organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)-3-(5-methyl-2-fur­yl)prop-2-en-1-one

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: huanmeiguo@163.com

(Received 8 October 2009; accepted 26 October 2009; online 31 October 2009)

The title compound, C14H11ClO2, was prepared from 4-chloro­hypnone and 5-methyl­furfural by an aldol condensation reaction. The dihedral angle formed between the two benzene rings is 7.71 (2)°. The crystal structure is stabilized by C—H⋯O inter­actions.

Related literature

For the biological activity of chalcones, see: Anto et al. (1994[Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73-80.]); Dimmock et al. (1998[Dimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014-1026.]); Hsieh et al. (1998[Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.]); De Vincenzo et al. (2000[De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305-312.]). For a related structure, see: Guo et al. (2008[Guo, H.-M., Wang, X.-B. & Jian, F.-F. (2008). Acta Cryst. E64, o1951.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClO2

  • Mr = 246.68

  • Monoclinic, P 21 /n

  • a = 8.350 (3) Å

  • b = 15.732 (5) Å

  • c = 9.660 (3) Å

  • β = 106.882 (5)°

  • V = 1214.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 273 K

  • 0.50 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7894 measured reflections

  • 2988 independent reflections

  • 2055 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.180

  • S = 1.07

  • 2988 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.93 2.53 3.380 (4) 153
C14—H14A⋯O1 0.93 2.47 2.795 (2) 100
Symmetry code: (i) -x, -y, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among flavonoids, chalcones have been identified as interesting compounds with multiple biological actions, including anti-inflammatory (Hsieh et al., 1998) and anti-oxidant (Anto et al., 1994) activities. Of particular interest is the effectiveness of chalcones against cancer (De Vincenzo et al., 2000; Dimmock et al., 1998). As part of our search for new biologically active compounds, we synthesized the title chalcone, (I), and report its crystal structure herein.

The molecular structure of (I), Fig. 1, comprises a furan ring and a chlorophenyl group. These groups are not co-planar as seen in the value of the dihedral angle between them of 7.71 (2)°. Bond distances and angles conform to literature precedents (Guo, et al., 2008). There are intre- and inter-molecular C—H···O interactions that stabilize the molecular and crystal structures, respectively (Table 1). The intermolecular contacts lead to the formation of centrosymmetric dimers.

Related literature top

For the biological activity of chalcones, see: Anto et al. (1994); Dimmock et al. (1998); Hsieh et al. (1998); De Vincenzo et al. (2000). For a related structure, see: Guo et al. (2008).

Experimental top

Compound (I) was prepared in 80% yield by stirring an ethanol (30 ml) mixture comprising 4-chlorohypnone (0.02 mol), 5-methylfurfural (0.02 mol) and 10% NaOH (10 ml) for 3 h. Single crystals were obtailed by recrystallization of (I) from ethyl acetate at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

Among flavonoids, chalcones have been identified as interesting compounds with multiple biological actions, including anti-inflammatory (Hsieh et al., 1998) and anti-oxidant (Anto et al., 1994) activities. Of particular interest is the effectiveness of chalcones against cancer (De Vincenzo et al., 2000; Dimmock et al., 1998). As part of our search for new biologically active compounds, we synthesized the title chalcone, (I), and report its crystal structure herein.

The molecular structure of (I), Fig. 1, comprises a furan ring and a chlorophenyl group. These groups are not co-planar as seen in the value of the dihedral angle between them of 7.71 (2)°. Bond distances and angles conform to literature precedents (Guo, et al., 2008). There are intre- and inter-molecular C—H···O interactions that stabilize the molecular and crystal structures, respectively (Table 1). The intermolecular contacts lead to the formation of centrosymmetric dimers.

For the biological activity of chalcones, see: Anto et al. (1994); Dimmock et al. (1998); Hsieh et al. (1998); De Vincenzo et al. (2000). For a related structure, see: Guo et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
1-(4-Chlorophenyl)-3-(5-methyl-2-furyl)prop-2-en-1-one top
Crystal data top
C14H11ClO2F(000) = 512
Mr = 246.68Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2055 reflections
a = 8.350 (3) Åθ = 2.6–28.4°
b = 15.732 (5) ŵ = 0.30 mm1
c = 9.660 (3) ÅT = 273 K
β = 106.882 (5)°Block, yellow
V = 1214.4 (6) Å30.50 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2055 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 28.4°, θmin = 2.6°
φ and ω scansh = 1011
7894 measured reflectionsk = 2021
2988 independent reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0853P)2 + 0.305P]
where P = (Fo2 + 2Fc2)/3
2988 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H11ClO2V = 1214.4 (6) Å3
Mr = 246.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.350 (3) ŵ = 0.30 mm1
b = 15.732 (5) ÅT = 273 K
c = 9.660 (3) Å0.50 × 0.30 × 0.25 mm
β = 106.882 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2055 reflections with I > 2σ(I)
7894 measured reflectionsRint = 0.018
2988 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
2988 reflectionsΔρmin = 0.36 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.67915 (10)0.11664 (5)0.96441 (7)0.0964 (3)
O20.29242 (17)0.21735 (9)0.00449 (14)0.0596 (4)
C140.1656 (3)0.10736 (14)0.1064 (3)0.0658 (5)
H14A0.08360.06550.09080.079*
C130.2634 (3)0.11657 (13)0.2411 (2)0.0626 (5)
H13A0.34900.15660.25980.075*
C100.1736 (3)0.15490 (15)0.0158 (2)0.0629 (5)
C120.2409 (3)0.06591 (13)0.3607 (3)0.0650 (5)
C50.4834 (3)0.13765 (16)0.5410 (2)0.0710 (6)
H5A0.50520.16880.46660.085*
C60.3508 (3)0.08210 (12)0.5095 (2)0.0587 (5)
C40.5843 (3)0.14810 (17)0.6800 (3)0.0774 (7)
H4A0.67460.18540.69940.093*
O10.1329 (2)0.01152 (11)0.3404 (2)0.0909 (6)
C30.5513 (3)0.10340 (14)0.7892 (2)0.0670 (6)
C110.2738 (3)0.25576 (15)0.1251 (2)0.0653 (6)
C20.4203 (4)0.04941 (17)0.7630 (3)0.0860 (8)
H2A0.39840.01950.83860.103*
C90.0819 (3)0.15581 (19)0.1574 (3)0.0800 (7)
H9A0.00760.12030.20090.096*
C80.1463 (3)0.21949 (18)0.2252 (3)0.0783 (7)
H8A0.10790.23430.32240.094*
C10.3202 (4)0.03911 (16)0.6244 (3)0.0844 (8)
H1A0.22930.00230.60670.101*
C70.3947 (3)0.32399 (17)0.1277 (3)0.0853 (7)
H7A0.47000.33150.03240.128*
H7B0.33550.37610.15940.128*
H7C0.45720.30860.19320.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1060 (6)0.1184 (6)0.0598 (4)0.0105 (4)0.0160 (4)0.0124 (3)
O20.0562 (8)0.0653 (8)0.0492 (7)0.0017 (6)0.0026 (6)0.0025 (6)
C140.0611 (12)0.0613 (12)0.0731 (14)0.0025 (10)0.0163 (10)0.0093 (10)
C130.0600 (12)0.0571 (11)0.0675 (13)0.0025 (9)0.0137 (10)0.0028 (9)
C100.0532 (11)0.0707 (13)0.0586 (12)0.0006 (9)0.0068 (9)0.0124 (9)
C120.0682 (13)0.0501 (11)0.0779 (14)0.0017 (10)0.0231 (11)0.0008 (10)
C50.0748 (14)0.0776 (14)0.0610 (12)0.0125 (12)0.0201 (11)0.0129 (11)
C60.0644 (12)0.0462 (10)0.0682 (12)0.0024 (9)0.0232 (10)0.0047 (9)
C40.0774 (15)0.0846 (16)0.0666 (14)0.0147 (13)0.0151 (11)0.0133 (12)
O10.0971 (13)0.0774 (11)0.0948 (13)0.0329 (10)0.0224 (10)0.0050 (9)
C30.0738 (14)0.0675 (13)0.0610 (12)0.0142 (11)0.0213 (10)0.0084 (10)
C110.0633 (12)0.0738 (13)0.0535 (11)0.0127 (10)0.0088 (9)0.0016 (9)
C20.104 (2)0.0835 (17)0.0741 (16)0.0067 (15)0.0314 (15)0.0243 (13)
C90.0655 (13)0.1002 (18)0.0643 (13)0.0104 (13)0.0028 (11)0.0208 (13)
C80.0738 (14)0.1012 (18)0.0504 (11)0.0100 (13)0.0030 (10)0.0061 (11)
C10.0927 (17)0.0735 (15)0.0897 (19)0.0194 (13)0.0306 (15)0.0162 (13)
C70.0932 (18)0.0817 (16)0.0752 (15)0.0017 (14)0.0154 (14)0.0149 (13)
Geometric parameters (Å, º) top
Cl—C31.731 (2)C4—C31.361 (3)
O2—C111.358 (3)C4—H4A0.9300
O2—C101.370 (3)C3—C21.349 (4)
C14—C131.328 (3)C11—C81.340 (3)
C14—C101.415 (3)C11—C71.479 (4)
C14—H14A0.9300C2—C11.367 (4)
C13—C121.460 (3)C2—H2A0.9300
C13—H13A0.9300C9—C81.388 (4)
C10—C91.360 (3)C9—H9A0.9300
C12—O11.217 (3)C8—H8A0.9300
C12—C61.485 (3)C1—H1A0.9300
C5—C41.372 (3)C7—H7A0.9600
C5—C61.373 (3)C7—H7B0.9600
C5—H5A0.9300C7—H7C0.9600
C6—C11.385 (3)
C11—O2—C10107.65 (16)C2—C3—Cl119.68 (19)
C13—C14—C10126.5 (2)C4—C3—Cl119.3 (2)
C13—C14—H14A116.7C8—C11—O2109.3 (2)
C10—C14—H14A116.7C8—C11—C7134.4 (2)
C14—C13—C12122.1 (2)O2—C11—C7116.28 (19)
C14—C13—H13A118.9C3—C2—C1119.4 (2)
C12—C13—H13A118.9C3—C2—H2A120.3
C9—C10—O2108.0 (2)C1—C2—H2A120.3
C9—C10—C14134.1 (2)C10—C9—C8107.5 (2)
O2—C10—C14117.89 (17)C10—C9—H9A126.3
O1—C12—C13121.0 (2)C8—C9—H9A126.3
O1—C12—C6119.8 (2)C11—C8—C9107.6 (2)
C13—C12—C6119.15 (18)C11—C8—H8A126.2
C4—C5—C6121.3 (2)C9—C8—H8A126.2
C4—C5—H5A119.4C2—C1—C6121.6 (2)
C6—C5—H5A119.4C2—C1—H1A119.2
C5—C6—C1117.3 (2)C6—C1—H1A119.2
C5—C6—C12123.70 (19)C11—C7—H7A109.5
C1—C6—C12119.0 (2)C11—C7—H7B109.5
C3—C4—C5119.4 (2)H7A—C7—H7B109.5
C3—C4—H4A120.3C11—C7—H7C109.5
C5—C4—H4A120.3H7A—C7—H7C109.5
C2—C3—C4121.0 (2)H7B—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.533.380 (4)153
C14—H14A···O10.932.472.795 (2)100
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC14H11ClO2
Mr246.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)8.350 (3), 15.732 (5), 9.660 (3)
β (°) 106.882 (5)
V3)1214.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.50 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7894, 2988, 2055
Rint0.018
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.180, 1.07
No. of reflections2988
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.533.380 (4)153
C14—H14A···O10.932.472.795 (2)100
Symmetry code: (i) x, y, z.
 

Acknowledgements

The author would like to thank the National Natural Science Foundation of Shandong (Y2008B29) and Weifang University for research support.

References

First citationAnto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73–80.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014–1026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGuo, H.-M., Wang, X.-B. & Jian, F.-F. (2008). Acta Cryst. E64, o1951.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds