metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carbon­yl[tris­­(3,5-di­phenyl­pyrazol-1-yl-κN2)methane]copper(I) hexa­fluorido­phosphate–di­chloro­methane–di­ethyl ether (4/3/1)

aDepartment of Chemistry and Biochemistry, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110, USA, and bDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: cjdaley@sandiego.edu

(Received 9 September 2009; accepted 6 October 2009; online 13 October 2009)

In the title compound, [Cu(C46H34N6)(CO)]PF6·0.75CH2Cl2·0.25C4H10O, the CuI atom is coordinated by three N atoms from the tridentate chelating tris­(3,5-diphenyl­pyrazol-1-yl)methane ligand (average Cu—N distance = 2.055 Å) and the C atom from a carbon monoxide ligand in a distorted tetra­hedral coordination geometry. The average N—Cu—N angle between adjacent pyrazole-ring-coordinated N atoms is 88.6°, while the average N—Cu—C angle between the pyrazole-bound N atom and the C atom of carbon monoxide is 126.3°. One of the 3-phenyl rings of the tris­(pyrazol­yl)methane ligand is disordered over two sites each with an occupancy factor of 0.50. The structure also exhibits disorder of the monosolvate that has been modeled with 0.75 CH2Cl2 and 0.25 Et2O occupancy.

Related literature

For related copper complexes with coordinated tris­(pyrazol­yl)­methane ligands, see: Kujime et al. (2007[Kujime, M., Kurahashi, T., Tomura, M. & Fujii, H. (2007). Inorg. Chem. 46, 541-551.]); Fujisawa et al. (2006[Fujisawa, K., Ono, T., Ishikawa, Y., Amir, N., Miyashita, Y., Okamoto, K. & Lehnert, N. (2006). Inorg. Chem. 45, 1698-1713.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C46H34N6)(CO)]PF6·0.75CH2Cl2·0.25C4H10O

  • Mr = 989.54

  • Monoclinic, P 21 /c

  • a = 19.891 (3) Å

  • b = 13.772 (2) Å

  • c = 16.091 (3) Å

  • β = 93.847 (2)°

  • V = 4398.0 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 150 K

  • 0.26 × 0.16 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.840, Tmax = 0.927

  • 57538 measured reflections

  • 10230 independent reflections

  • 7692 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.04

  • 10230 reflections

  • 655 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected bond lengths (Å)

C1—Cu1 1.796 (3)
Cu1—N6 2.0453 (18)
Cu1—N2 2.0588 (18)
Cu1—N4 2.0617 (19)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

In the course of studying the chemistry of tris(pyrazolyl)methane copper(I) complexes, we reacted several substituted tris(pyrazolyl)methane (Tpm) ligands with various copper(I) salts to form the corresponding [Cu(Tpm)]+ complexes based on literature references. Once prepared, we tested the complexes for activity as catalysts, and we examined their reactivity with CO. The latter has been performed on several [Cu(Tpm)]+ complexes including η3-tris(3,5-diphenylpyrazolyl)methane copper(I) perchlorate and has yielded the expected monocarbonyl adducts [Cu(Tpm)(CO)]+ (Kujime et al., 2007). While the synthesis of [Cu(3,5-PhTpm)]ClO4 ([1]ClO4) has been reported, its crystal structure has not been determined. As such, we prepared the hexafluoridophospate salt analogue (avoiding the potentially dangerous perchlorate salt) and report its crystal structure.

The crystal structure of [1]PF6, is shown in Figure 1. The CuI atom is four-coordinate, bound by 3 N atoms from the tris(pyrazolyl)methane ligand and the C atom of carbon monoxide in a distorted tetrahedral coordination geometry. The average Cu—N bond distances (2.055 Å), Cu—C bond distance (1.796 (3) Å), and C—O bond distance (1.126 (3) Å) are within normal ranges as are the average N—Cu—N angles from adjacent pyrazolyl arms (88.6 Å), average N—Cu—C angles from bound pyrazolyl N atom to carbon monoxide C atom (126.3 Å), and the Cu—C—O bond angle (179.59 (3) Å) (Fujisawa et al., 2006).

Related literature top

For related copper complexes with coordinated tris(pyrazolyl)methane ligands, see: Kujime et al. (2007); Fujisawa et al. (2006).

Experimental top

Ligand HC(3,5-Ph2py)3 (0.100 g, 0.149 mmol) was added to tetrakis(acetonitrile)copper(I) hexafluoridophosphate (0.0557 g, 0.149 mmol) in methylene chloride (10 ml) under N2 atmosphere in a 50 ml Schlenk flask. The mixture was stirred for 2 h then reacted with CO by bubbling CO(g), prepared from the reaction of concentrated sulfuric acid and formic acid, through the solution for 10 min. The flask was left under CO atmosphere for 2 d. The flask was opened to N2 atmosphere again and hexane (18 ml) was added to precipitate the product. The product was isolated by inverse filtration and dried under a stream of N2 (112 mg, 0.123 mmol, 82.8%). FTIR analysis showed the expected strong νCO peak at 2098 cm-1. Single crystals were obtained by vapor diffusion of diethyl ether into a concentrated CH2Cl2 solution of [1]PF6 at room temperature over several days.

Refinement top

All hydrogen atoms were included at idealized positions and treated as riding to their parent atoms. The solvent in the lattice was modeled with a 75/25 disorder of dichloromethan/diethyl ether. The rotational disorder in the phenyl ring was modeled as a 50/50 disorder.

Structure description top

In the course of studying the chemistry of tris(pyrazolyl)methane copper(I) complexes, we reacted several substituted tris(pyrazolyl)methane (Tpm) ligands with various copper(I) salts to form the corresponding [Cu(Tpm)]+ complexes based on literature references. Once prepared, we tested the complexes for activity as catalysts, and we examined their reactivity with CO. The latter has been performed on several [Cu(Tpm)]+ complexes including η3-tris(3,5-diphenylpyrazolyl)methane copper(I) perchlorate and has yielded the expected monocarbonyl adducts [Cu(Tpm)(CO)]+ (Kujime et al., 2007). While the synthesis of [Cu(3,5-PhTpm)]ClO4 ([1]ClO4) has been reported, its crystal structure has not been determined. As such, we prepared the hexafluoridophospate salt analogue (avoiding the potentially dangerous perchlorate salt) and report its crystal structure.

The crystal structure of [1]PF6, is shown in Figure 1. The CuI atom is four-coordinate, bound by 3 N atoms from the tris(pyrazolyl)methane ligand and the C atom of carbon monoxide in a distorted tetrahedral coordination geometry. The average Cu—N bond distances (2.055 Å), Cu—C bond distance (1.796 (3) Å), and C—O bond distance (1.126 (3) Å) are within normal ranges as are the average N—Cu—N angles from adjacent pyrazolyl arms (88.6 Å), average N—Cu—C angles from bound pyrazolyl N atom to carbon monoxide C atom (126.3 Å), and the Cu—C—O bond angle (179.59 (3) Å) (Fujisawa et al., 2006).

For related copper complexes with coordinated tris(pyrazolyl)methane ligands, see: Kujime et al. (2007); Fujisawa et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of complex [1]PF6. Displacement ellipsoids are drawn at the 30% probability level. H-atoms and disordered solvate molecules are omitted for clarity. Only one of the two conformations (50:50) of the disordered main molecule is depicted for clarity. The disorder is in the 3-phenyl ring of one of the the 3,5-diphenylpyrazole arms of the tris(pyrazolyl)methane ligand.
Carbonyl[tris(3,5-diphenylpyrazol-1-yl-κN2)methane]copper(I) hexafluoridophosphate–dichloromethane–diethyl ether (4/3/1) top
Crystal data top
[Cu(C46H34N6)(CO)]PF6·0.75CH2Cl2·0.25C4H10OF(000) = 2024
Mr = 989.54Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9980 reflections
a = 19.891 (3) Åθ = 2.2–24.9°
b = 13.772 (2) ŵ = 0.70 mm1
c = 16.091 (3) ÅT = 150 K
β = 93.847 (2)°Needle, colourless
V = 4398.0 (13) Å30.26 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
10230 independent reflections
Radiation source: fine-focus sealed tube7692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 28.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2525
Tmin = 0.840, Tmax = 0.927k = 1817
57538 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0529P)2 + 3.6625P]
where P = (Fo2 + 2Fc2)/3
10230 reflections(Δ/σ)max = 0.001
655 parametersΔρmax = 1.02 e Å3
6 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Cu(C46H34N6)(CO)]PF6·0.75CH2Cl2·0.25C4H10OV = 4398.0 (13) Å3
Mr = 989.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.891 (3) ŵ = 0.70 mm1
b = 13.772 (2) ÅT = 150 K
c = 16.091 (3) Å0.26 × 0.16 × 0.11 mm
β = 93.847 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
10230 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
7692 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.927Rint = 0.036
57538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0436 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 1.02 e Å3
10230 reflectionsΔρmin = 0.85 e Å3
655 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.42242 (13)0.21405 (19)0.37258 (16)0.0355 (6)
C20.21856 (10)0.23550 (15)0.51521 (13)0.0214 (4)
H20.17590.23860.54470.026*
C30.19736 (10)0.41694 (15)0.49359 (13)0.0222 (4)
C40.23539 (11)0.48860 (16)0.45989 (13)0.0247 (4)
H40.22490.55590.45660.030*
C50.29246 (10)0.44312 (15)0.43141 (13)0.0227 (4)
C60.13438 (10)0.42759 (15)0.53555 (13)0.0231 (4)
C70.07862 (11)0.36688 (16)0.51896 (14)0.0255 (5)
H70.08050.31640.47890.031*
C80.02067 (11)0.38043 (17)0.56094 (15)0.0308 (5)
H80.01700.33890.54990.037*
C90.01761 (12)0.45438 (17)0.61897 (16)0.0330 (5)
H90.02190.46260.64830.040*
C100.07186 (12)0.51634 (17)0.63438 (16)0.0321 (5)
H100.06930.56770.67340.039*
C110.13009 (11)0.50329 (16)0.59263 (14)0.0276 (5)
H110.16720.54610.60300.033*
C120.34983 (11)0.48851 (16)0.39286 (14)0.0260 (5)
C130.33862 (13)0.56580 (18)0.33750 (16)0.0346 (5)
H130.29420.58930.32480.042*
C140.39264 (15)0.6081 (2)0.3011 (2)0.0538 (8)
H140.38500.65990.26260.065*
C150.45756 (16)0.5755 (3)0.3205 (2)0.0649 (10)
H150.49430.60460.29510.078*
C160.46896 (14)0.5008 (2)0.3766 (2)0.0508 (8)
H160.51370.47920.39050.061*
C170.41550 (12)0.45705 (18)0.41269 (15)0.0313 (5)
H170.42360.40540.45120.038*
C180.26913 (11)0.17693 (15)0.65675 (13)0.0234 (4)
C190.33265 (11)0.14563 (16)0.68269 (14)0.0267 (5)
H190.34670.12080.73620.032*
C200.37271 (11)0.15735 (19)0.61518 (15)0.0318 (5)
C210.20807 (10)0.18089 (16)0.70288 (13)0.0225 (4)
C220.16647 (11)0.26249 (16)0.70177 (13)0.0247 (4)
H220.17800.31880.67170.030*
C230.10811 (12)0.26144 (17)0.74472 (14)0.0279 (5)
H230.07920.31640.74270.034*
C240.09191 (12)0.18034 (18)0.79061 (14)0.0299 (5)
H240.05190.17970.81970.036*
C250.13437 (11)0.10012 (17)0.79392 (14)0.0282 (5)
H250.12390.04520.82640.034*
C260.19178 (11)0.09996 (16)0.75005 (13)0.0256 (5)
H260.22030.04460.75190.031*
C270.44506 (13)0.1360 (3)0.61176 (18)0.0606 (10)
C280.4780 (3)0.0837 (5)0.6667 (4)0.0355 (13)0.50
H280.45650.04340.70490.043*0.50
C290.55288 (17)0.0914 (4)0.6656 (2)0.0758 (13)
H290.57820.06050.71030.091*0.50
H29B0.57820.07980.71530.091*0.50
C300.5843 (3)0.1308 (5)0.6163 (4)0.0441 (13)0.50
H300.62990.11370.60980.053*0.50
C310.5529 (2)0.2027 (4)0.5681 (4)0.0408 (12)0.50
H310.57830.24280.53370.049*0.50
C320.4840 (2)0.2157 (4)0.5706 (3)0.0335 (11)0.50
H320.46210.27190.54760.040*0.50
C330.15501 (11)0.10446 (16)0.43094 (13)0.0239 (4)
C340.17172 (11)0.04769 (16)0.36559 (14)0.0255 (5)
H340.14470.00140.33880.031*
C350.23664 (10)0.07607 (15)0.34583 (13)0.0231 (4)
C360.09176 (11)0.11060 (16)0.47349 (14)0.0273 (5)
C370.08969 (14)0.0902 (2)0.55808 (15)0.0402 (6)
H370.12940.07090.58980.048*
C380.02932 (17)0.0984 (2)0.59565 (18)0.0534 (9)
H380.02780.08460.65330.064*
C390.02860 (16)0.1264 (2)0.5501 (2)0.0519 (8)
H390.06950.13340.57680.062*
C400.02732 (13)0.14420 (19)0.46590 (19)0.0431 (7)
H400.06740.16250.43440.052*
C410.03278 (11)0.13529 (17)0.42740 (16)0.0307 (5)
H410.03350.14620.36920.037*
C420.27480 (10)0.03898 (16)0.27714 (13)0.0235 (4)
C430.26789 (11)0.05816 (17)0.25368 (14)0.0277 (5)
H430.24130.10070.28440.033*
C440.29983 (12)0.09300 (18)0.18539 (15)0.0318 (5)
H440.29530.15930.16970.038*
C450.33828 (12)0.0309 (2)0.14024 (15)0.0341 (5)
H450.35930.05450.09300.041*
C460.31462 (11)0.10025 (17)0.23170 (14)0.0273 (5)
H460.32010.16640.24760.033*
C470.34620 (11)0.06525 (19)0.16361 (15)0.0319 (5)
H470.37330.10730.13300.038*
C28B0.4911 (3)0.1379 (5)0.6694 (4)0.0382 (13)0.50
H28B0.48310.17320.71850.046*0.50
C30B0.5773 (3)0.0603 (5)0.5966 (4)0.0418 (13)0.50
H30B0.62430.05440.59060.050*0.50
C31B0.5304 (3)0.0371 (4)0.5340 (4)0.0484 (14)0.50
H31B0.54360.00170.48710.058*0.50
C32B0.4634 (3)0.0646 (4)0.5380 (3)0.0378 (12)0.50
H32B0.42960.04190.49820.045*0.50
C1S0.7723 (3)0.1515 (4)0.4724 (4)0.0513 (12)0.75
H1S10.79710.17540.42510.062*0.75
H1S20.80580.13110.51730.062*0.75
C2S0.58160.28810.48720.033 (2)0.25
H2S10.57550.30540.42810.049*0.25
H2S20.56920.34350.52120.049*0.25
H2S30.55270.23250.49840.049*0.25
C3S0.65850.26000.50980.032 (2)0.25
H3S10.68820.31600.49990.039*0.25
H3S20.66510.24110.56920.039*0.25
C4S0.74390.15660.47660.047 (4)0.25
H4S10.75600.15010.53700.056*0.25
H4S20.77460.20390.45240.056*0.25
C5S0.74550.06000.43310.057 (6)0.25
H5S10.72480.06650.37630.086*0.25
H5S20.72040.01210.46370.086*0.25
H5S30.79230.03860.43080.086*0.25
Cl1S0.72306 (8)0.05154 (8)0.44009 (9)0.0617 (3)0.75
Cl2S0.72256 (7)0.24608 (9)0.50909 (8)0.0716 (4)0.75
Cu10.346041 (13)0.224475 (19)0.425401 (16)0.02380 (8)
F10.13767 (9)0.81255 (12)0.31085 (11)0.0542 (4)
F20.05916 (8)0.71373 (14)0.24983 (13)0.0632 (5)
F30.14332 (9)0.77162 (11)0.17670 (11)0.0508 (4)
F40.13903 (12)0.61327 (12)0.20844 (14)0.0730 (6)
F50.21861 (8)0.71132 (14)0.27099 (14)0.0688 (6)
F60.13469 (10)0.65282 (14)0.34508 (12)0.0659 (5)
N10.23144 (8)0.33174 (13)0.48265 (11)0.0216 (4)
N20.29039 (9)0.34751 (13)0.44469 (11)0.0223 (4)
N30.27266 (9)0.20641 (13)0.57560 (11)0.0235 (4)
N40.33619 (9)0.19362 (15)0.54937 (12)0.0299 (4)
N50.20926 (8)0.16426 (13)0.44889 (11)0.0222 (4)
N60.25974 (8)0.14726 (13)0.39678 (11)0.0224 (4)
O10.47013 (10)0.20716 (18)0.33911 (14)0.0588 (6)
O1S0.67330.18500.46060.0355 (15)0.25
P10.13840 (3)0.71233 (5)0.26125 (5)0.03739 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (13)0.0377 (14)0.0369 (14)0.0027 (10)0.0024 (11)0.0076 (11)
C20.0194 (10)0.0213 (10)0.0234 (11)0.0032 (8)0.0002 (8)0.0009 (8)
C30.0219 (10)0.0213 (10)0.0227 (11)0.0008 (8)0.0034 (8)0.0013 (8)
C40.0247 (11)0.0211 (10)0.0276 (11)0.0023 (8)0.0024 (9)0.0001 (9)
C50.0244 (10)0.0229 (11)0.0204 (10)0.0041 (8)0.0010 (8)0.0001 (8)
C60.0212 (10)0.0216 (10)0.0263 (11)0.0022 (8)0.0008 (8)0.0032 (9)
C70.0235 (10)0.0224 (11)0.0303 (12)0.0003 (8)0.0002 (9)0.0012 (9)
C80.0227 (11)0.0270 (12)0.0424 (14)0.0024 (9)0.0000 (10)0.0051 (10)
C90.0269 (11)0.0287 (12)0.0444 (14)0.0040 (9)0.0093 (10)0.0041 (11)
C100.0313 (12)0.0270 (12)0.0385 (13)0.0045 (10)0.0050 (10)0.0040 (10)
C110.0234 (11)0.0227 (11)0.0364 (13)0.0018 (9)0.0005 (9)0.0012 (9)
C120.0289 (11)0.0233 (11)0.0258 (11)0.0055 (9)0.0028 (9)0.0013 (9)
C130.0352 (13)0.0306 (13)0.0378 (14)0.0043 (10)0.0005 (10)0.0070 (11)
C140.0532 (18)0.0515 (18)0.0575 (19)0.0080 (14)0.0101 (14)0.0292 (15)
C150.0399 (16)0.074 (2)0.082 (2)0.0115 (15)0.0181 (16)0.039 (2)
C160.0281 (13)0.0574 (18)0.068 (2)0.0051 (12)0.0105 (13)0.0219 (16)
C170.0294 (12)0.0315 (12)0.0331 (13)0.0055 (10)0.0027 (10)0.0049 (10)
C180.0278 (11)0.0199 (10)0.0224 (11)0.0025 (8)0.0005 (8)0.0011 (8)
C190.0277 (11)0.0270 (11)0.0250 (11)0.0021 (9)0.0019 (9)0.0025 (9)
C200.0222 (11)0.0410 (14)0.0317 (12)0.0030 (10)0.0019 (9)0.0079 (11)
C210.0245 (10)0.0232 (11)0.0196 (10)0.0020 (8)0.0011 (8)0.0025 (8)
C220.0303 (11)0.0222 (11)0.0214 (11)0.0018 (9)0.0004 (9)0.0002 (8)
C230.0308 (12)0.0285 (12)0.0244 (11)0.0044 (9)0.0008 (9)0.0037 (9)
C240.0304 (12)0.0366 (13)0.0228 (11)0.0005 (10)0.0040 (9)0.0019 (10)
C250.0317 (12)0.0311 (12)0.0220 (11)0.0041 (10)0.0027 (9)0.0031 (9)
C260.0283 (11)0.0242 (11)0.0238 (11)0.0000 (9)0.0020 (9)0.0004 (9)
C270.0233 (13)0.118 (3)0.0404 (16)0.0085 (15)0.0027 (11)0.0355 (18)
C280.035 (3)0.038 (3)0.033 (3)0.005 (3)0.003 (2)0.002 (3)
C290.0461 (18)0.148 (4)0.0318 (16)0.048 (2)0.0068 (14)0.003 (2)
C300.028 (3)0.063 (4)0.041 (3)0.008 (3)0.003 (2)0.002 (3)
C310.025 (2)0.051 (3)0.046 (3)0.000 (2)0.001 (2)0.009 (3)
C320.022 (2)0.037 (3)0.041 (3)0.0022 (19)0.0028 (19)0.009 (2)
C330.0236 (10)0.0226 (10)0.0250 (11)0.0050 (8)0.0014 (8)0.0020 (9)
C340.0271 (11)0.0232 (11)0.0258 (11)0.0047 (9)0.0008 (9)0.0006 (9)
C350.0236 (10)0.0205 (10)0.0247 (11)0.0007 (8)0.0019 (8)0.0013 (8)
C360.0280 (11)0.0248 (11)0.0295 (12)0.0110 (9)0.0055 (9)0.0047 (9)
C370.0488 (15)0.0441 (15)0.0280 (13)0.0272 (12)0.0042 (11)0.0031 (11)
C380.068 (2)0.0612 (19)0.0336 (15)0.0426 (17)0.0218 (14)0.0164 (14)
C390.0539 (18)0.0451 (17)0.061 (2)0.0272 (14)0.0381 (16)0.0226 (15)
C400.0325 (13)0.0354 (14)0.0636 (19)0.0077 (11)0.0190 (12)0.0048 (13)
C410.0294 (12)0.0284 (12)0.0353 (13)0.0065 (9)0.0090 (10)0.0005 (10)
C420.0212 (10)0.0260 (11)0.0225 (11)0.0008 (8)0.0038 (8)0.0007 (9)
C430.0243 (11)0.0288 (12)0.0292 (12)0.0030 (9)0.0036 (9)0.0029 (9)
C440.0287 (12)0.0340 (13)0.0320 (13)0.0007 (10)0.0033 (9)0.0095 (10)
C450.0259 (11)0.0501 (15)0.0259 (12)0.0073 (11)0.0008 (9)0.0047 (11)
C460.0231 (11)0.0260 (11)0.0324 (12)0.0023 (9)0.0020 (9)0.0044 (9)
C470.0246 (11)0.0425 (14)0.0284 (12)0.0021 (10)0.0005 (9)0.0070 (11)
C28B0.032 (3)0.055 (4)0.027 (3)0.006 (3)0.001 (2)0.006 (3)
C30B0.025 (3)0.052 (4)0.047 (3)0.013 (2)0.003 (2)0.002 (3)
C31B0.041 (3)0.053 (4)0.051 (3)0.016 (3)0.002 (3)0.018 (3)
C32B0.034 (3)0.036 (3)0.043 (3)0.010 (2)0.004 (2)0.013 (2)
C1S0.044 (3)0.043 (3)0.067 (3)0.0053 (19)0.002 (2)0.005 (2)
C2S0.033 (5)0.027 (5)0.038 (5)0.004 (4)0.002 (4)0.007 (4)
C3S0.034 (5)0.028 (5)0.034 (5)0.013 (4)0.005 (4)0.007 (4)
C4S0.070 (12)0.039 (7)0.032 (6)0.017 (7)0.007 (7)0.003 (5)
C5S0.067 (7)0.055 (7)0.048 (6)0.020 (4)0.009 (4)0.002 (4)
Cl1S0.0581 (7)0.0341 (6)0.0923 (10)0.0055 (5)0.0016 (6)0.0124 (6)
Cl2S0.0942 (9)0.0459 (6)0.0776 (8)0.0050 (6)0.0261 (7)0.0174 (6)
Cu10.02001 (13)0.02522 (15)0.02630 (15)0.00240 (10)0.00253 (10)0.00122 (11)
F10.0586 (10)0.0414 (9)0.0659 (11)0.0103 (8)0.0290 (9)0.0078 (8)
F20.0290 (8)0.0748 (13)0.0853 (14)0.0085 (8)0.0008 (8)0.0205 (11)
F30.0631 (11)0.0338 (9)0.0574 (10)0.0033 (7)0.0177 (8)0.0088 (7)
F40.1047 (16)0.0279 (9)0.0863 (15)0.0005 (9)0.0050 (12)0.0018 (9)
F50.0298 (9)0.0645 (12)0.1123 (17)0.0112 (8)0.0067 (9)0.0202 (11)
F60.0656 (12)0.0604 (12)0.0696 (12)0.0195 (9)0.0107 (9)0.0325 (10)
N10.0198 (8)0.0204 (9)0.0247 (9)0.0040 (7)0.0020 (7)0.0007 (7)
N20.0210 (9)0.0237 (9)0.0225 (9)0.0047 (7)0.0034 (7)0.0004 (7)
N30.0180 (8)0.0275 (10)0.0247 (9)0.0022 (7)0.0005 (7)0.0028 (7)
N40.0176 (9)0.0416 (11)0.0305 (10)0.0011 (8)0.0010 (7)0.0069 (9)
N50.0208 (8)0.0210 (9)0.0248 (9)0.0028 (7)0.0017 (7)0.0004 (7)
N60.0210 (9)0.0211 (9)0.0251 (9)0.0010 (7)0.0020 (7)0.0004 (7)
O10.0364 (11)0.0804 (16)0.0622 (14)0.0048 (10)0.0235 (10)0.0186 (12)
O1S0.031 (3)0.039 (4)0.036 (4)0.006 (3)0.003 (3)0.002 (3)
P10.0277 (3)0.0267 (3)0.0579 (4)0.0015 (2)0.0043 (3)0.0107 (3)
Geometric parameters (Å, º) top
C1—O11.126 (3)C31—H310.9500
C1—Cu11.796 (3)C32—H320.9500
C2—N51.452 (3)C33—C341.369 (3)
C2—N11.454 (3)C33—N51.373 (3)
C2—N31.457 (3)C33—C361.475 (3)
C2—H21.0000C34—C351.406 (3)
C3—N11.372 (3)C34—H340.9500
C3—C41.377 (3)C35—N61.339 (3)
C3—C61.470 (3)C35—C421.474 (3)
C4—C51.400 (3)C36—C411.388 (3)
C4—H40.9500C36—C371.393 (3)
C5—N21.335 (3)C37—C381.385 (4)
C5—C121.474 (3)C37—H370.9500
C6—C111.396 (3)C38—C391.378 (5)
C6—C71.400 (3)C38—H380.9500
C7—C81.387 (3)C39—C401.379 (4)
C7—H70.9500C39—H390.9500
C8—C91.386 (3)C40—C411.388 (3)
C8—H80.9500C40—H400.9500
C9—C101.385 (3)C41—H410.9500
C9—H90.9500C42—C431.394 (3)
C10—C111.389 (3)C42—C461.397 (3)
C10—H100.9500C43—C441.391 (3)
C11—H110.9500C43—H430.9500
C12—C171.393 (3)C44—C451.385 (4)
C12—C131.396 (3)C44—H440.9500
C13—C141.386 (4)C45—C471.383 (4)
C13—H130.9500C45—H450.9500
C14—C151.383 (4)C46—C471.385 (3)
C14—H140.9500C46—H460.9500
C15—C161.376 (4)C47—H470.9500
C15—H150.9500C28B—H28B0.9500
C16—C171.384 (3)C30B—C31B1.364 (8)
C16—H160.9500C30B—H30B0.9500
C17—H170.9500C31B—C32B1.390 (7)
C18—C191.373 (3)C31B—H31B0.9500
C18—N31.374 (3)C32B—H32B0.9500
C18—C211.466 (3)C1S—Cl1S1.748 (5)
C19—C201.399 (3)C1S—Cl2S1.762 (5)
C19—H190.9500C1S—H1S10.9900
C20—N41.340 (3)C1S—H1S20.9900
C20—C271.473 (3)C2S—C3S1.5972 (2)
C21—C221.395 (3)C2S—H2S10.9800
C21—C261.399 (3)C2S—H2S20.9800
C22—C231.391 (3)C2S—H2S30.9800
C22—H220.9500C3S—O1S1.3458 (2)
C23—C241.389 (3)C3S—H3S10.9900
C23—H230.9500C3S—H3S20.9900
C24—C251.389 (3)C4S—O1S1.4641 (2)
C24—H240.9500C4S—C5S1.5050 (2)
C25—C261.382 (3)C4S—H4S10.9900
C25—H250.9500C4S—H4S20.9900
C26—H260.9500C5S—H5S10.9800
C27—C28B1.259 (6)C5S—H5S20.9800
C27—C281.286 (6)C5S—H5S30.9800
C27—C321.521 (6)Cu1—N62.0453 (18)
C27—C32B1.602 (6)Cu1—N22.0588 (18)
C28—C291.494 (7)Cu1—N42.0617 (19)
C28—H280.9500F1—P11.5949 (18)
C29—C301.175 (7)F2—P11.5747 (17)
C29—C30B1.313 (7)F3—P11.5953 (18)
C29—C28B1.391 (6)F4—P11.608 (2)
C29—H290.9500F5—P11.5928 (18)
C29—H29B0.9300F6—P11.5842 (18)
C30—C311.381 (8)N1—N21.375 (2)
C30—H300.9500N3—N41.370 (2)
C31—C321.385 (7)N5—N61.371 (2)
O1—C1—Cu1179.6 (3)C34—C35—C42126.90 (19)
N5—C2—N1111.58 (17)C41—C36—C37119.5 (2)
N5—C2—N3110.88 (17)C41—C36—C33118.9 (2)
N1—C2—N3110.53 (16)C37—C36—C33121.6 (2)
N5—C2—H2107.9C38—C37—C36119.6 (3)
N1—C2—H2107.9C38—C37—H37120.2
N3—C2—H2107.9C36—C37—H37120.2
N1—C3—C4105.85 (18)C39—C38—C37120.6 (3)
N1—C3—C6126.01 (19)C39—C38—H38119.7
C4—C3—C6128.1 (2)C37—C38—H38119.7
C3—C4—C5106.69 (19)C38—C39—C40120.1 (3)
C3—C4—H4126.7C38—C39—H39119.9
C5—C4—H4126.7C40—C39—H39119.9
N2—C5—C4110.76 (19)C39—C40—C41119.7 (3)
N2—C5—C12121.24 (19)C39—C40—H40120.1
C4—C5—C12128.0 (2)C41—C40—H40120.1
C11—C6—C7119.3 (2)C36—C41—C40120.4 (2)
C11—C6—C3117.93 (19)C36—C41—H41119.8
C7—C6—C3122.8 (2)C40—C41—H41119.8
C8—C7—C6120.0 (2)C43—C42—C46119.1 (2)
C8—C7—H7120.0C43—C42—C35119.3 (2)
C6—C7—H7120.0C46—C42—C35121.5 (2)
C9—C8—C7120.2 (2)C44—C43—C42120.2 (2)
C9—C8—H8119.9C44—C43—H43119.9
C7—C8—H8119.9C42—C43—H43119.9
C10—C9—C8120.3 (2)C45—C44—C43119.9 (2)
C10—C9—H9119.9C45—C44—H44120.0
C8—C9—H9119.9C43—C44—H44120.0
C9—C10—C11119.9 (2)C47—C45—C44120.4 (2)
C9—C10—H10120.0C47—C45—H45119.8
C11—C10—H10120.0C44—C45—H45119.8
C10—C11—C6120.3 (2)C47—C46—C42120.5 (2)
C10—C11—H11119.8C47—C46—H46119.8
C6—C11—H11119.8C42—C46—H46119.8
C17—C12—C13119.4 (2)C45—C47—C46119.9 (2)
C17—C12—C5120.8 (2)C45—C47—H47120.0
C13—C12—C5119.8 (2)C46—C47—H47120.0
C14—C13—C12119.6 (2)C27—C28B—C29124.0 (5)
C14—C13—H13120.2C27—C28B—H28B118.0
C12—C13—H13120.2C29—C28B—H28B118.0
C15—C14—C13120.4 (3)C29—C30B—C31B115.3 (5)
C15—C14—H14119.8C29—C30B—H30B122.4
C13—C14—H14119.8C31B—C30B—H30B122.4
C16—C15—C14120.1 (3)C30B—C31B—C32B120.8 (5)
C16—C15—H15120.0C30B—C31B—H31B119.6
C14—C15—H15120.0C32B—C31B—H31B119.6
C15—C16—C17120.2 (3)C31B—C32B—C27117.9 (4)
C15—C16—H16119.9C31B—C32B—H32B121.0
C17—C16—H16119.9C27—C32B—H32B121.0
C16—C17—C12120.2 (2)Cl1S—C1S—Cl2S111.4 (3)
C16—C17—H17119.9Cl1S—C1S—H1S1109.3
C12—C17—H17119.9Cl2S—C1S—H1S1109.3
C19—C18—N3106.08 (19)Cl1S—C1S—H1S2109.3
C19—C18—C21129.4 (2)Cl2S—C1S—H1S2109.3
N3—C18—C21124.55 (19)H1S1—C1S—H1S2108.0
C18—C19—C20106.8 (2)C3S—C2S—H2S1109.5
C18—C19—H19126.6C3S—C2S—H2S2109.5
C20—C19—H19126.6H2S1—C2S—H2S2109.5
N4—C20—C19110.5 (2)C3S—C2S—H2S3109.5
N4—C20—C27121.6 (2)H2S1—C2S—H2S3109.5
C19—C20—C27127.9 (2)H2S2—C2S—H2S3109.5
C22—C21—C26119.4 (2)O1S—C3S—C2S107.161 (5)
C22—C21—C18122.3 (2)O1S—C3S—H3S1110.3
C26—C21—C18118.35 (19)C2S—C3S—H3S1110.3
C23—C22—C21120.0 (2)O1S—C3S—H3S2110.3
C23—C22—H22120.0C2S—C3S—H3S2110.3
C21—C22—H22120.0H3S1—C3S—H3S2108.5
C24—C23—C22120.3 (2)O1S—C4S—C5S101.746 (4)
C24—C23—H23119.9O1S—C4S—H4S1111.4
C22—C23—H23119.9C5S—C4S—H4S1111.4
C23—C24—C25119.8 (2)O1S—C4S—H4S2111.4
C23—C24—H24120.1C5S—C4S—H4S2111.4
C25—C24—H24120.1H4S1—C4S—H4S2109.3
C26—C25—C24120.2 (2)C4S—C5S—H5S1109.5
C26—C25—H25119.9C4S—C5S—H5S2109.5
C24—C25—H25119.9H5S1—C5S—H5S2109.5
C25—C26—C21120.3 (2)C4S—C5S—H5S3109.5
C25—C26—H26119.8H5S1—C5S—H5S3109.5
C21—C26—H26119.8H5S2—C5S—H5S3109.5
C28B—C27—C20129.2 (4)C1—Cu1—N6125.15 (9)
C28—C27—C20122.7 (4)C1—Cu1—N2128.14 (10)
C28B—C27—C3286.5 (4)N6—Cu1—N290.59 (7)
C28—C27—C32116.9 (4)C1—Cu1—N4125.44 (10)
C20—C27—C32113.6 (3)N6—Cu1—N488.73 (7)
C28B—C27—C32B111.6 (4)N2—Cu1—N486.38 (8)
C28—C27—C32B92.0 (4)C3—N1—N2111.43 (17)
C20—C27—C32B114.9 (3)C3—N1—C2129.23 (17)
C32—C27—C32B88.4 (3)N2—N1—C2118.68 (17)
C27—C28—C29114.5 (5)C5—N2—N1105.25 (17)
C27—C28—H28122.8C5—N2—Cu1139.91 (15)
C29—C28—H28122.8N1—N2—Cu1114.84 (13)
C30—C29—C28B109.2 (5)N4—N3—C18111.21 (17)
C30B—C29—C28B124.4 (4)N4—N3—C2119.02 (17)
C30—C29—C28128.1 (4)C18—N3—C2129.24 (18)
C30B—C29—C28114.4 (4)C20—N4—N3105.48 (18)
C30—C29—H29116.0C20—N4—Cu1139.45 (16)
C30B—C29—H29106.7N3—N4—Cu1114.89 (13)
C28B—C29—H29126.7N6—N5—C33111.50 (17)
C28—C29—H29116.0N6—N5—C2120.16 (16)
C30—C29—H29B112.1C33—N5—C2128.28 (18)
C30B—C29—H29B117.5C35—N6—N5105.31 (17)
C28B—C29—H29B118.1C35—N6—Cu1140.06 (15)
C28—C29—H29B117.4N5—N6—Cu1114.31 (13)
C29—C30—C31118.0 (5)C3S—O1S—C4S110.237 (4)
C29—C30—H30121.0F2—P1—F690.13 (10)
C31—C30—H30121.0F2—P1—F5178.92 (12)
C30—C31—C32119.1 (5)F6—P1—F590.88 (11)
C30—C31—H31120.4F2—P1—F190.30 (10)
C32—C31—H31120.4F6—P1—F191.10 (11)
C31—C32—C27117.0 (4)F5—P1—F190.06 (11)
C31—C32—H32121.5F2—P1—F390.71 (10)
C27—C32—H32121.5F6—P1—F3179.08 (11)
C34—C33—N5106.05 (19)F5—P1—F388.27 (11)
C34—C33—C36130.39 (19)F1—P1—F389.25 (9)
N5—C33—C36123.44 (19)F2—P1—F489.54 (12)
C33—C34—C35106.79 (19)F6—P1—F490.78 (11)
C33—C34—H34126.6F5—P1—F490.07 (12)
C35—C34—H34126.6F1—P1—F4178.12 (11)
N6—C35—C34110.35 (19)F3—P1—F488.88 (10)
N6—C35—C42122.68 (19)

Experimental details

Crystal data
Chemical formula[Cu(C46H34N6)(CO)]PF6·0.75CH2Cl2·0.25C4H10O
Mr989.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)19.891 (3), 13.772 (2), 16.091 (3)
β (°) 93.847 (2)
V3)4398.0 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.26 × 0.16 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.840, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
57538, 10230, 7692
Rint0.036
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.04
No. of reflections10230
No. of parameters655
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.85

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
C1—Cu11.796 (3)Cu1—N22.0588 (18)
Cu1—N62.0453 (18)Cu1—N42.0617 (19)
 

Acknowledgements

This work was supported by the National Science Foundation (RUI: #CHE-0809266) and the University of San Diego (Faculty Research Grant and the Department of Chemistry and Biochemistry).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFujisawa, K., Ono, T., Ishikawa, Y., Amir, N., Miyashita, Y., Okamoto, K. & Lehnert, N. (2006). Inorg. Chem. 45, 1698–1713.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKujime, M., Kurahashi, T., Tomura, M. & Fujii, H. (2007). Inorg. Chem. 46, 541–551.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds