organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-7-methyl-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexa­hydro-1H-pyrrolo[3,4-b]quinoline

aDepartment of Physics, Anna University Chennai, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: kali@annauniv.edu

(Received 24 October 2009; accepted 26 October 2009; online 31 October 2009)

In the title compound, C32H32N2O2S, the pyrrolidine ring adopts a twist conformation while the tetra­hydro­pyridine ring is in a distorted half-chair conformation. The two rings are trans-fused. The dihedral angle between the sulfonyl and benzyl phenyl rings is 72.54 (14)°. The mol­ecular structure is stabilized by C—H⋯O hydrogen bonds, and N—H⋯π inter­actions involving the benzyl phenyl ring. The screw-related mol­ecules are linked into chains along the b axis by C—H⋯O hydrogen bonds and C—H⋯π inter­actions. Adjacent inversion-related chains inter­act via C—H⋯π inter­actions, forming a two-dimensional network parallel to the bc plane.

Related literature

For the anti­cancer and photochemotherapeutic activity of pyrroloquinoline derivatives, see: Ferlin et al. (2005[Ferlin, M. G., Marzano, C., Dalla Via, L., Chilin, A., Zagotto, G., Guiotto, A. & Moro, S. (2005). Bioorg. Med. Chem. 13, 4733-4739.]); Gasparotto et al. (2007[Gasparotto, V., Castagliuolo, I. & Ferlin, M. G. (2007). J. Med. Chem. 50, 5509-5513.]); Barraja et al. (2003[Barraja, P., Diana, P., Lauria, A., Montalbano, A., Almerico, A. M., Dattolo, G., Cirrincione, G., Viola, G. & Dall'Acqua, F. (2003). Bioorg. Med. Chem. Lett. 13, 2809-2811.]). For a related structure, see: Sudha et al. (2009[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009). Acta Cryst. E65, o2923.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C32H32N2O2S

  • Mr = 508.66

  • Monoclinic, P 21 /c

  • a = 9.0445 (4) Å

  • b = 10.6014 (4) Å

  • c = 27.533 (1) Å

  • β = 96.294 (3)°

  • V = 2624.07 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.38 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.360, Tmax = 0.974

  • 22823 measured reflections

  • 5138 independent reflections

  • 3615 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.178

  • S = 1.04

  • 5138 reflections

  • 340 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25A⋯O2 0.97 2.56 3.182 (3) 122
C28—H28⋯O2i 0.93 2.49 3.282 (4) 143
N2—H1N2⋯Cg3 0.87 (3) 2.69 (3) 3.461 (3) 148 (2)
C3—H3⋯Cg3i 0.98 2.93 3.852 (3) 158
C18—H18BCg2ii 0.96 2.90 3.723 (4) 145
C21—H21⋯Cg1iii 0.93 2.74 3.637 (3) 162
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z; (iii) -x+2, -y, -z. Cg1, Cg2 and Cg3 are the centroids of the C4–C9, C12–C17 and C26–C31 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrroloquinoline derivatives have been synthesized and investigated as potential anticancer drugs (Ferlin et al., 2005; Gasparotto et al., 2007). Some of them have been found to exhibit photochemotherapeutic activity (Barraja et al., 2003). As part of our studies on pyrroloquinoline derivatives, we report here the crystal structure of the title compound (I).

In the title molecule, the pyrrolidine ring adopts a twist conformation; the asymmetry parameters ΔC2[C2—C10] (Duax et al., 1976) and the puckering parameters q2 and φ (Cremer & Pople, 1975) are 6.1 (3)°, 0.407 (3) Å and 85.0 (4)°, respectively. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The tetrahydropyridine ring adopts a distorted half-chair conformation; the Q, θ, φ and ΔCs[C10] values for the above ring are 0.522 (3) Å, 129.4 (3)°, 93.1 (3)° and 101.3 (4)°, respectively. The phenyl group attached to the tetrahydropyridine ring is in a biaxial position. The C19—C24 phenyl ring forms dihedral angles of 80.98 (13) and 7.40 (14)°, respectively, with the C4—C9 and C12—C17 benzene rings. The C12—C17 and C26—C31 rings are oriented at a dihedral angle of 72.54 (14)°. The molecular structure is stabilized by C—H···O hydrogen bonds and N—H···π interactions (Table 1).

Bond lengths and angles are comparable with those in 3-benzyl-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexahydro-1H-pyrrolo[3,4-b]quinoline, (II), (Sudha et al., 2009). A superposition of the non-H atoms of the above molecule with those of the title molecule using XP in SHELXTL (Sheldrick, 2008), gave an r.m.s. deviation of 0.489 Å (Fig. 2). In both compounds, the pyrrolidine ring is trans-fused to the tetrahydropyridine ring but they differ in relative orientations of the phenyl rings.

In the solid state, screw-related molecules are linked into chains along the b axis by C—H···O hydrogen bonds and C—H···π interactions involving the C26—C31 ring (Table 1). Adjacent inversion-related chains interact via C—H···π interactions involving the C4—C9 and C12—C17 rings to form a two-dimensional network parallel to the bc plane (Fig.3).

A comparison of crystal packing in (I) and (II) shows that the presence of the methyl group at 7-position completely changes the packing mode. Without the methyl group, the molecules are linked into a chain along the a axis by intermolecular C—H···π interactions. But the presence of the methyl group resulted in a two-dimensional network parallel to the bc plane, as discussed above.

Related literature top

For the anticancer and photochemotherapeutic activity of pyrroloquinoline derivatives, see: Ferlin et al. (2005); Gasparotto et al. (2007); Barraja et al. (2003). For a related structure, see: Sudha et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). Cg1, Cg2 and Cg3 are the centroids of the C4–C9, C12–C17 and C26–C31 rings, respectively.

Experimental top

InCl3 (20 mol%) was added to a mixture of 2-(N-cinnamyl-N-tosylamino)-3-phenyl propanal (1 mmol) and p-methyl aniline (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 1 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the crude product was chromatographed on silica gel using a hexane-ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

The N-bound H atom was located in a difference map and refined freely [N—H = 0.87 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for methyl groups. Reflection 002 was partially obscured by the beam stop and was omitted.

Structure description top

Pyrroloquinoline derivatives have been synthesized and investigated as potential anticancer drugs (Ferlin et al., 2005; Gasparotto et al., 2007). Some of them have been found to exhibit photochemotherapeutic activity (Barraja et al., 2003). As part of our studies on pyrroloquinoline derivatives, we report here the crystal structure of the title compound (I).

In the title molecule, the pyrrolidine ring adopts a twist conformation; the asymmetry parameters ΔC2[C2—C10] (Duax et al., 1976) and the puckering parameters q2 and φ (Cremer & Pople, 1975) are 6.1 (3)°, 0.407 (3) Å and 85.0 (4)°, respectively. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The tetrahydropyridine ring adopts a distorted half-chair conformation; the Q, θ, φ and ΔCs[C10] values for the above ring are 0.522 (3) Å, 129.4 (3)°, 93.1 (3)° and 101.3 (4)°, respectively. The phenyl group attached to the tetrahydropyridine ring is in a biaxial position. The C19—C24 phenyl ring forms dihedral angles of 80.98 (13) and 7.40 (14)°, respectively, with the C4—C9 and C12—C17 benzene rings. The C12—C17 and C26—C31 rings are oriented at a dihedral angle of 72.54 (14)°. The molecular structure is stabilized by C—H···O hydrogen bonds and N—H···π interactions (Table 1).

Bond lengths and angles are comparable with those in 3-benzyl-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexahydro-1H-pyrrolo[3,4-b]quinoline, (II), (Sudha et al., 2009). A superposition of the non-H atoms of the above molecule with those of the title molecule using XP in SHELXTL (Sheldrick, 2008), gave an r.m.s. deviation of 0.489 Å (Fig. 2). In both compounds, the pyrrolidine ring is trans-fused to the tetrahydropyridine ring but they differ in relative orientations of the phenyl rings.

In the solid state, screw-related molecules are linked into chains along the b axis by C—H···O hydrogen bonds and C—H···π interactions involving the C26—C31 ring (Table 1). Adjacent inversion-related chains interact via C—H···π interactions involving the C4—C9 and C12—C17 rings to form a two-dimensional network parallel to the bc plane (Fig.3).

A comparison of crystal packing in (I) and (II) shows that the presence of the methyl group at 7-position completely changes the packing mode. Without the methyl group, the molecules are linked into a chain along the a axis by intermolecular C—H···π interactions. But the presence of the methyl group resulted in a two-dimensional network parallel to the bc plane, as discussed above.

For the anticancer and photochemotherapeutic activity of pyrroloquinoline derivatives, see: Ferlin et al. (2005); Gasparotto et al. (2007); Barraja et al. (2003). For a related structure, see: Sudha et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). Cg1, Cg2 and Cg3 are the centroids of the C4–C9, C12–C17 and C26–C31 rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a C—H···O hydrogen bond and the dotted line indicates an N—H···π interaction.
[Figure 2] Fig. 2. Fit of the title molecule (solid lines) with (II) (dashed lines). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Crystal packing of the title compound. C—H···O hydrogen bonds are shown as dashed lines and C—H···π interactions are shown as dotted lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
3-Benzyl-7-methyl-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexahydro-1H- pyrrolo[3,4-b]quinoline top
Crystal data top
C32H32N2O2SF(000) = 1080
Mr = 508.66Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5605 reflections
a = 9.0445 (4) Åθ = 2.3–30.1°
b = 10.6014 (4) ŵ = 0.16 mm1
c = 27.533 (1) ÅT = 100 K
β = 96.294 (3)°Block, colourless
V = 2624.07 (18) Å30.38 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5138 independent reflections
Radiation source: fine-focus sealed tube3615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1011
Tmin = 0.360, Tmax = 0.974k = 1312
22823 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1011P)2 + 1.1335P]
where P = (Fo2 + 2Fc2)/3
5138 reflections(Δ/σ)max = 0.001
340 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C32H32N2O2SV = 2624.07 (18) Å3
Mr = 508.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0445 (4) ŵ = 0.16 mm1
b = 10.6014 (4) ÅT = 100 K
c = 27.533 (1) Å0.38 × 0.20 × 0.17 mm
β = 96.294 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5138 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3615 reflections with I > 2σ(I)
Tmin = 0.360, Tmax = 0.974Rint = 0.078
22823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.69 e Å3
5138 reflectionsΔρmin = 0.51 e Å3
340 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62265 (8)0.48132 (7)0.13646 (2)0.0262 (2)
O10.4733 (2)0.4422 (2)0.12298 (7)0.0322 (5)
O20.6528 (2)0.58710 (19)0.16844 (7)0.0335 (5)
N10.7118 (3)0.3614 (2)0.16335 (8)0.0239 (5)
N21.0859 (3)0.2372 (2)0.15932 (8)0.0249 (5)
H1N21.156 (3)0.272 (3)0.1791 (11)0.022 (7)*
C10.6810 (3)0.2332 (3)0.14178 (10)0.0260 (6)
H1A0.61040.23780.11260.031*
H1B0.64220.17700.16510.031*
C20.8318 (3)0.1896 (2)0.12960 (8)0.0214 (6)
H20.85280.23040.09920.026*
C30.8577 (3)0.0474 (2)0.12508 (9)0.0217 (6)
H30.81400.00640.15200.026*
C41.0250 (3)0.0211 (3)0.13221 (8)0.0228 (6)
C51.0783 (3)0.0993 (3)0.12259 (9)0.0264 (6)
H51.00960.16160.11220.032*
C61.2275 (3)0.1305 (3)0.12773 (9)0.0305 (7)
C71.3287 (4)0.0369 (3)0.14395 (10)0.0362 (8)
H71.43000.05510.14780.043*
C81.2805 (3)0.0830 (3)0.15445 (10)0.0333 (7)
H81.35000.14410.16550.040*
C91.1304 (3)0.1136 (3)0.14877 (9)0.0258 (6)
C100.9342 (3)0.2446 (2)0.17126 (9)0.0223 (6)
H100.92510.19570.20100.027*
C110.8745 (3)0.3775 (2)0.17768 (9)0.0214 (6)
H110.91490.43390.15420.026*
C120.7040 (3)0.5160 (3)0.08227 (9)0.0262 (6)
C130.8142 (3)0.6074 (3)0.08287 (10)0.0296 (7)
H130.84920.64720.11200.036*
C140.8717 (4)0.6392 (3)0.03979 (10)0.0332 (7)
H140.94590.70000.04040.040*
C150.8201 (3)0.5815 (3)0.00429 (10)0.0293 (7)
C160.7127 (3)0.4883 (3)0.00385 (10)0.0307 (7)
H160.67920.44740.03290.037*
C170.6536 (3)0.4543 (3)0.03907 (10)0.0290 (6)
H170.58170.39140.03880.035*
C180.8756 (4)0.6232 (3)0.05135 (11)0.0381 (8)
H18A0.83610.56850.07740.057*
H18B0.98230.61940.04810.057*
H18C0.84390.70820.05860.057*
C190.7819 (3)0.0079 (2)0.07772 (9)0.0219 (6)
C200.8280 (3)0.0268 (3)0.03263 (9)0.0270 (6)
H200.90510.08440.03160.032*
C210.7597 (3)0.0241 (3)0.01055 (10)0.0305 (7)
H210.79160.00100.04030.037*
C220.6438 (3)0.1093 (3)0.00949 (11)0.0327 (7)
H220.59740.14280.03850.039*
C230.5976 (3)0.1444 (3)0.03477 (11)0.0329 (7)
H230.52020.20180.03570.040*
C240.6674 (3)0.0936 (3)0.07798 (10)0.0276 (6)
H240.63600.11800.10760.033*
C250.9111 (3)0.4321 (3)0.22950 (9)0.0261 (6)
H25A0.86480.51420.23150.031*
H25B0.87220.37690.25320.031*
C261.0768 (3)0.4441 (3)0.24082 (9)0.0257 (6)
C271.1623 (3)0.3525 (3)0.26768 (9)0.0263 (6)
H271.11460.28730.28230.032*
C281.3159 (4)0.3569 (3)0.27287 (9)0.0307 (7)
H281.37020.29390.29030.037*
C291.3898 (3)0.4552 (3)0.25217 (10)0.0332 (7)
H291.49320.45830.25560.040*
C301.3068 (4)0.5486 (3)0.22638 (10)0.0342 (7)
H301.35490.61530.21280.041*
C311.1532 (3)0.5429 (3)0.22085 (9)0.0293 (7)
H311.09930.60620.20350.035*
C321.2786 (4)0.2591 (3)0.11267 (11)0.0403 (8)
H32A1.20940.32200.12100.060*
H32B1.37520.27670.12940.060*
H32C1.28370.26030.07800.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0340 (4)0.0233 (4)0.0212 (3)0.0093 (3)0.0028 (3)0.0022 (3)
O10.0324 (12)0.0364 (12)0.0282 (10)0.0140 (9)0.0044 (8)0.0006 (9)
O20.0486 (13)0.0266 (11)0.0254 (10)0.0114 (9)0.0040 (9)0.0076 (8)
N10.0294 (13)0.0202 (12)0.0219 (11)0.0044 (9)0.0023 (9)0.0017 (9)
N20.0245 (13)0.0277 (13)0.0221 (11)0.0020 (10)0.0007 (10)0.0082 (10)
C10.0295 (16)0.0213 (15)0.0268 (14)0.0015 (12)0.0015 (11)0.0008 (11)
C20.0293 (15)0.0188 (14)0.0161 (12)0.0011 (11)0.0033 (11)0.0033 (10)
C30.0303 (16)0.0183 (14)0.0170 (12)0.0010 (11)0.0054 (10)0.0038 (10)
C40.0305 (16)0.0250 (15)0.0127 (11)0.0046 (12)0.0018 (10)0.0019 (10)
C50.0384 (17)0.0252 (15)0.0153 (12)0.0051 (12)0.0015 (11)0.0047 (10)
C60.0436 (19)0.0342 (17)0.0134 (12)0.0147 (14)0.0012 (12)0.0039 (11)
C70.0331 (18)0.054 (2)0.0205 (13)0.0201 (15)0.0019 (12)0.0069 (13)
C80.0294 (17)0.048 (2)0.0214 (13)0.0040 (14)0.0010 (12)0.0121 (13)
C90.0318 (16)0.0328 (16)0.0125 (11)0.0063 (12)0.0013 (11)0.0017 (11)
C100.0297 (16)0.0212 (14)0.0163 (12)0.0029 (11)0.0035 (10)0.0008 (10)
C110.0271 (15)0.0193 (14)0.0177 (12)0.0027 (11)0.0015 (10)0.0010 (10)
C120.0345 (17)0.0234 (15)0.0206 (12)0.0089 (12)0.0023 (11)0.0016 (11)
C130.0454 (19)0.0191 (14)0.0231 (13)0.0035 (13)0.0016 (12)0.0006 (11)
C140.0408 (19)0.0254 (16)0.0326 (15)0.0012 (13)0.0004 (13)0.0060 (12)
C150.0352 (17)0.0258 (16)0.0269 (14)0.0114 (13)0.0029 (12)0.0032 (11)
C160.0402 (18)0.0306 (16)0.0206 (13)0.0107 (13)0.0001 (12)0.0049 (11)
C170.0324 (17)0.0258 (16)0.0281 (14)0.0046 (12)0.0006 (12)0.0029 (11)
C180.048 (2)0.0374 (18)0.0297 (15)0.0112 (15)0.0075 (14)0.0067 (13)
C190.0264 (15)0.0167 (13)0.0223 (12)0.0039 (11)0.0013 (11)0.0025 (10)
C200.0370 (17)0.0226 (15)0.0212 (13)0.0017 (12)0.0022 (11)0.0005 (11)
C210.0390 (18)0.0312 (16)0.0207 (13)0.0076 (13)0.0009 (12)0.0016 (12)
C220.0355 (18)0.0304 (16)0.0295 (14)0.0064 (13)0.0091 (12)0.0080 (12)
C230.0290 (17)0.0281 (17)0.0401 (16)0.0035 (12)0.0034 (13)0.0031 (13)
C240.0324 (17)0.0234 (15)0.0275 (14)0.0017 (12)0.0053 (12)0.0008 (11)
C250.0360 (17)0.0225 (14)0.0201 (13)0.0025 (12)0.0045 (11)0.0036 (11)
C260.0376 (17)0.0241 (15)0.0159 (12)0.0001 (12)0.0048 (11)0.0054 (10)
C270.0417 (18)0.0212 (14)0.0152 (12)0.0024 (12)0.0006 (11)0.0024 (10)
C280.0417 (19)0.0287 (16)0.0203 (13)0.0059 (13)0.0035 (12)0.0023 (11)
C290.0324 (17)0.0429 (19)0.0236 (14)0.0015 (14)0.0002 (12)0.0016 (13)
C300.046 (2)0.0344 (18)0.0225 (13)0.0070 (14)0.0031 (13)0.0022 (12)
C310.0433 (19)0.0231 (15)0.0208 (13)0.0022 (13)0.0006 (12)0.0008 (11)
C320.053 (2)0.0387 (19)0.0301 (15)0.0231 (15)0.0078 (14)0.0043 (13)
Geometric parameters (Å, º) top
S1—O11.423 (2)C14—H140.93
S1—O21.433 (2)C15—C161.387 (4)
S1—N11.638 (2)C15—C181.506 (4)
S1—C121.773 (3)C16—C171.397 (4)
N1—C111.491 (3)C16—H160.93
N1—C11.497 (3)C17—H170.93
N2—C91.410 (4)C18—H18A0.96
N2—C101.448 (3)C18—H18B0.96
N2—H1N20.87 (3)C18—H18C0.96
C1—C21.512 (4)C19—C241.379 (4)
C1—H1A0.97C19—C201.401 (4)
C1—H1B0.97C20—C211.388 (4)
C2—C101.510 (4)C20—H200.93
C2—C31.532 (4)C21—C221.386 (4)
C2—H20.98C21—H210.93
C3—C191.522 (4)C22—C231.382 (4)
C3—C41.530 (4)C22—H220.93
C3—H30.98C23—C241.392 (4)
C4—C51.400 (4)C23—H230.93
C4—C91.408 (4)C24—H240.93
C5—C61.382 (4)C25—C261.502 (4)
C5—H50.93C25—H25A0.97
C6—C71.391 (5)C25—H25B0.97
C6—C321.512 (4)C26—C311.400 (4)
C7—C81.385 (4)C26—C271.401 (4)
C7—H70.93C27—C281.381 (4)
C8—C91.388 (4)C27—H270.93
C8—H80.93C28—C291.394 (4)
C10—C111.527 (4)C28—H280.93
C10—H100.98C29—C301.390 (4)
C11—C251.541 (3)C29—H290.93
C11—H110.98C30—C311.383 (4)
C12—C131.389 (4)C30—H300.93
C12—C171.390 (4)C31—H310.93
C13—C141.388 (4)C32—H32A0.96
C13—H130.93C32—H32B0.96
C14—C151.393 (4)C32—H32C0.96
O1—S1—O2119.99 (12)C13—C14—C15121.1 (3)
O1—S1—N1107.33 (12)C13—C14—H14119.4
O2—S1—N1106.16 (12)C15—C14—H14119.4
O1—S1—C12108.10 (13)C16—C15—C14118.2 (3)
O2—S1—C12106.62 (13)C16—C15—C18121.1 (3)
N1—S1—C12108.18 (12)C14—C15—C18120.6 (3)
C11—N1—C1110.2 (2)C15—C16—C17121.7 (3)
C11—N1—S1116.96 (17)C15—C16—H16119.2
C1—N1—S1117.64 (17)C17—C16—H16119.2
C9—N2—C10113.3 (2)C12—C17—C16118.8 (3)
C9—N2—H1N2108.1 (19)C12—C17—H17120.6
C10—N2—H1N2118.8 (19)C16—C17—H17120.6
N1—C1—C2103.4 (2)C15—C18—H18A109.5
N1—C1—H1A111.1C15—C18—H18B109.5
C2—C1—H1A111.1H18A—C18—H18B109.5
N1—C1—H1B111.1C15—C18—H18C109.5
C2—C1—H1B111.1H18A—C18—H18C109.5
H1A—C1—H1B109.0H18B—C18—H18C109.5
C10—C2—C1101.9 (2)C24—C19—C20118.3 (2)
C10—C2—C3110.8 (2)C24—C19—C3121.1 (2)
C1—C2—C3117.9 (2)C20—C19—C3120.6 (2)
C10—C2—H2108.6C21—C20—C19120.6 (3)
C1—C2—H2108.6C21—C20—H20119.7
C3—C2—H2108.6C19—C20—H20119.7
C19—C3—C4112.7 (2)C22—C21—C20120.1 (3)
C19—C3—C2113.0 (2)C22—C21—H21119.9
C4—C3—C2109.1 (2)C20—C21—H21119.9
C19—C3—H3107.3C23—C22—C21119.8 (3)
C4—C3—H3107.3C23—C22—H22120.1
C2—C3—H3107.3C21—C22—H22120.1
C5—C4—C9117.5 (3)C22—C23—C24119.8 (3)
C5—C4—C3119.9 (2)C22—C23—H23120.1
C9—C4—C3122.6 (2)C24—C23—H23120.1
C6—C5—C4123.5 (3)C19—C24—C23121.4 (3)
C6—C5—H5118.3C19—C24—H24119.3
C4—C5—H5118.3C23—C24—H24119.3
C5—C6—C7117.6 (3)C26—C25—C11109.4 (2)
C5—C6—C32120.8 (3)C26—C25—H25A109.8
C7—C6—C32121.4 (3)C11—C25—H25A109.8
C8—C7—C6120.7 (3)C26—C25—H25B109.8
C8—C7—H7119.6C11—C25—H25B109.8
C6—C7—H7119.6H25A—C25—H25B108.2
C7—C8—C9121.2 (3)C31—C26—C27117.3 (3)
C7—C8—H8119.4C31—C26—C25120.4 (2)
C9—C8—H8119.4C27—C26—C25122.1 (3)
C8—C9—C4119.5 (3)C28—C27—C26121.5 (3)
C8—C9—N2119.5 (3)C28—C27—H27119.2
C4—C9—N2121.0 (3)C26—C27—H27119.2
N2—C10—C2108.9 (2)C27—C28—C29120.3 (3)
N2—C10—C11115.6 (2)C27—C28—H28119.9
C2—C10—C11104.4 (2)C29—C28—H28119.9
N2—C10—H10109.2C30—C29—C28119.1 (3)
C2—C10—H10109.2C30—C29—H29120.5
C11—C10—H10109.2C28—C29—H29120.5
N1—C11—C10102.4 (2)C31—C30—C29120.3 (3)
N1—C11—C25113.2 (2)C31—C30—H30119.8
C10—C11—C25114.3 (2)C29—C30—H30119.8
N1—C11—H11108.9C30—C31—C26121.5 (3)
C10—C11—H11108.9C30—C31—H31119.2
C25—C11—H11108.9C26—C31—H31119.2
C13—C12—C17120.4 (2)C6—C32—H32A109.5
C13—C12—S1119.9 (2)C6—C32—H32B109.5
C17—C12—S1119.7 (2)H32A—C32—H32B109.5
C14—C13—C12119.7 (3)C6—C32—H32C109.5
C14—C13—H13120.2H32A—C32—H32C109.5
C12—C13—H13120.2H32B—C32—H32C109.5
O1—S1—N1—C11175.82 (17)C2—C10—C11—N131.8 (2)
O2—S1—N1—C1154.7 (2)N2—C10—C11—C2585.8 (3)
C12—S1—N1—C1159.4 (2)C2—C10—C11—C25154.5 (2)
O1—S1—N1—C141.1 (2)O1—S1—C12—C13149.6 (2)
O2—S1—N1—C1170.60 (19)O2—S1—C12—C1319.4 (3)
C12—S1—N1—C175.3 (2)N1—S1—C12—C1394.4 (2)
C11—N1—C1—C216.8 (3)O1—S1—C12—C1728.3 (3)
S1—N1—C1—C2120.77 (19)O2—S1—C12—C17158.5 (2)
N1—C1—C2—C1035.8 (2)N1—S1—C12—C1787.6 (2)
N1—C1—C2—C3157.3 (2)C17—C12—C13—C141.5 (4)
C10—C2—C3—C19167.9 (2)S1—C12—C13—C14176.5 (2)
C1—C2—C3—C1975.3 (3)C12—C13—C14—C150.4 (4)
C10—C2—C3—C441.8 (3)C13—C14—C15—C162.0 (4)
C1—C2—C3—C4158.6 (2)C13—C14—C15—C18175.7 (3)
C19—C3—C4—C544.2 (3)C14—C15—C16—C171.7 (4)
C2—C3—C4—C5170.5 (2)C18—C15—C16—C17175.9 (3)
C19—C3—C4—C9136.4 (2)C13—C12—C17—C161.7 (4)
C2—C3—C4—C910.1 (3)S1—C12—C17—C16176.2 (2)
C9—C4—C5—C61.1 (4)C15—C16—C17—C120.1 (4)
C3—C4—C5—C6179.5 (2)C4—C3—C19—C24121.5 (3)
C4—C5—C6—C70.9 (4)C2—C3—C19—C24114.3 (3)
C4—C5—C6—C32174.8 (2)C4—C3—C19—C2058.1 (3)
C5—C6—C7—C80.0 (4)C2—C3—C19—C2066.1 (3)
C32—C6—C7—C8175.6 (3)C24—C19—C20—C210.0 (4)
C6—C7—C8—C90.5 (4)C3—C19—C20—C21179.6 (2)
C7—C8—C9—C40.2 (4)C19—C20—C21—C220.5 (4)
C7—C8—C9—N2179.3 (3)C20—C21—C22—C230.6 (4)
C5—C4—C9—C80.5 (3)C21—C22—C23—C240.2 (5)
C3—C4—C9—C8179.9 (2)C20—C19—C24—C230.4 (4)
C5—C4—C9—N2179.9 (2)C3—C19—C24—C23179.9 (3)
C3—C4—C9—N20.6 (4)C22—C23—C24—C190.3 (4)
C10—N2—C9—C8156.3 (2)N1—C11—C25—C26179.6 (2)
C10—N2—C9—C424.2 (3)C10—C11—C25—C2662.9 (3)
C9—N2—C10—C256.6 (3)C11—C25—C26—C3176.8 (3)
C9—N2—C10—C11173.7 (2)C11—C25—C26—C2797.3 (3)
C1—C2—C10—N2166.6 (2)C31—C26—C27—C282.2 (4)
C3—C2—C10—N267.1 (3)C25—C26—C27—C28172.1 (2)
C1—C2—C10—C1142.5 (2)C26—C27—C28—C291.5 (4)
C3—C2—C10—C11168.8 (2)C27—C28—C29—C300.1 (4)
C1—N1—C11—C109.1 (2)C28—C29—C30—C310.8 (4)
S1—N1—C11—C10146.95 (17)C29—C30—C31—C260.0 (4)
C1—N1—C11—C25132.6 (2)C27—C26—C31—C301.5 (4)
S1—N1—C11—C2589.6 (2)C25—C26—C31—C30173.0 (2)
N2—C10—C11—N1151.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.972.532.914 (4)104
C13—H13···O20.932.572.912 (3)103
C25—H25A···O20.972.563.182 (3)122
C28—H28···O2i0.932.493.282 (4)143
N2—H1N2···Cg30.87 (3)2.69 (3)3.461 (3)148 (2)
C3—H3···Cg3i0.982.933.852 (3)158
C18—H18B···Cg2ii0.962.903.723 (4)145
C21—H21···Cg1iii0.932.743.637 (3)162
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC32H32N2O2S
Mr508.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.0445 (4), 10.6014 (4), 27.533 (1)
β (°) 96.294 (3)
V3)2624.07 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.38 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.360, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
22823, 5138, 3615
Rint0.078
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.178, 1.04
No. of reflections5138
No. of parameters340
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.51

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···O20.972.563.182 (3)122
C28—H28···O2i0.932.493.282 (4)143
N2—H1N2···Cg30.87 (3)2.69 (3)3.461 (3)148 (2)
C3—H3···Cg3i0.982.933.852 (3)158
C18—H18B···Cg2ii0.962.903.723 (4)145
C21—H21···Cg1iii0.932.743.637 (3)162
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+2, y, z.
 

Footnotes

Working at: Department of Physics, R.M.K Engineering College, R.S.M. Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

§Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBarraja, P., Diana, P., Lauria, A., Montalbano, A., Almerico, A. M., Dattolo, G., Cirrincione, G., Viola, G. & Dall'Acqua, F. (2003). Bioorg. Med. Chem. Lett. 13, 2809–2811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationFerlin, M. G., Marzano, C., Dalla Via, L., Chilin, A., Zagotto, G., Guiotto, A. & Moro, S. (2005). Bioorg. Med. Chem. 13, 4733–4739.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGasparotto, V., Castagliuolo, I. & Ferlin, M. G. (2007). J. Med. Chem. 50, 5509–5513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009). Acta Cryst. E65, o2923.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds