inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dipotassium samarium(III) molybdate(VI) phosphate(V), K2Sm(MoO4)(PO4)

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 30 September 2009; accepted 12 October 2009; online 17 October 2009)

The title compound, K2Sm(MoO4)(PO4), has been prepared under atmospheric conditions using a high temperature solution growth (HTSG) method. The structure of K2Sm(MoO4)(PO4) is isotypic with other A2M(MoO4)(PO4) compounds, where A = Na or K, and M = trivalent rare earth cation. It can be described as being built up from two-dimensional anionic layers with composition [Sm(MoO4)(PO4)]2− that are stacked along the c axis and are inter­connected by K+ cations which are in an eightfold coordination by O atoms. The SmO8, MoO4 and PO4 polyhedra exhibit 2 symmetry.

Related literature

The structures and properties of other molybdate-phosphates with the general formula A2M(MoO4)(PO4), where A = Na, K; M = Y, Bi, La—Nd, Sm—Lu, have been reported by Ben Amara & Dabbabi (1987[Ben Amara, M. & Dabbabi, M. (1987). Acta Cryst. C43, 616-618.]); Komissarova et al. (2006[Komissarova, L. N., Ryumin, M. A., Bobylev, A. P., Zhizhin, M. G. & Danilov, V. P. (2006). Russ. J. Inorg. Chem. 51, 397-403.]); Ryumin et al. (2007[Ryumin, M. A., Komissarova, L. N., Rusakov, D. A., Bobylev, A. P. & Zhizhin, M. G. (2007). Russ. J. Inorg. Chem. 52, 717-724.]); Zatovsky et al. (2006[Zatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3550-3555.]). For crystallographic background, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Experimental

Crystal data
  • K2Sm(MoO4)(PO4)

  • Mr = 483.46

  • Orthorhombic, I b c a

  • a = 12.345 (9) Å

  • b = 7.004 (5) Å

  • c = 19.733 (12) Å

  • V = 1706 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.46 mm−1

  • T = 298 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Rigaku Saturn 70 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.742, Tmax = 1.000

  • 3660 measured reflections

  • 979 independent reflections

  • 903 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.079

  • S = 1.01

  • 979 reflections

  • 61 parameters

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Selected bond lengths (Å)

K1—O4i 2.685 (3)
K1—O2 2.695 (3)
K1—O2ii 2.768 (3)
K1—O3ii 2.991 (4)
K1—O4 3.012 (4)
K1—O1iii 3.025 (3)
K1—O4iv 3.184 (4)
K1—O3v 3.191 (4)
Sm1—O1ii 2.339 (3)
Sm1—O3 2.399 (3)
Sm1—O2 2.451 (3)
Sm1—O1vi 2.481 (3)
Mo1—O4 1.743 (3)
Mo1—O3 1.784 (3)
P1—O2 1.533 (3)
P1—O1 1.549 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y+1, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x-{\script{1\over 2}}, -y+1, z]; (vi) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, several complex molybdate-phosphates with the general formula A2M(MoO4)(PO4) (A = Na, K; M= Y, Bi, La—Nd, Sm—Lu) have been reported (Ben Amara & Dabbabi, 1987); Komissarova et al., 2006; Ryumin et al., 2007; Zatovsky et al., 2006). Herein, we present synthesis and crystal structure of the title compound, K2Sm(MoO4)(PO4).

X-ray analysis revealed that the compound K2Sm(MoO4)(PO4) crystallizes in the orthorhombic system with space group Ibca (Fig. 1). The asymmetric unit contains one K, one Sm, one Mo, one P and four O atoms. Each of the Mo and P atoms is tetrahedrally coordinated by four O atoms, forming nearly ideal MoO4 and PO4 tetrahedra with two types of Mo–O (1.743 (3) Å, 1.784 (3) Å) and P–O distances (1.533 (3) Å, 1.549 (3) Å), respectively. The Sm atom is surrounded by eight oxygen atoms in a distorted dodecahedral environment with the Sm–O bond distances in the range of 2.339 (3)–2.481 (3) Å. MoO4, PO4 and SmO8 polyhedra are interconnected via corner- or edge-sharing O atoms forming a two-dimensional anionic layer of overall composition [Sm(MoO4)(PO4)]2- extending parallel to the ab-plane, as shown in Fig. 2. Furthermore, the anionic framework delimits large cages in which the K+ cations (coordination number 8) reside to ensure the cohesion of the structure and the neutrality of the compound, resulting in a three-dimensional framework structure.

Related literature top

The structures and properties of other molybdate-phosphates with the general formula A2M(MoO4)(PO4), where A = Na, K; M = Y, Bi, La—Nd, Sm—Lu, have been reported by Ben Amara & Dabbabi (1987); Komissarova et al. (2006); Ryumin et al. (2007); Zatovsky et al. (2006). For crystallographic background, see: Spek (2009).

Experimental top

Single crystals of K2Sm(MoO4)(PO4) were obtained by the high temperature solution growth (HTSG) reaction of K2CO3 (2.253 g, 16.3 mmol), Sm2O3 (0.569g, 1.63 mmol), MoO3 (0.939 g, 6.52 mmol) and NH4H2PO4 (3.000 g, 26.1 mmol), with the molar ratio of 10:1:2:8 (K:Sm:Mo:P). The reaction mixture was thoroughly ground in an agate mortar and pressed into a pellet to ensure the best homogeneity and reactivity. The pellet was put into a platinum crucible and calcined at 673 K or 10 h to decompose the salts. Then the crucible was transferred to another furnace and heated at 1223 K for 48 h. Then the sample was cooled from 1173 K at a rate of 4 Kh-1. After boiling for 24 h in water, a few prism-shaped colorless crystals were obtained in very low yield (<5%).

Structure description top

In recent years, several complex molybdate-phosphates with the general formula A2M(MoO4)(PO4) (A = Na, K; M= Y, Bi, La—Nd, Sm—Lu) have been reported (Ben Amara & Dabbabi, 1987); Komissarova et al., 2006; Ryumin et al., 2007; Zatovsky et al., 2006). Herein, we present synthesis and crystal structure of the title compound, K2Sm(MoO4)(PO4).

X-ray analysis revealed that the compound K2Sm(MoO4)(PO4) crystallizes in the orthorhombic system with space group Ibca (Fig. 1). The asymmetric unit contains one K, one Sm, one Mo, one P and four O atoms. Each of the Mo and P atoms is tetrahedrally coordinated by four O atoms, forming nearly ideal MoO4 and PO4 tetrahedra with two types of Mo–O (1.743 (3) Å, 1.784 (3) Å) and P–O distances (1.533 (3) Å, 1.549 (3) Å), respectively. The Sm atom is surrounded by eight oxygen atoms in a distorted dodecahedral environment with the Sm–O bond distances in the range of 2.339 (3)–2.481 (3) Å. MoO4, PO4 and SmO8 polyhedra are interconnected via corner- or edge-sharing O atoms forming a two-dimensional anionic layer of overall composition [Sm(MoO4)(PO4)]2- extending parallel to the ab-plane, as shown in Fig. 2. Furthermore, the anionic framework delimits large cages in which the K+ cations (coordination number 8) reside to ensure the cohesion of the structure and the neutrality of the compound, resulting in a three-dimensional framework structure.

The structures and properties of other molybdate-phosphates with the general formula A2M(MoO4)(PO4), where A = Na, K; M = Y, Bi, La—Nd, Sm—Lu, have been reported by Ben Amara & Dabbabi (1987); Komissarova et al. (2006); Ryumin et al. (2007); Zatovsky et al. (2006). For crystallographic background, see: Spek (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of the title compound, showing the labelling of the atoms. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) - X, 1/2 - Y, Z (b) X, - Y, 1/2 – Z (c) - X, 1/2 + Y, 1/2 – Z (e) X, 1/2 + Y, - Z (f) - X, Y, 1/2 + Z (l) 1/2 + X, Y, 1/2 – z.]
Dipotassium samarium(III) molybdate(VI) phosphate(V) top
Crystal data top
K2Sm(MoO4)(PO4)F(000) = 1768
Mr = 483.46Dx = 3.764 Mg m3
Orthorhombic, IbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2b 2cCell parameters from 369 reflections
a = 12.345 (9) Åθ = 3.1–27.4°
b = 7.004 (5) ŵ = 9.46 mm1
c = 19.733 (12) ÅT = 298 K
V = 1706 (2) Å3Prism, colourless
Z = 80.15 × 0.10 × 0.05 mm
Data collection top
Rigaku Saturn 70
diffractometer
979 independent reflections
Radiation source: fine-focus sealed tube903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 98
Tmin = 0.742, Tmax = 1.000l = 2525
3660 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.014Secondary atom site location: difference Fourier map
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
979 reflectionsΔρmax = 0.85 e Å3
61 parametersΔρmin = 0.99 e Å3
Crystal data top
K2Sm(MoO4)(PO4)V = 1706 (2) Å3
Mr = 483.46Z = 8
Orthorhombic, IbcaMo Kα radiation
a = 12.345 (9) ŵ = 9.46 mm1
b = 7.004 (5) ÅT = 298 K
c = 19.733 (12) Å0.15 × 0.10 × 0.05 mm
Data collection top
Rigaku Saturn 70
diffractometer
979 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
903 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 1.000Rint = 0.022
3660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01461 parameters
wR(F2) = 0.0790 restraints
S = 1.01Δρmax = 0.85 e Å3
979 reflectionsΔρmin = 0.99 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Single crystal of K2Sm(MoO4)(PO4)with dimensions of 0.15 mm×0.10 mm×0.05 mm was selected for single-crystal X-ray diffraction determination. The diffraction data of K2Sm(MoO4)(PO4) were collected on a Rigaku Saturn70 CCD diffractometer with graphite-monochromated Mo—Ka radiation (λ = 0.71073 Å). Intensity data were collected by the narrow frame method at 298 K. The data were corrected for Lorentz factor, polarization, air absorption and absorption due to variations in the path length through the detector faceplate. Absorption corrections based on Multi-scan technique were also applied (CrystalClear. ver. 1.3.5.,Rigaku Corp., Woodlands, TX, 1999). The single-crystal refinement was performed with the program SHELX97. The spacegroup was determined to be Ibca based on systematic absences as well as E-value statistics. The structure was solved by the direct methods and the molybdenum and phosphorus atoms were revealed. Subsequent difference-Fourier syntheses by full-matrix least-squares fitting on F2 allowed localization of potassium and all oxygen atoms. The final structure refinement performed by least-square methods with atomic coordinates and anisotropic thermal parameters resulted in satisfactory residuals. In addition, the final refined solutions obtained for were checked with the ADDSYM algorithm in the program PLATON (Spek, 2009) and no higher symmetries were found.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.17099 (8)0.28431 (16)0.09418 (5)0.0233 (3)
Sm10.42384 (2)0.50000.25000.00627 (15)
Mo10.50000.25000.08208 (2)0.01213 (17)
P10.17826 (12)0.50000.25000.0066 (4)
O10.0995 (3)0.6698 (4)0.26009 (13)0.0111 (6)
O20.2522 (3)0.5240 (3)0.18818 (14)0.0113 (6)
O30.4690 (3)0.4533 (5)0.13294 (14)0.0177 (6)
O40.3879 (3)0.1914 (5)0.03256 (15)0.0292 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0327 (6)0.0226 (5)0.0147 (4)0.0016 (4)0.0042 (4)0.0018 (4)
Sm10.0049 (2)0.0050 (2)0.0090 (2)0.0000.0000.00005 (8)
Mo10.0142 (3)0.0153 (3)0.0069 (3)0.00155 (19)0.0000.000
P10.0041 (8)0.0042 (9)0.0115 (8)0.0000.0000.0001 (4)
O10.0065 (13)0.0058 (15)0.0212 (13)0.0000 (12)0.0006 (11)0.0018 (11)
O20.0085 (14)0.0139 (14)0.0116 (13)0.0026 (11)0.0010 (12)0.0021 (10)
O30.0228 (18)0.0192 (15)0.0112 (13)0.0032 (14)0.0029 (12)0.0013 (12)
O40.032 (2)0.033 (2)0.0224 (15)0.0012 (16)0.0163 (15)0.0016 (14)
Geometric parameters (Å, º) top
K1—O4i2.685 (3)Mo1—O4ix1.743 (3)
K1—O22.695 (3)Mo1—O41.743 (3)
K1—O2ii2.768 (3)Mo1—O31.784 (3)
K1—O3ii2.991 (4)Mo1—O3ix1.784 (3)
K1—O43.012 (4)P1—O21.533 (3)
K1—O1iii3.025 (3)P1—O2iii1.533 (3)
K1—O4iv3.184 (4)P1—O1iii1.549 (3)
K1—O3v3.191 (4)P1—O11.549 (3)
Sm1—O1ii2.339 (3)O1—Sm1vi2.339 (3)
Sm1—O1vi2.339 (3)O1—Sm1x2.481 (3)
Sm1—O32.399 (3)O1—K1iii3.025 (3)
Sm1—O3iii2.399 (3)O2—K1iv2.768 (3)
Sm1—O22.451 (3)O3—K1iv2.991 (4)
Sm1—O2iii2.451 (3)O3—K1viii3.191 (4)
Sm1—O1vii2.481 (3)O4—K1i2.685 (3)
Sm1—O1viii2.481 (3)O4—K1ii3.184 (4)
O4i—K1—O2153.25 (10)O3iii—Sm1—O1vii78.98 (10)
O4i—K1—O2ii123.87 (11)O2—Sm1—O1vii133.07 (9)
O2—K1—O2ii79.73 (9)O2iii—Sm1—O1vii145.94 (9)
O4i—K1—O3ii83.90 (10)O1ii—Sm1—O1viii68.11 (13)
O2—K1—O3ii121.45 (10)O1vi—Sm1—O1viii126.05 (8)
O2ii—K1—O3ii61.05 (10)O3—Sm1—O1viii78.98 (10)
O4i—K1—O479.19 (11)O3iii—Sm1—O1viii77.59 (10)
O2—K1—O494.69 (10)O2—Sm1—O1viii145.94 (9)
O2ii—K1—O479.85 (10)O2iii—Sm1—O1viii133.07 (9)
O3ii—K1—O4116.70 (11)O1vii—Sm1—O1viii58.14 (15)
O4i—K1—O1iii146.34 (11)O4ix—Mo1—O4111.8 (2)
O2—K1—O1iii52.27 (9)O4ix—Mo1—O3107.33 (15)
O2ii—K1—O1iii62.16 (9)O4—Mo1—O3109.46 (16)
O3ii—K1—O1iii70.78 (8)O4ix—Mo1—O3ix109.46 (16)
O4—K1—O1iii131.75 (9)O4—Mo1—O3ix107.33 (15)
O4i—K1—O4iv78.43 (8)O3—Mo1—O3ix111.5 (2)
O2—K1—O4iv77.88 (9)O2—P1—O2iii106.9 (3)
O2ii—K1—O4iv157.51 (9)O2—P1—O1iii110.83 (15)
O3ii—K1—O4iv131.29 (10)O2iii—P1—O1iii113.07 (14)
O4—K1—O4iv104.03 (10)O2—P1—O1113.08 (14)
O1iii—K1—O4iv101.61 (9)O2iii—P1—O1110.83 (15)
O4i—K1—O3v98.70 (10)O1iii—P1—O1102.3 (3)
O2—K1—O3v76.53 (10)P1—O1—Sm1vi145.66 (18)
O2ii—K1—O3v119.10 (9)P1—O1—Sm1x99.81 (16)
O3ii—K1—O3v86.19 (11)Sm1vi—O1—Sm1x111.05 (13)
O4—K1—O3v156.35 (10)P1—O1—K1iii91.19 (13)
O1iii—K1—O3v58.87 (8)Sm1vi—O1—K1iii90.67 (9)
O4iv—K1—O3v52.93 (8)Sm1x—O1—K1iii112.46 (9)
O1ii—Sm1—O1vi165.83 (15)P1—O2—Sm196.39 (15)
O1ii—Sm1—O388.61 (10)P1—O2—K1104.95 (15)
O1vi—Sm1—O394.68 (10)Sm1—O2—K1128.43 (12)
O1ii—Sm1—O3iii94.68 (10)P1—O2—K1iv144.03 (15)
O1vi—Sm1—O3iii88.61 (10)Sm1—O2—K1iv94.74 (11)
O3—Sm1—O3iii153.13 (16)K1—O2—K1iv94.39 (10)
O1ii—Sm1—O290.20 (9)Mo1—O3—Sm1134.48 (17)
O1vi—Sm1—O277.48 (9)Mo1—O3—K1iv126.79 (14)
O3—Sm1—O274.39 (11)Sm1—O3—K1iv90.36 (10)
O3iii—Sm1—O2132.14 (11)Mo1—O3—K1viii99.04 (13)
O1ii—Sm1—O2iii77.48 (9)Sm1—O3—K1viii109.51 (11)
O1vi—Sm1—O2iii90.20 (9)K1iv—O3—K1viii86.78 (10)
O3—Sm1—O2iii132.14 (11)Mo1—O4—K1i132.86 (18)
O3iii—Sm1—O2iii74.39 (11)Mo1—O4—K1115.37 (15)
O2—Sm1—O2iii60.33 (15)K1i—O4—K194.75 (10)
O1ii—Sm1—O1vii126.05 (8)Mo1—O4—K1ii100.26 (13)
O1vi—Sm1—O1vii68.11 (13)K1i—O4—K1ii120.73 (12)
O3—Sm1—O1vii77.59 (10)K1—O4—K1ii80.58 (9)
Symmetry codes: (i) x+1/2, y, z; (ii) x+1/2, y1/2, z; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1, z; (vi) x+1/2, y+3/2, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y+1, z; (ix) x+1, y+1/2, z; (x) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaK2Sm(MoO4)(PO4)
Mr483.46
Crystal system, space groupOrthorhombic, Ibca
Temperature (K)298
a, b, c (Å)12.345 (9), 7.004 (5), 19.733 (12)
V3)1706 (2)
Z8
Radiation typeMo Kα
µ (mm1)9.46
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerRigaku Saturn 70
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.742, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3660, 979, 903
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.079, 1.01
No. of reflections979
No. of parameters61
Δρmax, Δρmin (e Å3)0.85, 0.99

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
K1—O4i2.685 (3)Sm1—O1ii2.339 (3)
K1—O22.695 (3)Sm1—O32.399 (3)
K1—O2ii2.768 (3)Sm1—O22.451 (3)
K1—O3ii2.991 (4)Sm1—O1vi2.481 (3)
K1—O43.012 (4)Mo1—O41.743 (3)
K1—O1iii3.025 (3)Mo1—O31.784 (3)
K1—O4iv3.184 (4)P1—O21.533 (3)
K1—O3v3.191 (4)P1—O11.549 (3)
Symmetry codes: (i) x+1/2, y, z; (ii) x+1/2, y1/2, z; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1, z; (vi) x+1/2, y, z+1/2.
 

Acknowledgements

We thank Dr Yougui Huang and Qingxia Yao for fruitful discussions concerning the crystal structure and for help with graphics.

References

First citationBen Amara, M. & Dabbabi, M. (1987). Acta Cryst. C43, 616–618.  CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKomissarova, L. N., Ryumin, M. A., Bobylev, A. P., Zhizhin, M. G. & Danilov, V. P. (2006). Russ. J. Inorg. Chem. 51, 397–403.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRyumin, M. A., Komissarova, L. N., Rusakov, D. A., Bobylev, A. P. & Zhizhin, M. G. (2007). Russ. J. Inorg. Chem. 52, 717–724.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3550–3555.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds