organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-3-methyl­sulfanyl-5-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 29 September 2009; accepted 12 October 2009; online 17 October 2009)

In the title compound, C21H15FOS, the 4-fluoro­phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 24.3 (1)°. The dihedral angle between the phenyl ring and the benzofuran plane is 28.3 (1)°. The crystal structure may be stabilized by two very weak aromatic ππ inter­actions between the furan and the benzene rings of neighbouring benzofuran systems; the centroid–centroid distances are 3.909 (4) and 4.028 (4) Å.

Related literature

For the crystal structures of similar 2,5-diaryl-3-methyl­sulfanyl-1-benzofuran derivatives, see: Choi, Seo et al. (2006[Choi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4796-o4797.]); Choi, Woo et al. (2006[Choi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4708-o4709.]). For natural products with benzofuran ring systems, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]); von Reuss & König (2004[Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113-3118.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15FOS

  • Mr = 334.39

  • Monoclinic, P 21

  • a = 10.621 (6) Å

  • b = 7.192 (4) Å

  • c = 11.642 (6) Å

  • β = 116.076 (5)°

  • V = 798.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.50 × 0.42 × 0.33 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.932

  • 7602 measured reflections

  • 3339 independent reflections

  • 3147 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.133

  • S = 1.04

  • 3339 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983), 1362 Friedel pairs

  • Flack parameter: 0.00 (9)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing the benzofuran skeleton constitute a major group of naturally-occurring compounds that are of a remarkable interest because of their biological activities (Akgul & Anil, 2003; Soekamto et al., 2003; von Reuss & König, 2004). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2,5-diaryl-3-methylsulfanyl-1-benzofuran analogues (Choi, Seo et al., 2006; Choi, Woo et al., 2006), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.011 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is rotated out of the benzofuran plane, with a dihedral angle of 24.3 (1)°. The dihedral angle between the phenyl ring and the benzofuran plane is 28.3 (1)°. The molecular packing (Fig. 2) is stabilized by two aromatic π···π interactions between the furan and the benzene rings of adjacent benzofuran molecules, with a Cg1···Cg2i and a Cg2···Cg1i distances of 3.909 (4) and 4.028 (4) Å, respectively (Cg1 and Cg2 are the centroids of the C1/C2/C7/O/C8 furan ring and the C2–C7 benzene ring, respectively, symmetry code i: - x + 1, y - 1/2, - z + 1).

Related literature top

For the crystal structures of similar 2,5-diaryl-3-methylsulfanyl-1-benzofuran derivatives, see: Choi, Seo et al. (2006); Choi, Woo et al. (2006). For natural products with benzofuran ring systems, see: Akgul & Anil (2003); Soekamto et al. (2003); von Reuss & König (2004).

Experimental top

Zinc chloride (273 mg, 2.0 mmol) was added to a stirred solution of 4-phenylphenol (340 mg, 2.0 mmol) and 2-chloro-4'-fluoro-2-methylsulfanylacetophenone (437 mg, 2.0 mmol) in dichloromethane (30 ml) at room temperature, and stirring was continued at the same temperature for 40 min. The reaction was quenched by the addition of water and the organic layer separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (carbon tetrachloride) to afford the title compound as a colorless solid [yield 68%, m.p. 431–432 K; Rf = 0.71 (carbon tetrachloride)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for the aryl H atoms and 0.96 Å for the methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for the aryl H atoms and 1.5Ueq(C) for the methyl H atoms.

Structure description top

Molecules containing the benzofuran skeleton constitute a major group of naturally-occurring compounds that are of a remarkable interest because of their biological activities (Akgul & Anil, 2003; Soekamto et al., 2003; von Reuss & König, 2004). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2,5-diaryl-3-methylsulfanyl-1-benzofuran analogues (Choi, Seo et al., 2006; Choi, Woo et al., 2006), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.011 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is rotated out of the benzofuran plane, with a dihedral angle of 24.3 (1)°. The dihedral angle between the phenyl ring and the benzofuran plane is 28.3 (1)°. The molecular packing (Fig. 2) is stabilized by two aromatic π···π interactions between the furan and the benzene rings of adjacent benzofuran molecules, with a Cg1···Cg2i and a Cg2···Cg1i distances of 3.909 (4) and 4.028 (4) Å, respectively (Cg1 and Cg2 are the centroids of the C1/C2/C7/O/C8 furan ring and the C2–C7 benzene ring, respectively, symmetry code i: - x + 1, y - 1/2, - z + 1).

For the crystal structures of similar 2,5-diaryl-3-methylsulfanyl-1-benzofuran derivatives, see: Choi, Seo et al. (2006); Choi, Woo et al. (2006). For natural products with benzofuran ring systems, see: Akgul & Anil (2003); Soekamto et al. (2003); von Reuss & König (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. π···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) - x + 1, y - 1/2, - z + 1.]
2-(4-Fluorophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran top
Crystal data top
C21H15FOSF(000) = 348
Mr = 334.39Dx = 1.390 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5096 reflections
a = 10.621 (6) Åθ = 3.4–27.5°
b = 7.192 (4) ŵ = 0.22 mm1
c = 11.642 (6) ÅT = 173 K
β = 116.076 (5)°Block, colorless
V = 798.7 (8) Å30.50 × 0.42 × 0.33 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
3339 independent reflections
Radiation source: Rotating Anode3147 reflections with I > 2σ(I)
HELIOS monochromatorRint = 0.095
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.0°
φ and ω scansh = 1213
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 99
Tmin = 0.893, Tmax = 0.932l = 1415
7602 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0945P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3339 reflectionsΔρmax = 0.41 e Å3
218 parametersΔρmin = 0.44 e Å3
1 restraintAbsolute structure: Flack (1983), 1362 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (9)
Crystal data top
C21H15FOSV = 798.7 (8) Å3
Mr = 334.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.621 (6) ŵ = 0.22 mm1
b = 7.192 (4) ÅT = 173 K
c = 11.642 (6) Å0.50 × 0.42 × 0.33 mm
β = 116.076 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3339 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3147 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.932Rint = 0.095
7602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.41 e Å3
S = 1.04Δρmin = 0.44 e Å3
3339 reflectionsAbsolute structure: Flack (1983), 1362 Friedel pairs
218 parametersAbsolute structure parameter: 0.00 (9)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.55481 (6)0.85482 (12)0.86991 (5)0.03285 (19)
F1.25269 (13)0.7897 (3)1.00995 (14)0.0411 (4)
O0.63814 (15)0.7920 (2)0.57182 (13)0.0245 (4)
C10.5612 (2)0.8243 (3)0.72327 (19)0.0223 (5)
C20.4412 (2)0.8143 (3)0.60022 (19)0.0227 (5)
C30.2962 (2)0.8170 (3)0.55929 (18)0.0221 (5)
H30.25910.83090.61780.027*
C40.2085 (2)0.7984 (3)0.42913 (19)0.0212 (4)
C50.2683 (2)0.7823 (4)0.3427 (2)0.0260 (5)
H50.20890.77250.25580.031*
C60.4106 (2)0.7804 (4)0.38153 (19)0.0251 (5)
H60.44850.77010.32340.030*
C70.4948 (2)0.7947 (3)0.5121 (2)0.0230 (5)
C80.6759 (2)0.8099 (3)0.70145 (19)0.0234 (5)
C90.8275 (2)0.8059 (3)0.78298 (19)0.0229 (5)
C100.9163 (2)0.7210 (4)0.7396 (2)0.0251 (5)
H100.87860.66850.65840.030*
C111.0589 (2)0.7133 (4)0.8147 (2)0.0297 (5)
H111.11770.65480.78580.036*
C121.1119 (2)0.7952 (4)0.9344 (2)0.0283 (5)
C131.0284 (2)0.8825 (4)0.9805 (2)0.0290 (5)
H131.06740.93761.06100.035*
C140.8855 (2)0.8868 (4)0.9050 (2)0.0262 (5)
H140.82730.94370.93520.031*
C150.05328 (19)0.7926 (3)0.38285 (19)0.0219 (4)
C160.0110 (2)0.8798 (4)0.4505 (2)0.0260 (5)
H160.04300.94780.52380.031*
C170.1552 (2)0.8657 (4)0.4092 (2)0.0301 (5)
H170.19690.92390.45510.036*
C180.2363 (2)0.7662 (4)0.3008 (2)0.0332 (6)
H180.33220.75460.27480.040*
C190.1752 (2)0.6834 (4)0.2304 (2)0.0335 (6)
H190.23040.61990.15540.040*
C200.0313 (2)0.6951 (4)0.2718 (2)0.0263 (5)
H200.00940.63730.22490.032*
C210.4797 (3)0.6375 (5)0.8842 (3)0.0451 (7)
H21A0.54060.53750.88630.068*
H21B0.38990.62180.81230.068*
H21C0.46860.63710.96170.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0337 (3)0.0481 (4)0.0206 (3)0.0045 (3)0.0155 (2)0.0065 (3)
F0.0241 (7)0.0489 (10)0.0401 (8)0.0020 (6)0.0050 (6)0.0013 (8)
O0.0244 (7)0.0326 (9)0.0174 (7)0.0000 (7)0.0101 (6)0.0011 (7)
C10.0248 (9)0.0243 (12)0.0181 (9)0.0034 (8)0.0097 (8)0.0029 (9)
C20.0292 (10)0.0231 (13)0.0178 (9)0.0019 (9)0.0123 (8)0.0015 (9)
C30.0262 (10)0.0230 (12)0.0199 (9)0.0009 (9)0.0127 (8)0.0004 (9)
C40.0249 (10)0.0196 (11)0.0198 (9)0.0002 (8)0.0105 (8)0.0002 (9)
C50.0297 (11)0.0273 (12)0.0188 (9)0.0010 (10)0.0087 (8)0.0011 (9)
C60.0304 (11)0.0310 (13)0.0169 (9)0.0000 (10)0.0130 (9)0.0013 (9)
C70.0238 (9)0.0257 (12)0.0207 (10)0.0008 (9)0.0110 (8)0.0001 (9)
C80.0299 (10)0.0227 (12)0.0184 (9)0.0013 (9)0.0113 (8)0.0011 (9)
C90.0247 (10)0.0226 (12)0.0222 (10)0.0018 (9)0.0112 (8)0.0012 (9)
C100.0305 (11)0.0223 (11)0.0235 (10)0.0015 (9)0.0129 (9)0.0022 (9)
C110.0285 (11)0.0291 (13)0.0359 (12)0.0019 (9)0.0181 (10)0.0006 (11)
C120.0218 (10)0.0278 (12)0.0288 (11)0.0005 (9)0.0052 (9)0.0057 (10)
C130.0320 (11)0.0289 (14)0.0212 (10)0.0020 (10)0.0071 (9)0.0006 (10)
C140.0277 (10)0.0261 (13)0.0242 (10)0.0002 (10)0.0108 (8)0.0017 (10)
C150.0235 (10)0.0198 (11)0.0210 (9)0.0013 (9)0.0086 (8)0.0031 (9)
C160.0293 (10)0.0236 (12)0.0247 (10)0.0017 (10)0.0115 (8)0.0002 (10)
C170.0322 (11)0.0289 (12)0.0361 (12)0.0054 (11)0.0212 (9)0.0021 (12)
C180.0218 (10)0.0351 (14)0.0408 (13)0.0023 (9)0.0121 (10)0.0021 (12)
C190.0276 (11)0.0355 (14)0.0303 (12)0.0006 (10)0.0062 (9)0.0035 (11)
C200.0283 (11)0.0272 (12)0.0240 (10)0.0016 (9)0.0119 (9)0.0038 (10)
C210.0473 (15)0.056 (2)0.0393 (15)0.0026 (14)0.0255 (13)0.0137 (14)
Geometric parameters (Å, º) top
S—C11.752 (2)C10—H100.9300
S—C211.795 (3)C11—C121.384 (3)
F—C121.362 (2)C11—H110.9300
O—C71.368 (3)C12—C131.374 (3)
O—C81.387 (3)C13—C141.380 (3)
C1—C81.353 (3)C13—H130.9300
C1—C21.441 (3)C14—H140.9300
C2—C71.381 (3)C15—C201.396 (3)
C2—C31.398 (3)C15—C161.397 (3)
C3—C41.393 (3)C16—C171.393 (3)
C3—H30.9300C16—H160.9300
C4—C51.411 (3)C17—C181.375 (4)
C4—C151.493 (3)C17—H170.9300
C5—C61.374 (3)C18—C191.384 (4)
C5—H50.9300C18—H180.9300
C6—C71.388 (3)C19—C201.389 (3)
C6—H60.9300C19—H190.9300
C8—C91.467 (3)C20—H200.9300
C9—C101.391 (3)C21—H21A0.9600
C9—C141.403 (3)C21—H21B0.9600
C10—C111.378 (3)C21—H21C0.9600
C1—S—C21100.97 (13)C12—C11—H11121.0
C7—O—C8106.04 (16)F—C12—C13118.3 (2)
C8—C1—C2106.57 (18)F—C12—C11118.9 (2)
C8—C1—S128.05 (16)C13—C12—C11122.7 (2)
C2—C1—S125.37 (15)C12—C13—C14118.6 (2)
C7—C2—C3119.98 (19)C12—C13—H13120.7
C7—C2—C1105.69 (18)C14—C13—H13120.7
C3—C2—C1134.31 (19)C13—C14—C9120.4 (2)
C4—C3—C2118.64 (19)C13—C14—H14119.8
C4—C3—H3120.7C9—C14—H14119.8
C2—C3—H3120.7C20—C15—C16118.23 (19)
C3—C4—C5119.2 (2)C20—C15—C4120.47 (19)
C3—C4—C15119.99 (19)C16—C15—C4121.28 (19)
C5—C4—C15120.80 (19)C17—C16—C15120.5 (2)
C6—C5—C4122.8 (2)C17—C16—H16119.7
C6—C5—H5118.6C15—C16—H16119.7
C4—C5—H5118.6C18—C17—C16120.4 (2)
C5—C6—C7116.5 (2)C18—C17—H17119.8
C5—C6—H6121.8C16—C17—H17119.8
C7—C6—H6121.8C17—C18—C19120.0 (2)
O—C7—C2110.71 (18)C17—C18—H18120.0
O—C7—C6126.35 (19)C19—C18—H18120.0
C2—C7—C6122.9 (2)C18—C19—C20120.0 (2)
C1—C8—O110.98 (18)C18—C19—H19120.0
C1—C8—C9134.7 (2)C20—C19—H19120.0
O—C8—C9114.35 (18)C19—C20—C15120.9 (2)
C10—C9—C14118.9 (2)C19—C20—H20119.5
C10—C9—C8120.0 (2)C15—C20—H20119.5
C14—C9—C8121.05 (19)S—C21—H21A109.5
C11—C10—C9121.3 (2)S—C21—H21B109.5
C11—C10—H10119.3H21A—C21—H21B109.5
C9—C10—H10119.3S—C21—H21C109.5
C10—C11—C12118.0 (2)H21A—C21—H21C109.5
C10—C11—H11121.0H21B—C21—H21C109.5
C21—S—C1—C8113.4 (2)C1—C8—C9—C10155.3 (3)
C21—S—C1—C268.3 (2)O—C8—C9—C1023.3 (3)
C8—C1—C2—C70.2 (3)C1—C8—C9—C1424.7 (4)
S—C1—C2—C7178.46 (18)O—C8—C9—C14156.6 (2)
C8—C1—C2—C3178.5 (3)C14—C9—C10—C110.8 (4)
S—C1—C2—C32.9 (4)C8—C9—C10—C11179.3 (2)
C7—C2—C3—C40.4 (3)C9—C10—C11—C120.9 (4)
C1—C2—C3—C4178.1 (3)C10—C11—C12—F179.8 (2)
C2—C3—C4—C51.6 (3)C10—C11—C12—C130.2 (4)
C2—C3—C4—C15177.4 (2)F—C12—C13—C14179.3 (2)
C3—C4—C5—C61.3 (4)C11—C12—C13—C140.8 (4)
C15—C4—C5—C6177.7 (2)C12—C13—C14—C90.9 (4)
C4—C5—C6—C70.2 (4)C10—C9—C14—C130.2 (4)
C8—O—C7—C20.2 (3)C8—C9—C14—C13179.8 (2)
C8—O—C7—C6179.9 (2)C3—C4—C15—C20150.9 (2)
C3—C2—C7—O178.9 (2)C5—C4—C15—C2028.0 (4)
C1—C2—C7—O0.0 (3)C3—C4—C15—C1627.4 (3)
C3—C2—C7—C61.2 (4)C5—C4—C15—C16153.6 (2)
C1—C2—C7—C6180.0 (2)C20—C15—C16—C171.4 (4)
C5—C6—C7—O178.6 (2)C4—C15—C16—C17177.0 (2)
C5—C6—C7—C21.5 (4)C15—C16—C17—C180.2 (4)
C2—C1—C8—O0.3 (3)C16—C17—C18—C191.6 (4)
S—C1—C8—O178.31 (17)C17—C18—C19—C202.3 (4)
C2—C1—C8—C9178.4 (3)C18—C19—C20—C151.2 (4)
S—C1—C8—C93.0 (4)C16—C15—C20—C190.7 (4)
C7—O—C8—C10.3 (3)C4—C15—C20—C19177.7 (2)
C7—O—C8—C9178.73 (19)

Experimental details

Crystal data
Chemical formulaC21H15FOS
Mr334.39
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.621 (6), 7.192 (4), 11.642 (6)
β (°) 116.076 (5)
V3)798.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.50 × 0.42 × 0.33
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.893, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
7602, 3339, 3147
Rint0.095
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.133, 1.04
No. of reflections3339
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.44
Absolute structureFlack (1983), 1362 Friedel pairs
Absolute structure parameter0.00 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXL97.

 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4796–o4797.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4708–o4709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationReuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds