365 (3)C7—C81.345 (3)
C1—C21.409 (3)C7—H70.9300
C2—C31.363 (3)C8—C91.422 (3)
C2—C101.487 (3)C8—H80.9300
C3—C41.408 (3)C10—H100.9300
C3—H30.9300C11—H11A0.9600
C4—C91.414 (3)C11—H11B0.9600
C4—C51.416 (3)C11—H11C0.9600
C5—C61.377 (3)
C1—N1—C9116.50 (17)C8—C7—C6122.5 (2)
N1—C1—C2126.42 (19)C8—C7—H7118.7
N1—C1—Cl1114.64 (15)C6—C7—H7118.7
C2—C1—Cl1118.93 (14)C7—C8—C9119.9 (2)
C3—C2—C1116.68 (17)C7—C8—H8120.0
C3—C2—C10120.06 (19)C9—C8—H8120.0
C1—C2—C10123.25 (19)N1—C9—C4122.69 (17)
C2—C3—C4120.41 (18)N1—C9—C8118.51 (19)
C2—C3—H3119.8C4—C9—C8118.81 (19)
C4—C3—H3119.8O1—C10—C2123.4 (2)
C3—C4—C9117.27 (17)O1—C10—H10118.3
C3—C4—C5123.20 (18)C2—C10—H10118.3
C9—C4—C5119.53 (17)C6—C11—H11A109.5
C6—C5—C4120.73 (19)C6—C11—H11B109.5
C6—C5—H5119.6H11A—C11—H11B109.5
C4—C5—H5119.6C6—C11—H11C109.5
C5—C6—C7118.4 (2)H11A—C11—H11C109.5
C5—C6—C11121.8 (2)H11B—C11—H11C109.5
C7—C6—C11119.78 (19)
C9—N1—C1—C21.0 (3)C5—C6—C7—C80.6 (3)
C9—N1—C1—Cl1179.69 (15)C11—C6—C7—C8180.0 (2)
N1—C1—C2—C31.7 (3)C6—C7—C8—C90.4 (3)
Cl1—C1—C2—C3179.00 (15)C1—N1—C9—C40.9 (3)
N1—C1—C2—C10177.0 (2)C1—N1—C9—C8179.45 (19)
Cl1—C1—C2—C102.3 (3)C3—C4—C9—N12.0 (3)
C1—C2—C3—C40.5 (3)C5—C4—C9—N1178.91 (17)
C10—C2—C3—C4178.30 (18)C3—C4—C9—C8178.38 (18)
C2—C3—C4—C91.2 (3)C5—C4—C9—C80.7 (3)
C2—C3—C4—C5179.73 (19)C7—C8—C9—N1179.4 (2)
C3—C4—C5—C6178.44 (18)C7—C8—C9—C40.2 (3)
C9—C4—C5—C60.6 (3)C3—C2—C10—O113.5 (4)
C4—C5—C6—C70.0 (3)C1—C2—C10—O1165.1 (3)
C4—C5—C6—C11179.4 (2)

Experimental details

Crystal data
Chemical formulaC11H8ClNO
Mr205.63
Crystal system, space groupMonoclinic, Pc
Temperature (K)290
a, b, c (Å)5.944 (1), 3.9210 (19), 20.390 (2)
β (°) 101.377 (15)
V3)465.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.25 × 0.15 × 0.15
Data collection
DiffractometerOxford Diffraction Excalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.913, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
5980, 2052, 1831
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.00
No. of reflections2052
No. of parameters128
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17
Absolute structureFlack (1983), 990 Friedel pairs
Absolute structure parameter0.02 (6)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA-DST program. FNK thanks the DST for Fast Track Proposal funding. We thank VIT University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeth-Cohn, O. (1993). Heterocycles, 35, 539–557.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds