metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1H-1,3-Benzimidazole-5,6-di­carboxylic acid)(5-carboxyl­ato-1H-1,3-benzimidazole-6-carboxylic acid)silver(I) monohydrate

aCollege of Chemistry & Chemical Engineering, Shanxi Datong University, Shanxi 037009, People's Republic of China
*Correspondence e-mail: zhaihdtu@126.com

(Received 17 October 2009; accepted 26 October 2009; online 31 October 2009)

The title compound, [Ag(C9H5N2O4)(C9H6N2O4)]·H2O, contains one independent Ag atom, a neutral 1H-benzimidazole-5,6-dicarboxylic acid (bdcH), its monodeprotonated form, i.e. 5-carboxyl­ato-1H-1,3-benzimidazole-6-carboxylic acid (bdc), and one solvent water mol­ecule, the latter being disordered over three sites with site occupancy factors of 0.375 (× 2) and 0.25. In addition, the H atom on one carboxylic acid residue is disordered, being connected to each of the O atoms 50% of the time. The Ag atom is in a virtually linear geometry defined by two N atoms derived from the bdc and bdcH ligands. The three-dimensional supra­molecular structure is stablized by extensive O—H⋯O and N—H⋯O hydrogen bonds. An intramolecular O—H⋯O hydrogen bond is also present.

Related literature

For related structures, see: Gao et al. (2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]); Li et al. (2009[Li, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775.]); Lo et al. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]); Wei et al. (2008[Wei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087-2089.]); Yao et al. (2008[Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299-2306.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C9H5N2O4)(C9H6N4O2)]·H2O

  • Mr = 537.37

  • Monoclinic, C 2/c

  • a = 28.483 (3) Å

  • b = 18.6398 (17) Å

  • c = 7.2251 (7) Å

  • β = 99.046 (1)°

  • V = 3788.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 298 K

  • 0.31 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.740, Tmax = 0.807

  • 10329 measured reflections

  • 3675 independent reflections

  • 2572 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 1.04

  • 3675 reflections

  • 307 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7i 0.85 1.77 2.603 (4) 168
O3—H3⋯O3ii 0.85 1.71 2.528 (5) 162
O4—H4⋯O4iii 0.85 1.66 2.500 (6) 168
O7—H7⋯O5 0.85 1.54 2.389 (4) 176
N2—H2A⋯O6iv 0.86 1.88 2.733 (4) 173
N4—H4A⋯O8v 0.86 2.04 2.805 (4) 148
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Heterocyclic carboxylic acids as organic ligands attract attention not only because of versatile coordination modes but also owing to its ability to facilitate the formation of high-dimensional coordination polymers. One such example, namely, 1H-benzimidazole-5,6-dicarboxylic acid (bdcH), is a semi-rigid, multidentate ligand that can provide up to six donor atoms (two N and four O atoms) with variable coordination modes. This is therefore considered as an excellent candidate for generating 3-D architectures. Up to now, the reported complexes based on the bdc ligand are rare but have attracted recent interest (Lo et al., 2007; Gao et al., 2008; Wei et al., 2008; Yao et al., 2008; Li et al., 2009). Herein, the first Ag supramolecular compound based on the bdc ligand, namely [Ag(C9H5N2O2)(C9H6N2O2)].H2O, (I), is reported.

As is shown in Fig. 1, the asymmetric unit consists of bdcH and bdc ligands, one Ag atom, and one solvent water molecule. The water molecule is disordered over three sites with site occupancy factors = 0.375 (x 2) and 0.25, see Experimental. The Ag atom has a linear coordination environment being bound to two N atoms derived from the bdc ligands.

A packing diagram showing the 3-D supramolecular structure arising from a larg e number of hydrogen bonding interactions is shown in Fig. 2. Through the agency of intermolecular hydrogen bond interactions involving the bdc and bdcH ligands, Table 1, a layer structure is generated. These are connected into a 3-D network via hydrogen bonding interactions involving the water molecules.

Related literature top

For related structures, see: Gao et al. (2008); Li et al. (2009); Lo et al. (2007); Wei et al. (2008); Yao et al. (2008).

Experimental top

A mixture of the bdc (0.0415 g, 0.20 mmol), AgNO3 (0.0340 g, 0.20 mmol) and water (10 ml) was heated to 430 K for 72 h in a 23 ml Teflon-lined stainless-steel autoclave. After the reaction, the bomb was cooled to room temperature in a rate of 278 K per hour. Colourless prismatic crystals were collected and dried in air.

Refinement top

For the bdc ligand, all H atoms were placed at calculated positions and were treated as riding on the parent atoms with C—H = 0.93 and O—H = 0.86 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C, O). The H atom on the carboxylic acid residue with the O3 and O4 atoms was disordered. This was modelled over two sites of equal weight.

The solvent water molecule was also disordered over three positions, with site occupancy factors of 0.375, 0.375 and 0.25, respectively. The H atoms were included for each partially occupied molecule with O—H distances of 0.85 Å, and with Uĩso~(H) = 1.2U~eq~(O).

Structure description top

N-Heterocyclic carboxylic acids as organic ligands attract attention not only because of versatile coordination modes but also owing to its ability to facilitate the formation of high-dimensional coordination polymers. One such example, namely, 1H-benzimidazole-5,6-dicarboxylic acid (bdcH), is a semi-rigid, multidentate ligand that can provide up to six donor atoms (two N and four O atoms) with variable coordination modes. This is therefore considered as an excellent candidate for generating 3-D architectures. Up to now, the reported complexes based on the bdc ligand are rare but have attracted recent interest (Lo et al., 2007; Gao et al., 2008; Wei et al., 2008; Yao et al., 2008; Li et al., 2009). Herein, the first Ag supramolecular compound based on the bdc ligand, namely [Ag(C9H5N2O2)(C9H6N2O2)].H2O, (I), is reported.

As is shown in Fig. 1, the asymmetric unit consists of bdcH and bdc ligands, one Ag atom, and one solvent water molecule. The water molecule is disordered over three sites with site occupancy factors = 0.375 (x 2) and 0.25, see Experimental. The Ag atom has a linear coordination environment being bound to two N atoms derived from the bdc ligands.

A packing diagram showing the 3-D supramolecular structure arising from a larg e number of hydrogen bonding interactions is shown in Fig. 2. Through the agency of intermolecular hydrogen bond interactions involving the bdc and bdcH ligands, Table 1, a layer structure is generated. These are connected into a 3-D network via hydrogen bonding interactions involving the water molecules.

For related structures, see: Gao et al. (2008); Li et al. (2009); Lo et al. (2007); Wei et al. (2008); Yao et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (50% probability level) of (I), with atom numbering. The water molecule is fractionally occupied with site occupancy factors of 0.375, 0.375 and 0.25.
[Figure 2] Fig. 2. The packing diagram of (I), with partially-occupied H atoms omitted for clarity. Hydrogen bonds are shown as dashed lines.
(1H-1,3-Benzimidazole-5,6-dicarboxylic acid)(5-carboxylato-1H-1,3-benzimidazole-6-carboxylic acid)silver(I) monohydrate top
Crystal data top
[Ag(C9H5N2O4)(C9H6N2O4)]·H2OF(000) = 2145.0
Mr = 537.37Dx = 1.885 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2071 reflections
a = 28.483 (3) Åθ = 2.4–22.4°
b = 18.6398 (17) ŵ = 1.13 mm1
c = 7.2251 (7) ÅT = 298 K
β = 99.046 (1)°Block, colourless
V = 3788.2 (6) Å30.31 × 0.23 × 0.19 mm
Z = 8
Data collection top
Bruker APEXII area-detector
diffractometer
3675 independent reflections
Radiation source: fine-focus sealed tube2572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 3535
Tmin = 0.740, Tmax = 0.807k = 2022
10329 measured reflectionsl = 87
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
3675 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.52 e Å3
18 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ag(C9H5N2O4)(C9H6N2O4)]·H2OV = 3788.2 (6) Å3
Mr = 537.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.483 (3) ŵ = 1.13 mm1
b = 18.6398 (17) ÅT = 298 K
c = 7.2251 (7) Å0.31 × 0.23 × 0.19 mm
β = 99.046 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3675 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2572 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.807Rint = 0.044
10329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03918 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
3675 reflectionsΔρmin = 0.59 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.374338 (11)0.168833 (16)0.58373 (5)0.04290 (14)
O10.36561 (10)0.26003 (15)0.5821 (5)0.0606 (10)
H10.37100.30490.58320.073*
O20.44076 (10)0.23159 (15)0.5698 (5)0.0547 (9)
O30.45996 (10)0.11508 (16)0.3045 (4)0.0470 (8)
H30.48630.10560.26880.056*0.50
O40.50175 (10)0.08915 (16)0.5782 (4)0.0491 (8)
H40.50060.08300.69400.059*0.50
O50.30757 (10)0.53188 (16)0.6824 (5)0.0548 (9)
O60.28554 (11)0.42025 (16)0.6978 (5)0.0580 (10)
O70.37366 (11)0.60136 (15)0.6187 (5)0.0538 (9)
H70.34930.57810.63860.065*
O80.44651 (11)0.58811 (16)0.5706 (5)0.0612 (10)
N10.33935 (11)0.07120 (16)0.6181 (5)0.0314 (8)
N20.28969 (11)0.01398 (17)0.6799 (5)0.0338 (8)
H2A0.26460.03380.70950.041*
N30.41656 (11)0.25914 (16)0.5533 (5)0.0384 (9)
N40.47918 (11)0.32435 (17)0.5099 (5)0.0395 (9)
H4A0.50710.33470.48710.047*
C10.29744 (13)0.0560 (2)0.6672 (6)0.0354 (10)
H1A0.27570.09080.69050.043*
C20.32928 (12)0.0490 (2)0.6369 (6)0.0287 (9)
C30.36007 (13)0.00500 (19)0.5978 (6)0.0275 (9)
C40.40427 (13)0.01206 (19)0.5503 (6)0.0288 (9)
H4B0.42510.02370.52470.035*
C50.41601 (13)0.0831 (2)0.5424 (6)0.0301 (9)
C60.38460 (13)0.1378 (2)0.5819 (6)0.0293 (9)
C70.34103 (14)0.1213 (2)0.6295 (6)0.0349 (10)
H7A0.32020.15690.65570.042*
C80.40022 (15)0.2145 (2)0.5758 (6)0.0366 (10)
C90.46214 (15)0.0985 (2)0.4738 (7)0.0392 (11)
C100.46025 (15)0.2587 (2)0.5131 (7)0.0428 (11)
H10A0.47620.21700.48950.051*
C110.44556 (13)0.3720 (2)0.5500 (6)0.0327 (10)
C120.40613 (13)0.3312 (2)0.5766 (6)0.0327 (9)
C130.36540 (13)0.3643 (2)0.6177 (6)0.0327 (10)
H13A0.33960.33670.63930.039*
C140.36314 (13)0.4380 (2)0.6266 (6)0.0321 (10)
C150.40400 (14)0.47992 (19)0.5986 (6)0.0314 (9)
C160.44451 (14)0.4463 (2)0.5622 (6)0.0352 (10)
H16A0.47110.47320.54580.042*
C170.40890 (16)0.5620 (2)0.5952 (6)0.0395 (11)
C180.31614 (14)0.4648 (2)0.6704 (6)0.0399 (11)
O1W0.2366 (4)0.1989 (7)0.851 (2)0.126 (5)0.38
H1C0.23790.20420.96810.151*0.38
H1D0.22550.15650.84230.151*0.38
O2W0.2352 (4)0.2876 (6)0.5630 (19)0.108 (4)0.38
H2C0.24950.32570.60520.129*0.38
H2D0.25300.25090.58120.129*0.38
O3W0.2637 (6)0.2800 (10)0.809 (3)0.110 (6)0.25
H3C0.27020.32230.77670.131*0.25
H3D0.25640.26470.91110.131*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0433 (2)0.02077 (18)0.0675 (3)0.00497 (15)0.01755 (17)0.00033 (16)
O10.0401 (18)0.0188 (16)0.126 (3)0.0020 (13)0.0233 (19)0.0014 (17)
O20.0414 (18)0.0328 (18)0.096 (3)0.0092 (14)0.0283 (17)0.0062 (17)
O30.0345 (16)0.059 (2)0.051 (2)0.0025 (14)0.0147 (15)0.0074 (16)
O40.0297 (16)0.064 (2)0.054 (2)0.0008 (15)0.0076 (15)0.0002 (16)
O50.0422 (18)0.0341 (19)0.093 (3)0.0100 (14)0.0259 (18)0.0047 (17)
O60.0364 (17)0.0408 (19)0.104 (3)0.0013 (15)0.0317 (18)0.0021 (18)
O70.0478 (19)0.0226 (16)0.096 (3)0.0029 (14)0.0256 (19)0.0006 (16)
O80.049 (2)0.0314 (19)0.110 (3)0.0119 (15)0.032 (2)0.0032 (18)
N10.0261 (18)0.0219 (17)0.047 (2)0.0002 (14)0.0087 (15)0.0005 (15)
N20.0201 (16)0.033 (2)0.051 (2)0.0036 (14)0.0140 (15)0.0005 (16)
N30.0298 (18)0.0201 (18)0.068 (3)0.0007 (14)0.0167 (17)0.0010 (16)
N40.0279 (18)0.030 (2)0.066 (3)0.0014 (15)0.0215 (17)0.0003 (17)
C10.028 (2)0.028 (2)0.051 (3)0.0021 (18)0.008 (2)0.0022 (19)
C20.0202 (19)0.028 (2)0.039 (3)0.0009 (16)0.0099 (17)0.0025 (18)
C30.0240 (19)0.022 (2)0.037 (2)0.0045 (16)0.0071 (17)0.0005 (17)
C40.0220 (19)0.024 (2)0.042 (3)0.0034 (16)0.0110 (18)0.0015 (17)
C50.024 (2)0.030 (2)0.037 (3)0.0024 (17)0.0052 (17)0.0002 (18)
C60.031 (2)0.0189 (19)0.038 (3)0.0007 (16)0.0056 (19)0.0010 (17)
C70.032 (2)0.026 (2)0.049 (3)0.0042 (18)0.012 (2)0.0023 (19)
C80.035 (2)0.027 (2)0.052 (3)0.0037 (19)0.017 (2)0.0011 (19)
C90.034 (2)0.029 (2)0.057 (3)0.0048 (19)0.013 (2)0.001 (2)
C100.038 (2)0.026 (2)0.068 (3)0.0064 (19)0.018 (2)0.001 (2)
C110.028 (2)0.025 (2)0.047 (3)0.0020 (17)0.0123 (19)0.0020 (18)
C120.033 (2)0.022 (2)0.045 (3)0.0006 (18)0.0105 (18)0.0026 (19)
C130.028 (2)0.024 (2)0.049 (3)0.0010 (17)0.0154 (19)0.0035 (18)
C140.028 (2)0.028 (2)0.042 (3)0.0061 (17)0.0098 (18)0.0003 (18)
C150.033 (2)0.021 (2)0.042 (3)0.0025 (17)0.0095 (19)0.0004 (17)
C160.029 (2)0.026 (2)0.052 (3)0.0052 (17)0.013 (2)0.0035 (19)
C170.045 (3)0.029 (2)0.045 (3)0.003 (2)0.011 (2)0.001 (2)
C180.031 (2)0.035 (3)0.055 (3)0.001 (2)0.011 (2)0.000 (2)
O1W0.100 (7)0.111 (7)0.168 (9)0.017 (6)0.025 (7)0.013 (7)
O2W0.096 (7)0.071 (6)0.158 (9)0.017 (6)0.025 (6)0.000 (6)
O3W0.095 (9)0.102 (9)0.142 (10)0.019 (7)0.050 (8)0.029 (8)
Geometric parameters (Å, º) top
Ag1—N32.100 (3)C2—C31.393 (5)
Ag1—N12.108 (3)C3—C41.393 (5)
O1—C81.307 (5)C4—C51.369 (5)
O1—H10.8498C4—H4B0.9300
O2—C81.205 (5)C5—C61.415 (5)
O3—C91.254 (5)C5—C91.503 (5)
O3—H30.8499C6—C71.374 (5)
O4—C91.267 (5)C6—C81.500 (5)
O4—H40.8500C7—H7A0.9300
O5—C181.280 (5)C10—H10A0.9300
O6—C181.242 (5)C11—C161.388 (5)
O7—C171.277 (5)C11—C121.394 (5)
O7—H70.8499C12—C131.387 (5)
O8—C171.215 (5)C13—C141.378 (5)
N1—C11.329 (5)C13—H13A0.9300
N1—C31.385 (5)C14—C151.442 (5)
N2—C11.328 (5)C14—C181.508 (5)
N2—C21.380 (4)C15—C161.375 (5)
N2—H2A0.8600C15—C171.536 (5)
N3—C101.322 (5)C16—H16A0.9300
N3—C121.391 (5)O1W—H1C0.8500
N4—C101.339 (5)O1W—H1D0.8501
N4—C111.370 (5)O2W—H2C0.8501
N4—H4A0.8600O2W—H2D0.8501
C1—H1A0.9300O3W—H3C0.8496
C2—C71.391 (5)O3W—H3D0.8496
N3—Ag1—N1173.32 (12)C2—C7—H7A121.3
C8—O1—H1120.1O2—C8—O1124.2 (4)
C9—O3—H3109.5O2—C8—C6122.9 (4)
C9—O4—H4115.8O1—C8—C6112.9 (3)
C17—O7—H7114.2O3—C9—O4121.2 (4)
C1—N1—C3104.7 (3)O3—C9—C5117.2 (4)
C1—N1—Ag1132.6 (3)O4—C9—C5121.4 (4)
C3—N1—Ag1122.6 (2)N3—C10—N4113.2 (3)
C1—N2—C2107.4 (3)N3—C10—H10A123.4
C1—N2—H2A126.3N4—C10—H10A123.4
C2—N2—H2A126.3N4—C11—C16133.1 (4)
C10—N3—C12105.0 (3)N4—C11—C12106.3 (3)
C10—N3—Ag1126.3 (3)C16—C11—C12120.6 (3)
C12—N3—Ag1128.6 (2)C13—C12—N3131.1 (3)
C10—N4—C11107.0 (3)C13—C12—C11120.4 (4)
C10—N4—H4A126.5N3—C12—C11108.5 (3)
C11—N4—H4A126.5C14—C13—C12120.0 (4)
N2—C1—N1113.2 (3)C14—C13—H13A120.0
N2—C1—H1A123.4C12—C13—H13A120.0
N1—C1—H1A123.4C13—C14—C15119.3 (3)
N2—C2—C7132.6 (3)C13—C14—C18112.9 (3)
N2—C2—C3105.5 (3)C15—C14—C18127.8 (4)
C7—C2—C3121.9 (3)C16—C15—C14120.0 (4)
N1—C3—C2109.3 (3)C16—C15—C17111.7 (3)
N1—C3—C4130.2 (3)C14—C15—C17128.2 (3)
C2—C3—C4120.5 (3)C15—C16—C11119.6 (3)
C5—C4—C3117.8 (3)C15—C16—H16A120.2
C5—C4—H4B121.1C11—C16—H16A120.2
C3—C4—H4B121.1O8—C17—O7121.2 (4)
C4—C5—C6121.5 (3)O8—C17—C15119.1 (4)
C4—C5—C9115.5 (3)O7—C17—C15119.7 (4)
C6—C5—C9122.9 (3)O6—C18—O5119.8 (4)
C7—C6—C5120.9 (3)O6—C18—C14118.7 (4)
C7—C6—C8120.3 (3)O5—C18—C14121.5 (4)
C5—C6—C8118.8 (3)H1C—O1W—H1D97.8
C6—C7—C2117.3 (3)H2C—O2W—H2D112.1
C6—C7—H7A121.3H3C—O3W—H3D130.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.851.772.603 (4)168
O3—H3···O3ii0.851.712.528 (5)162
O4—H4···O4iii0.851.662.500 (6)168
O7—H7···O50.851.542.389 (4)176
N2—H2A···O6iv0.861.882.733 (4)173
N4—H4A···O8v0.862.042.805 (4)148
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1/2; (iii) x+1, y, z+3/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C9H5N2O4)(C9H6N2O4)]·H2O
Mr537.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)28.483 (3), 18.6398 (17), 7.2251 (7)
β (°) 99.046 (1)
V3)3788.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.31 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.740, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
10329, 3675, 2572
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.04
No. of reflections3675
No. of parameters307
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.59

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.851.772.603 (4)168
O3—H3···O3ii0.851.712.528 (5)162
O4—H4···O4iii0.851.662.500 (6)168
O7—H7···O50.851.542.389 (4)176
N2—H2A···O6iv0.861.882.733 (4)173
N4—H4A···O8v0.862.042.805 (4)148
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1/2; (iii) x+1, y, z+3/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1, y+1, z+1.
 

Acknowledgements

This work was financially supported by Shanxi Datong University.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087–2089.  Web of Science CrossRef CAS Google Scholar
First citationYao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds