organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5E)-2-[4,5-Bis(methyl­sulfan­yl)-1,3-di­thiol-2-yl­­idene]-5-(4-iodo-1,3-di­thiol-2-yl­­idene)-1,3-di­thio­lan-4-one

aDivision of Applied Science and Fundamental Engineering, Faculty of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka, 432-8561, Japan, and bBruker AXS Co Ltd, Moriya-cho 3-9, Kanagawa-ku, Kanagawa, Kanagawa 221-0022, Japan
*Correspondence e-mail: tkueda@ipc.shizuoka.ac.jp

(Received 19 October 2009; accepted 26 October 2009; online 31 October 2009)

The mol­ecular framework of the title compound, C11H7IOS8, is almost planar [maximum deviation = 0.040 (4) Å], except for the two methyl­sulfanyl groups, which are twisted relative to the mol­ecular skeleton, making C—S—C—C torsion angles of 144.1 (8) and −141.3 (8)°. In the crystal, mol­ecules are stacked alternately in opposite orientations, forming a one-dimensional column parallel to [110]. The primary inter­actions between mol­ecules comprising the columns are of the S⋯S type [3.554 (1) Å]. Inter­actions between columns are of the S⋯S type [3.411 (1) along b and 3.444 (1) Å along c], as well as S⋯I contacts [3.435 (2) Å].

Related literature

For background to 2,5-di(1,3-dithiole-2-yl­idene)-1,3-dithio­lan-4-one derivatives, see: Iwamatsu et al. (1999[Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Fujita, H. & Adachi, T. (1999). Chem. Lett. pp. 329-330.]); Matsumoto et al. (2002[Matsumoto, T., Kominami, T., Ueda, K., Sugimoto, T., Tada, T., Noguchi, S., Yoshino, H., Murata, K., Shiro, M., Negishi, E., Toyota, N., Endo, S. & Takahashi, K. (2002). Inorg. Chem. 41, 4763-4769.], 2003[Matsumoto, T., Kamada, Y., Sugimoto, T., Tada, T., Nakazumi, H., Kawakami, T. & Yamaguchi, K. (2003). Synth. Met. 135-136, 575-576.]); Hiraoka et al. (2007[Hiraoka, T., Fujiwara, H., Sugimoto, T., Nakazumi, H., Noguchi, S., Kuribayashi, A., Ishida, T., Yokogawa, K., Murata, K., Mori, T., Aruga-Katori, H., Kimura, S. & Hagiwara, M. (2007). J. Mater. Chem. 17, 1664-1673.]); Ueda & Yoza (2009[Ueda, K. & Yoza, K. (2009). Acta Cryst. E65, o2716.]). For the synthesis, see: Ueda & Yoza (2009[Ueda, K. & Yoza, K. (2009). Acta Cryst. E65, o2716.]). For background to inter­molecular S⋯I contacts, see: Blake et al. (1997[Blake, A. J., Cristiani, F., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1337-1346.], 1998[Blake, A. J., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). J. Chem. Soc. Dalton Trans. pp. 2037-2046.], 1999[Blake, A. J., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V., Parsons, S. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 525-531.]); Bricklebank et al. (2000[Bricklebank, N., Hargreaves, S. & Spey, S. E. (2000). Polyhedron, 19, 1163-1166.]); Ouvrard et al. (2003[Ouvrard, C., Le Questel, J.-Y., Berthelot, M. & Laurence, C. (2003). Acta Cryst. B59, 512-526.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C11H7IOS8

  • Mr = 538.55

  • Triclinic, [P \overline 1]

  • a = 8.309 (3) Å

  • b = 8.344 (3) Å

  • c = 14.618 (7) Å

  • α = 90.851 (6)°

  • β = 105.132 (6)°

  • γ = 118.510 (4)°

  • V = 848.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 93 K

  • 0.04 × 0.04 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.894, Tmax = 0.894

  • 9773 measured reflections

  • 3820 independent reflections

  • 3065 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.161

  • S = 1.07

  • 3820 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 2.34 e Å−3

  • Δρmin = −1.13 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: XCIF (Bruker, 2001[Bruker (2001). XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

2,5-Di(1,3-dithiol-2-ylidene)-1,3-dithiolan-4-one derivatives are used for the preparation of charge transfer salts with magnetic metal anions (Iwamatsu et al., 1999; Matsumoto et al., 2002a, b, 2003; Hiraoka et al., 2007). In CT salts these molecules can form unique crystal structures containing channels in addition to the usual stacked layer structures. The control of donor molecule interactions by means of chemical modification of the 2,5-di(1,3-dithiol-2-ylidene)-1,3-dithiolan-4-one skeleton may increase the dimensionality of aggregation in the solid-state. In this context, we have previously synthesized a molecule substituted with two iodide atoms, namely 2-[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene]-5-(4,5-diiodo-1,3-dithiol- 2-ylidene)-1,3-dithiolan-4-one, and observed fairly close I···O interactions in the crystal (Ueda & Yoza, 2009). As a continuation of these studies, herein, we present the crystal structure of a molecule substituted with one iodide atom, (I).

The molecular framework of (I), Fig. 1, except for two methylsulfanyl groups, is almost planar. The displacements of atoms S6, S9, and I1 relative to the plane of the skeleton are 0.106 (4), 0.236 (5) and 0.013 (4) Å, respectively. The torsion angles of the two methylsulfanyl groups are 144.1 (8)° for C10—S6—C8—C9 and -141.3 (8)° for C11—S9—C9—C8.

In the crystal structure, the molecules are stacked alternately in opposite orientations, forming a one-dimensional column parallel to the [110] direction (Fig. 2). The weak interactions between stacked molecules is accomplished through S···S contacts [S4···S6i = 3.554 (1) Å; symmetry code (i): 2-x, 2-y, 2-z] which are shorter than the sum of van der Waals radii of two S atoms, i.e. 3.60 Å (Bondi, 1964). It is noted that although the stacked molecules are separated by interplanar distances as short as 3.54 Å, they have fairly poor overlap. Some effective side-by-side contacts are observed between molecules of adjacent columns. These interactions are accomplished through S···S contacts [S2···S5ii = 3.411 (1) Å; symmetry code (ii): x, 1 + y, z] along the b axis. Stability along the c axis are afforded by additional S···S contacts [S9···S9iii = 3.444 (1) Å; symmetry code (iii): 2 - x, 2 - y, 1 - z] as well as S···I contacts [S6···I1iv = 3.435 (2) Å; symmetry code (iv): x, 1 + y, -1 + z]. This latter distance is shorter than the sum of corresponding van der Waals radii for S and I, i.e. 3.78 Å (Bondi, 1964). Such S···I interactions have been observed previously (Blake et al., 1997, 1998, 1999; Bricklebank et al., 2000). The intermolecular angles, 162.8 (2)° for S6···I1iv—C1iv and 105.8 (4)° for C10—S6···I1iv, are close to the ideal geometry (180° for C—I···S and 109.5° for C—S···I) which have been proposed for these types of associations (Ouvrard et al., 2003).

Related literature top

For background to 2,5-di(1,3-dithiole-2-ylidene)-1,3-dithiolan-4-one derivatives, see: Iwamatsu et al. (1999); Matsumoto et al. (2002, 2003); Hiraoka et al. (2007); Ueda & Yoza (2009). For the synthesis, see: Ueda & Yoza (2009). For background to intermolecular S···I contacts, see: Blake et al. (1997, 1998, 1999); Bricklebank et al. (2000); Ouvrard et al. (2003). For van der Waals radii, see: Bondi (1964).

Experimental top

Compound (I) was synthesized by a modification of the method used for the preparation of 2-[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene]-5-(4,5-diiodo-1,3-dithiol- 2-ylidene)-1,3-dithiolan-4-one (Ueda & Yoza, 2009). Bis(tetramethylammonium)bis[2-[4,5-bis(methylsulfanyl)-1,3-dithiol-2- ylidene]-1,3-dithiole-4,5-bis(thiolato)]zinc (402.4 mg, 0.4322 mmol) was reacted with 4-iodo-2-methylsulfanyl-1,3-dithiole-2-ylium tetrafluoroborate (457.5 mg, 1.2639 mmol) in THF-DMF (5:1 = v/v) at room temperature under nitrogen. Stirring was carried out for 12 h. After separation of the reaction mixture by column chromatography on silica gel (eluent CS2) followed by recrystallization from CS2/hexane, (5E)-2-[4,5-bis(methylsulfanyl)-1,3-dithiole-2-ylidene]-5-(4-iodo- 1,3-dithiole-2-ylidene)-1,3-dithiolan-4-thione (II) was obtained as dark-green needles in 74% yield.

When compound (II) (151.6 mg, 0.2733 mmol) was reacted with mercury(II) acetate (191.6 mg, 0.6012 mmol) in THF-AcOH (50:1 = v/v), compound (I) was obtained as dark-red platelets in 58% yield by recrystallization from CS2/hexane.

Refinement top

The H atoms were geometrically placed with C—H = 0.95-0.98 Å, and refined as in the riding model approximation with Uiso(H)= 1.2-1.5Ueq(C).

The maximum and minimum residual electron density peaks of 2.34 and -1.13 eÅ-3, respectively, were located 1.00 Å and 0.83 Å from the I1 atom, respectively.

Structure description top

2,5-Di(1,3-dithiol-2-ylidene)-1,3-dithiolan-4-one derivatives are used for the preparation of charge transfer salts with magnetic metal anions (Iwamatsu et al., 1999; Matsumoto et al., 2002a, b, 2003; Hiraoka et al., 2007). In CT salts these molecules can form unique crystal structures containing channels in addition to the usual stacked layer structures. The control of donor molecule interactions by means of chemical modification of the 2,5-di(1,3-dithiol-2-ylidene)-1,3-dithiolan-4-one skeleton may increase the dimensionality of aggregation in the solid-state. In this context, we have previously synthesized a molecule substituted with two iodide atoms, namely 2-[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene]-5-(4,5-diiodo-1,3-dithiol- 2-ylidene)-1,3-dithiolan-4-one, and observed fairly close I···O interactions in the crystal (Ueda & Yoza, 2009). As a continuation of these studies, herein, we present the crystal structure of a molecule substituted with one iodide atom, (I).

The molecular framework of (I), Fig. 1, except for two methylsulfanyl groups, is almost planar. The displacements of atoms S6, S9, and I1 relative to the plane of the skeleton are 0.106 (4), 0.236 (5) and 0.013 (4) Å, respectively. The torsion angles of the two methylsulfanyl groups are 144.1 (8)° for C10—S6—C8—C9 and -141.3 (8)° for C11—S9—C9—C8.

In the crystal structure, the molecules are stacked alternately in opposite orientations, forming a one-dimensional column parallel to the [110] direction (Fig. 2). The weak interactions between stacked molecules is accomplished through S···S contacts [S4···S6i = 3.554 (1) Å; symmetry code (i): 2-x, 2-y, 2-z] which are shorter than the sum of van der Waals radii of two S atoms, i.e. 3.60 Å (Bondi, 1964). It is noted that although the stacked molecules are separated by interplanar distances as short as 3.54 Å, they have fairly poor overlap. Some effective side-by-side contacts are observed between molecules of adjacent columns. These interactions are accomplished through S···S contacts [S2···S5ii = 3.411 (1) Å; symmetry code (ii): x, 1 + y, z] along the b axis. Stability along the c axis are afforded by additional S···S contacts [S9···S9iii = 3.444 (1) Å; symmetry code (iii): 2 - x, 2 - y, 1 - z] as well as S···I contacts [S6···I1iv = 3.435 (2) Å; symmetry code (iv): x, 1 + y, -1 + z]. This latter distance is shorter than the sum of corresponding van der Waals radii for S and I, i.e. 3.78 Å (Bondi, 1964). Such S···I interactions have been observed previously (Blake et al., 1997, 1998, 1999; Bricklebank et al., 2000). The intermolecular angles, 162.8 (2)° for S6···I1iv—C1iv and 105.8 (4)° for C10—S6···I1iv, are close to the ideal geometry (180° for C—I···S and 109.5° for C—S···I) which have been proposed for these types of associations (Ouvrard et al., 2003).

For background to 2,5-di(1,3-dithiole-2-ylidene)-1,3-dithiolan-4-one derivatives, see: Iwamatsu et al. (1999); Matsumoto et al. (2002, 2003); Hiraoka et al. (2007); Ueda & Yoza (2009). For the synthesis, see: Ueda & Yoza (2009). For background to intermolecular S···I contacts, see: Blake et al. (1997, 1998, 1999); Bricklebank et al. (2000); Ouvrard et al. (2003). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: XCIF (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labeling and 50% probability of displacement ellipsoids for non H-atoms.
[Figure 2] Fig. 2. Projection of the crystal packing in (I) along the [110] direction. The S···S (gray), and S···I (blue) contacts are shown with dashed lines. H atoms are omitted for clarity.
[Figure 3] Fig. 3. Projection of the crystal packing in (I) along the longer molecular axis. The S···S contacts are shown with gray dashed lines. H atoms are omitted for clarity.
(5E)-2-[4,5-Bis(methylsulfanyl)-1,3-dithiol-2-ylidene]-5-(4-iodo-1,3- dithiol-2-ylidene)-1,3-dithiolan-4-one top
Crystal data top
C11H7IOS8Z = 2
Mr = 538.55F(000) = 524
Triclinic, P1Dx = 2.109 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.309 (3) ÅCell parameters from 2153 reflections
b = 8.344 (3) Åθ = 2.8–25.3°
c = 14.618 (7) ŵ = 2.87 mm1
α = 90.851 (6)°T = 93 K
β = 105.132 (6)°Block, dark-red
γ = 118.510 (4)°0.04 × 0.04 × 0.04 mm
V = 848.0 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3820 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode3065 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.050
Detector resolution: 8.333 pixels mm-1θmax = 27.5°, θmin = 1.5°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.894, Tmax = 0.894l = 1818
9773 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0842P)2 + 3.4063P]
where P = (Fo2 + 2Fc2)/3
3820 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 2.34 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
C11H7IOS8γ = 118.510 (4)°
Mr = 538.55V = 848.0 (6) Å3
Triclinic, P1Z = 2
a = 8.309 (3) ÅMo Kα radiation
b = 8.344 (3) ŵ = 2.87 mm1
c = 14.618 (7) ÅT = 93 K
α = 90.851 (6)°0.04 × 0.04 × 0.04 mm
β = 105.132 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3820 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3065 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.894Rint = 0.050
9773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.07Δρmax = 2.34 e Å3
3820 reflectionsΔρmin = 1.13 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7414 (11)0.3494 (11)1.2804 (5)0.0208 (15)
C20.7832 (11)0.2717 (10)1.2163 (5)0.0200 (15)
H2A0.79570.16521.22520.024*
C30.7600 (10)0.5445 (10)1.1458 (5)0.0171 (14)
C40.7523 (10)0.6656 (10)1.0854 (5)0.0147 (14)
C50.7096 (11)0.8045 (10)1.1130 (5)0.0176 (15)
C60.7518 (10)0.8433 (10)0.9411 (5)0.0188 (15)
C70.7691 (10)0.9104 (10)0.8586 (5)0.0168 (14)
C80.7811 (11)1.1023 (10)0.7195 (5)0.0195 (15)
C90.8259 (11)0.9774 (10)0.6922 (6)0.0227 (16)
C100.5811 (14)1.2907 (13)0.6735 (8)0.040 (2)
H10A0.56631.38600.64010.060*
H10B0.60511.32210.74240.060*
H10C0.46331.17080.64810.060*
C110.7773 (12)0.7290 (12)0.5471 (7)0.0317 (19)
H11A0.80720.70930.48880.048*
H11B0.63810.67630.53240.048*
H11C0.82180.66860.59640.048*
I10.72165 (7)0.26967 (7)1.41327 (4)0.02158 (17)
O10.6819 (8)0.8263 (7)1.1898 (4)0.0248 (12)
S20.6928 (3)0.9427 (3)1.02369 (13)0.0204 (4)
S30.7856 (3)0.6574 (3)0.97138 (13)0.0192 (4)
S40.7150 (3)0.5414 (2)1.25643 (13)0.0180 (4)
S50.8134 (3)0.3773 (3)1.11542 (14)0.0223 (4)
S60.7799 (3)1.2779 (3)0.65508 (14)0.0222 (4)
S70.8283 (3)0.8205 (3)0.77148 (14)0.0215 (4)
S80.7337 (3)1.0982 (3)0.83040 (14)0.0212 (4)
S90.8974 (4)0.9749 (3)0.59090 (16)0.0318 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.018 (4)0.025 (4)0.019 (4)0.011 (3)0.004 (3)0.005 (3)
C20.029 (4)0.017 (4)0.018 (4)0.015 (3)0.008 (3)0.006 (3)
C30.014 (3)0.015 (3)0.021 (4)0.005 (3)0.006 (3)0.001 (3)
C40.018 (3)0.014 (3)0.016 (3)0.010 (3)0.006 (3)0.004 (3)
C50.021 (4)0.021 (4)0.014 (3)0.011 (3)0.007 (3)0.004 (3)
C60.019 (4)0.020 (4)0.018 (4)0.010 (3)0.006 (3)0.003 (3)
C70.017 (3)0.017 (4)0.014 (3)0.007 (3)0.005 (3)0.002 (3)
C80.022 (4)0.021 (4)0.014 (4)0.008 (3)0.010 (3)0.005 (3)
C90.024 (4)0.016 (4)0.027 (4)0.005 (3)0.014 (3)0.007 (3)
C100.045 (6)0.035 (5)0.062 (7)0.028 (5)0.032 (5)0.027 (5)
C110.030 (4)0.026 (4)0.038 (5)0.010 (4)0.016 (4)0.002 (4)
I10.0234 (3)0.0216 (3)0.0216 (3)0.0115 (2)0.0088 (2)0.00788 (19)
O10.034 (3)0.022 (3)0.026 (3)0.017 (3)0.014 (3)0.010 (2)
S20.0297 (10)0.0244 (10)0.0164 (9)0.0194 (8)0.0092 (8)0.0063 (7)
S30.0267 (10)0.0213 (9)0.0160 (9)0.0154 (8)0.0094 (8)0.0053 (7)
S40.0220 (9)0.0180 (9)0.0191 (9)0.0113 (7)0.0111 (7)0.0063 (7)
S50.0311 (10)0.0206 (9)0.0213 (10)0.0160 (8)0.0110 (8)0.0041 (7)
S60.0270 (10)0.0246 (10)0.0191 (9)0.0134 (8)0.0119 (8)0.0101 (7)
S70.0282 (10)0.0221 (9)0.0194 (9)0.0145 (8)0.0113 (8)0.0048 (7)
S80.0267 (10)0.0261 (10)0.0185 (9)0.0169 (8)0.0109 (8)0.0084 (7)
S90.0504 (13)0.0232 (10)0.0270 (11)0.0150 (10)0.0265 (10)0.0058 (8)
Geometric parameters (Å, º) top
C1—C21.337 (11)C7—S71.755 (7)
C1—S41.746 (8)C7—S81.762 (8)
C1—I12.083 (8)C8—C91.349 (11)
C2—S51.741 (8)C8—S61.755 (8)
C2—H2A0.9500C8—S81.763 (7)
C3—C41.365 (10)C9—S91.736 (8)
C3—S51.737 (7)C9—S71.765 (8)
C3—S41.751 (8)C10—S61.792 (9)
C4—C51.444 (10)C10—H10A0.9800
C4—S31.764 (7)C10—H10B0.9800
C5—O11.230 (9)C10—H10C0.9800
C5—S21.777 (8)C11—S91.813 (9)
C6—C71.350 (10)C11—H11A0.9800
C6—S21.747 (8)C11—H11B0.9800
C6—S31.747 (8)C11—H11C0.9800
C2—C1—S4118.7 (6)C8—C9—S9124.2 (6)
C2—C1—I1124.9 (6)C8—C9—S7116.2 (6)
S4—C1—I1116.2 (4)S9—C9—S7119.4 (5)
C1—C2—S5116.1 (6)S6—C10—H10A109.5
C1—C2—H2A122.0S6—C10—H10B109.5
S5—C2—H2A122.0H10A—C10—H10B109.5
C4—C3—S5121.0 (6)S6—C10—H10C109.5
C4—C3—S4124.0 (6)H10A—C10—H10C109.5
S5—C3—S4115.1 (4)H10B—C10—H10C109.5
C3—C4—C5119.7 (7)S9—C11—H11A109.5
C3—C4—S3122.9 (6)S9—C11—H11B109.5
C5—C4—S3117.3 (5)H11A—C11—H11B109.5
O1—C5—C4124.7 (7)S9—C11—H11C109.5
O1—C5—S2121.3 (6)H11A—C11—H11C109.5
C4—C5—S2113.9 (5)H11B—C11—H11C109.5
C7—C6—S2120.1 (6)C6—S2—C596.5 (4)
C7—C6—S3123.1 (6)C6—S3—C495.3 (3)
S2—C6—S3116.8 (4)C1—S4—C394.2 (4)
C6—C7—S7123.5 (6)C3—S5—C295.8 (4)
C6—C7—S8121.9 (6)C8—S6—C10102.2 (4)
S7—C7—S8114.6 (4)C7—S7—C996.0 (4)
C9—C8—S6124.3 (6)C7—S8—C895.1 (4)
C9—C8—S8118.1 (6)C9—S9—C11101.7 (4)
S6—C8—S8117.4 (4)

Experimental details

Crystal data
Chemical formulaC11H7IOS8
Mr538.55
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)8.309 (3), 8.344 (3), 14.618 (7)
α, β, γ (°)90.851 (6), 105.132 (6), 118.510 (4)
V3)848.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.04 × 0.04 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.894, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
9773, 3820, 3065
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.161, 1.07
No. of reflections3820
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.34, 1.13

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), XCIF (Bruker, 2001).

 

Acknowledgements

This work was supported by the Hamashin Regional Development Foundation and the Japan Chemical Innovation Institute.

References

First citationBlake, A. J., Cristiani, F., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1337–1346.  CSD CrossRef Web of Science Google Scholar
First citationBlake, A. J., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). J. Chem. Soc. Dalton Trans. pp. 2037–2046.  Web of Science CSD CrossRef Google Scholar
First citationBlake, A. J., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V., Parsons, S. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 525–531.  Web of Science CSD CrossRef Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBricklebank, N., Hargreaves, S. & Spey, S. E. (2000). Polyhedron, 19, 1163–1166.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHiraoka, T., Fujiwara, H., Sugimoto, T., Nakazumi, H., Noguchi, S., Kuribayashi, A., Ishida, T., Yokogawa, K., Murata, K., Mori, T., Aruga-Katori, H., Kimura, S. & Hagiwara, M. (2007). J. Mater. Chem. 17, 1664–1673.  Web of Science CSD CrossRef CAS Google Scholar
First citationIwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Fujita, H. & Adachi, T. (1999). Chem. Lett. pp. 329–330.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsumoto, T., Kamada, Y., Sugimoto, T., Tada, T., Nakazumi, H., Kawakami, T. & Yamaguchi, K. (2003). Synth. Met. 135–136, 575–576.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatsumoto, T., Kominami, T., Ueda, K., Sugimoto, T., Tada, T., Noguchi, S., Yoshino, H., Murata, K., Shiro, M., Negishi, E., Toyota, N., Endo, S. & Takahashi, K. (2002). Inorg. Chem. 41, 4763–4769.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOuvrard, C., Le Questel, J.-Y., Berthelot, M. & Laurence, C. (2003). Acta Cryst. B59, 512–526.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUeda, K. & Yoza, K. (2009). Acta Cryst. E65, o2716.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds