inorganic compounds
Pentapotassium europium(III) dilithium decafluoride, K5EuLi2F10
aW. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna str. 2, PO Box 1410, 50-950 Wrocław, Poland
*Correspondence e-mail: a.gagor@int.pan.wroc.pl
The title compound, K5EuLi2F10, belongs to so-called self-activated materials containing lanthanoid ions within the matrix. A common feature of these systems is a large separation between the closest lanthanoid ions, which is one of the crucial factors governing the self-quenching of luminescence. The of K5EuLi2F10 is isotypic with other K5RELi2F10 compounds (RE = Nd, Pr). As expected from the lanthanoid contraction, the unit-cell volume for crystal with Eu3+ ions is the smallest of the three structures. Accordingly, the corresponding interatomic RE—RE distances are shorter. In the structure, distorted EuF8 dodecahedra and two different LiF4 tetrahedra, all with m symmetry, are present, forming sheets parallel to (100). The isolated EuF8 dodecahedra exhibit a mean Eu—F distance of 2.356 Å. The K+ cations are located within and between the sheets, leading to highly irregular KFx polyhedra (x = 8–9) around the alkali metal cations.
Related literature
The structure of the isotypic Nd analogue was reported by Hong & McCollum (1979); for the structure of the Pr analogue, see: Gagor (2009). For background to bond-valence calculations, see: Brown (1992, 2002); Mattausch et al. (1991). Synthetic details were described by Ryba-Romanowski et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536809044055/wm2269sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809044055/wm2269Isup2.hkl
Preparation details were taken from Ryba-Romanowski et al. (2007). The K5EuLi2F10 crystal was grown from commercially available KF, EuF3 and LiF (Aldrich 99.99%, anhydrous) using the Bridgman method. The reagents were heated at 923 K (melting point 813 K) in a graphite crucible under argon atmosphere. The pulling rate was 1mm/h, the temperature gradient 100 %/cm.
In the final Fourier map, the highest peak is 0.60 Å from atom Eu1 and the deepest hole is 0.63 Å from the same atom.
Two different LiF4 tetrahedra together with EuF8 dodecahedra form sheets expanding perpendicular to [100]. Fig. 1 illustrates the crystal packing of K5EuLi2F10 as seen down [001]. K1 atoms occupy cavities within the sheets and are surrounded by 9 F- ions in a mean distance of 2.792 Å. Remaining potassium atoms are located between the sheets, leading to KF9 and KF8 polyhedra. The valence sums of K atoms are close to the formal charge of +1, with a slight tendency to over-bonding. The K2 ion in the K5EuLi2F10 structure is slightly under-bonded (S = 0.977 v.u.), whereas the Li position is over-bonded, with a 15.6% higher bond-valence sum than those expected from the formal charge of +1.
Each EuF8 dodecahedron is surrounded by twelve others with a shortest and longest Eu—Eu distance of 6.6968 (2) and 7.8353 (2) Å, respectively. The mean distance of Eu—Eu is 7.309 Å, with individual distances of 2× 6.6968 (2), 2× 6.8805 (2), 2× 6.8721 (2), 2× 7.7356 (2) and 4× 7.8353 (2) Å. The bond valence sums of all metal atoms have been calculated from the received structure model on the basis of the bond-valence method (Brown, 1992, 2002; Mattausch et al., 1991)]: Eu 2.81, K1 1.06, K2 1.00, K3 1.09 and Li 1.16 v.u. The Eu ion is slightly under-bonded. The lower value of Eu valence may be associated with the distorted surrounding of this cation. When such distortions occur, the equal-valence rule is not strictly obeyed (Brown, 1992).
The structure of the isotypic Nd analogue was reported by Hong & McCollum (1979); for the structure of the Pr analogue, see: Gagor (2009). For background to bond-valence calculations, see: Brown (1992, 2002); Mattausch et al. (1991). Synthetic details were described by Ryba-Romanowski et al. (2007).
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Crystal packing in K5EuLi2F10 as seen down the c axis. The thermal ellipsoids have been drawn at the 50% probability level. |
K5EuLi2F10 | F(000) = 1016 |
Mr = 551.35 | Dx = 3.352 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 12717 reflections |
a = 20.5539 (6) Å | θ = 2.8–47.0° |
b = 7.7356 (2) Å | µ = 7.75 mm−1 |
c = 6.8721 (2) Å | T = 295 K |
V = 1092.64 (5) Å3 | Rectangular prism, colorless |
Z = 4 | 0.35 × 0.20 × 0.15 mm |
Kuma KM-4 with CCD area-detector diffractometer | 4895 independent reflections |
Radiation source: fine-focus sealed tube | 3564 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1 | θmax = 47.2°, θmin = 3.1° |
ω scans | h = −42→27 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −11→15 |
Tmin = 0.146, Tmax = 0.310 | l = −14→9 |
23852 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.02P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.039 | (Δ/σ)max = 0.001 |
S = 0.83 | Δρmax = 2.35 e Å−3 |
4895 reflections | Δρmin = −3.02 e Å−3 |
98 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0234 (3) |
K5EuLi2F10 | V = 1092.64 (5) Å3 |
Mr = 551.35 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 20.5539 (6) Å | µ = 7.75 mm−1 |
b = 7.7356 (2) Å | T = 295 K |
c = 6.8721 (2) Å | 0.35 × 0.20 × 0.15 mm |
Kuma KM-4 with CCD area-detector diffractometer | 4895 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 3564 reflections with I > 2σ(I) |
Tmin = 0.146, Tmax = 0.310 | Rint = 0.034 |
23852 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 98 parameters |
wR(F2) = 0.039 | 0 restraints |
S = 0.83 | Δρmax = 2.35 e Å−3 |
4895 reflections | Δρmin = −3.02 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. To eliminate the weak reflections measured at high theta angles a 2theta limit was applied during structure refinement. The refinement on the whole data set (2theta = 47°) only slightly improved the standard deviations. Concluding, it was decided to refine the structure using a maximum measured 2theta limit. For completeness calculations the 2theta threshold was set to 28. |
x | y | z | Uiso*/Ueq | ||
K1 | 0.457104 (13) | 0.97833 (4) | 0.25084 (4) | 0.01525 (4) | |
K2 | 0.282845 (14) | 0.02578 (4) | 0.42686 (4) | 0.01675 (5) | |
K3 | 0.36036 (2) | 0.2500 | 0.93720 (6) | 0.01762 (7) | |
Eu1 | 0.106855 (4) | 0.2500 | 0.236787 (10) | 0.00739 (2) | |
Li1 | 0.92238 (15) | 0.2500 | 0.9701 (4) | 0.0131 (5) | |
Li2 | 0.67290 (16) | 0.2500 | 0.8419 (5) | 0.0143 (6) | |
F1 | 0.00915 (5) | 0.2500 | 0.04773 (15) | 0.01369 (18) | |
F2 | 0.01991 (5) | 0.2500 | 0.45288 (15) | 0.0174 (2) | |
F3 | 0.09032 (4) | 0.96151 (9) | 0.15506 (12) | 0.01698 (15) | |
F4 | 0.14639 (4) | 0.07571 (10) | 0.49951 (11) | 0.01549 (14) | |
F5 | 0.21739 (5) | 0.2500 | 0.19250 (16) | 0.0167 (2) | |
F6 | 0.37353 (6) | 0.2500 | 0.31189 (16) | 0.01580 (19) | |
F7 | 0.75888 (5) | 0.2500 | 0.79160 (15) | 0.0160 (2) | |
F8 | 0.63085 (5) | 0.2500 | 0.60493 (14) | 0.01447 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.01483 (10) | 0.01435 (10) | 0.01657 (10) | −0.00139 (8) | −0.00065 (9) | −0.00117 (9) |
K2 | 0.01782 (11) | 0.01449 (11) | 0.01795 (10) | 0.00145 (9) | −0.00036 (9) | −0.00152 (9) |
K3 | 0.0292 (2) | 0.01074 (15) | 0.01291 (14) | 0.000 | −0.00250 (14) | 0.000 |
Eu1 | 0.00789 (3) | 0.00732 (3) | 0.00696 (3) | 0.000 | −0.00052 (3) | 0.000 |
Li1 | 0.0131 (13) | 0.0150 (14) | 0.0112 (12) | 0.000 | 0.0005 (11) | 0.000 |
Li2 | 0.0160 (15) | 0.0147 (14) | 0.0121 (12) | 0.000 | 0.0002 (11) | 0.000 |
F1 | 0.0096 (4) | 0.0171 (5) | 0.0144 (4) | 0.000 | −0.0018 (4) | 0.000 |
F2 | 0.0163 (5) | 0.0221 (5) | 0.0138 (4) | 0.000 | 0.0025 (4) | 0.000 |
F3 | 0.0219 (4) | 0.0108 (3) | 0.0183 (3) | −0.0001 (3) | −0.0047 (3) | −0.0029 (3) |
F4 | 0.0222 (4) | 0.0104 (3) | 0.0139 (3) | −0.0007 (3) | −0.0029 (3) | −0.0009 (3) |
F5 | 0.0106 (4) | 0.0228 (5) | 0.0168 (4) | 0.000 | −0.0014 (4) | 0.000 |
F6 | 0.0150 (5) | 0.0197 (5) | 0.0127 (4) | 0.000 | −0.0028 (4) | 0.000 |
F7 | 0.0129 (5) | 0.0203 (5) | 0.0147 (4) | 0.000 | 0.0011 (4) | 0.000 |
F8 | 0.0134 (4) | 0.0205 (5) | 0.0095 (4) | 0.000 | −0.0012 (4) | 0.000 |
K1—F8i | 2.7148 (9) | Eu1—F5 | 2.2923 (11) |
K1—F1ii | 2.7344 (7) | Eu1—F2 | 2.3236 (11) |
K1—F2iii | 2.7451 (9) | Eu1—F3xviii | 2.3262 (7) |
K1—F6iv | 2.7465 (8) | Eu1—F3xix | 2.3262 (7) |
K1—F4iii | 2.7718 (8) | Eu1—F1 | 2.3918 (10) |
K1—F1v | 2.7863 (8) | Eu1—F4xx | 2.3954 (7) |
K1—F3vi | 2.8163 (9) | Eu1—F4 | 2.3954 (7) |
K1—F2ii | 2.8359 (8) | Eu1—F8xxi | 2.3996 (10) |
K1—Li1vii | 2.933 (2) | Eu1—Li2x | 3.198 (3) |
K1—F3viii | 2.9804 (8) | Li1—F6xvii | 1.804 (3) |
K1—Li2i | 3.266 (3) | Li1—F1xxii | 1.862 (3) |
K1—Li1ix | 3.395 (3) | Li1—F3i | 1.8669 (16) |
K2—F7x | 2.6446 (8) | Li1—F3xxiii | 1.8669 (16) |
K2—F6 | 2.6658 (10) | Li1—K1xxiv | 2.933 (2) |
K2—F5 | 2.7225 (9) | Li1—K1xxv | 2.933 (2) |
K2—F7xi | 2.7460 (7) | Li1—K3xvii | 3.076 (3) |
K2—F8xi | 2.7831 (7) | Li1—K1xxvi | 3.395 (3) |
K2—F5xii | 2.8078 (8) | Li1—K1xxvii | 3.395 (3) |
K2—F4 | 2.8748 (8) | Li1—K2xvii | 3.426 (3) |
K2—Li2xi | 2.965 (2) | Li1—K2xxviii | 3.426 (3) |
K2—F3v | 3.0440 (9) | Li2—F7 | 1.801 (4) |
K2—Li2x | 3.262 (3) | Li2—F4xvii | 1.817 (2) |
K2—F4xiii | 3.3700 (8) | Li2—F4xxviii | 1.817 (2) |
K2—Li1x | 3.426 (3) | Li2—F8 | 1.844 (3) |
K3—F4xii | 2.5594 (8) | Li2—K2xi | 2.965 (2) |
K3—F4xiv | 2.5594 (8) | Li2—K2xxix | 2.965 (2) |
K3—F6xv | 2.5891 (11) | Li2—Eu1xvii | 3.198 (3) |
K3—F7x | 2.6119 (11) | Li2—K2xxviii | 3.262 (3) |
K3—F3v | 2.7320 (8) | Li2—K2xvii | 3.262 (3) |
K3—F3xvi | 2.7320 (8) | Li2—K1i | 3.266 (3) |
K3—Li1x | 3.076 (3) | Li2—K1xxiii | 3.266 (3) |
K3—F2xvii | 3.3652 (12) | ||
F8i—K1—F1ii | 125.15 (3) | F3i—Li1—F3xxiii | 122.43 (17) |
F8i—K1—F2iii | 88.19 (3) | F7—Li2—F4xvii | 114.17 (13) |
F1ii—K1—F2iii | 143.59 (3) | F7—Li2—F4xxviii | 114.17 (13) |
F8i—K1—F6iv | 91.46 (3) | F4xvii—Li2—F4xxviii | 95.80 (16) |
F1ii—K1—F6iv | 65.12 (3) | F7—Li2—F8 | 106.88 (17) |
F2iii—K1—F6iv | 135.55 (3) | F4xvii—Li2—F8 | 112.90 (13) |
F8i—K1—F4iii | 67.56 (3) | F4xxviii—Li2—F8 | 112.90 (13) |
F1ii—K1—F4iii | 137.02 (3) | F7—Li2—K2xi | 65.12 (8) |
F2iii—K1—F4iii | 64.55 (3) | F4xvii—Li2—K2xi | 86.08 (4) |
F6iv—K1—F4iii | 74.37 (3) | F4xxviii—Li2—K2xi | 178.10 (12) |
F8i—K1—F1v | 59.07 (3) | F8—Li2—K2xi | 66.01 (8) |
F1ii—K1—F1v | 91.096 (10) | F7—Li2—K2xxix | 65.12 (8) |
F2iii—K1—F1v | 95.48 (2) | F4xvii—Li2—K2xxix | 178.10 (12) |
F6iv—K1—F1v | 121.93 (3) | F4xxviii—Li2—K2xxix | 86.08 (4) |
F4iii—K1—F1v | 123.48 (2) | F8—Li2—K2xxix | 66.01 (8) |
F8i—K1—F3vi | 122.24 (3) | K2xi—Li2—K2xxix | 92.03 (9) |
F1ii—K1—F3vi | 62.54 (2) | Li1xxx—F1—Eu1 | 163.75 (11) |
F2iii—K1—F3vi | 88.52 (3) | Li1xxx—F1—K1xxxi | 76.71 (6) |
F6iv—K1—F3vi | 127.47 (3) | Eu1—F1—K1xxxi | 93.07 (3) |
F4iii—K1—F3vi | 151.91 (2) | Li1xxx—F1—K1xxxii | 76.71 (6) |
F1v—K1—F3vi | 63.93 (3) | Eu1—F1—K1xxxii | 93.07 (3) |
F8i—K1—F2ii | 164.89 (3) | K1xxxi—F1—K1xxxii | 100.45 (3) |
F1ii—K1—F2ii | 60.15 (3) | Li1xxx—F1—K1iii | 91.64 (8) |
F2iii—K1—F2ii | 91.732 (11) | Eu1—F1—K1iii | 100.88 (3) |
F6iv—K1—F2ii | 78.06 (3) | K1xxxi—F1—K1iii | 88.904 (10) |
F4iii—K1—F2ii | 98.83 (3) | K1xxxii—F1—K1iii | 162.80 (4) |
F1v—K1—F2ii | 135.88 (3) | Li1xxx—F1—K1xxxiii | 91.64 (8) |
F3vi—K1—F2ii | 72.85 (3) | Eu1—F1—K1xxxiii | 100.88 (3) |
F8i—K1—F3viii | 62.84 (2) | K1xxxi—F1—K1xxxiii | 162.80 (4) |
F1ii—K1—F3viii | 62.36 (3) | K1xxxii—F1—K1xxxiii | 88.904 (10) |
F2iii—K1—F3viii | 148.43 (2) | K1iii—F1—K1xxxiii | 78.68 (3) |
F6iv—K1—F3viii | 62.20 (3) | Eu1—F2—K1xvi | 110.14 (3) |
F4iii—K1—F3viii | 110.69 (2) | Eu1—F2—K1v | 110.14 (3) |
F1v—K1—F3viii | 59.86 (2) | K1xvi—F2—K1v | 80.09 (3) |
F3vi—K1—F3viii | 96.38 (2) | Eu1—F2—K1xxxi | 91.98 (3) |
F2ii—K1—F3viii | 119.55 (2) | K1xvi—F2—K1xxxi | 157.42 (4) |
Li1vii—K1—F3viii | 36.79 (4) | K1v—F2—K1xxxi | 88.268 (11) |
F8i—K1—Li2i | 34.37 (6) | Eu1—F2—K1xxxii | 91.98 (3) |
F7x—K2—F6 | 85.43 (3) | K1xvi—F2—K1xxxii | 88.268 (11) |
F7x—K2—F5 | 85.58 (3) | K1v—F2—K1xxxii | 157.42 (4) |
F6—K2—F5 | 75.86 (3) | K1xxxi—F2—K1xxxii | 95.64 (3) |
F7x—K2—F7xi | 148.354 (19) | Eu1—F2—K3x | 153.25 (4) |
F6—K2—F7xi | 124.18 (3) | K1xvi—F2—K3x | 90.02 (3) |
F5—K2—F7xi | 90.98 (2) | K1v—F2—K3x | 90.02 (3) |
F7x—K2—F8xi | 132.75 (3) | K1xxxi—F2—K3x | 70.57 (2) |
F6—K2—F8xi | 91.71 (2) | K1xxxii—F2—K3x | 70.57 (2) |
F5—K2—F8xi | 139.19 (3) | Li1i—F3—Eu1iv | 166.53 (9) |
F7xi—K2—F8xi | 63.94 (3) | Li1i—F3—K3iii | 81.61 (9) |
F7x—K2—F5xii | 91.28 (2) | Eu1iv—F3—K3iii | 110.42 (3) |
F6—K2—F5xii | 133.49 (3) | Li1i—F3—K1xxi | 90.59 (10) |
F5—K2—F5xii | 150.205 (12) | Eu1iv—F3—K1xxi | 92.43 (3) |
F7xi—K2—F5xii | 76.39 (3) | K3iii—F3—K1xxi | 103.03 (3) |
F8xi—K2—F5xii | 57.98 (3) | Li1i—F3—K1xxxiv | 70.22 (9) |
F7x—K2—F4 | 66.62 (3) | Eu1iv—F3—K1xxxiv | 97.07 (3) |
F6—K2—F4 | 130.25 (2) | K3iii—F3—K1xxxiv | 151.20 (3) |
F5—K2—F4 | 62.29 (3) | K1xxi—F3—K1xxxiv | 83.62 (2) |
F7xi—K2—F4 | 83.95 (3) | Li1i—F3—K2iii | 84.87 (10) |
F8xi—K2—F4 | 137.60 (2) | Eu1iv—F3—K2iii | 88.18 (3) |
F5xii—K2—F4 | 89.28 (3) | K3iii—F3—K2iii | 93.85 (3) |
F7x—K2—F3v | 76.20 (3) | K1xxi—F3—K2iii | 161.70 (3) |
F6—K2—F3v | 62.15 (3) | K1xxxiv—F3—K2iii | 78.16 (2) |
F5—K2—F3v | 135.02 (2) | Li2x—F4—Eu1 | 97.82 (8) |
F7xi—K2—F3v | 125.05 (3) | Li2x—F4—K3xiii | 147.88 (8) |
F8xi—K2—F3v | 61.27 (2) | Eu1—F4—K3xiii | 114.18 (3) |
F5xii—K2—F3v | 72.01 (3) | Li2x—F4—K1v | 88.18 (11) |
F4—K2—F3v | 137.88 (2) | Eu1—F4—K1v | 107.11 (3) |
Li2xi—K2—F3v | 94.67 (7) | K3xiii—F4—K1v | 85.08 (2) |
F7x—K2—F4xiii | 150.54 (2) | Li2x—F4—K2 | 84.91 (11) |
F6—K2—F4xiii | 65.89 (2) | Eu1—F4—K2 | 106.00 (3) |
F5—K2—F4xiii | 81.15 (3) | K3xiii—F4—K2 | 83.77 (2) |
F7xi—K2—F4xiii | 58.49 (3) | K1v—F4—K2 | 146.79 (3) |
F8xi—K2—F4xiii | 58.53 (2) | Li2x—F4—K2xii | 61.37 (8) |
F5xii—K2—F4xiii | 112.98 (2) | Eu1—F4—K2xii | 159.13 (3) |
F4—K2—F4xiii | 127.14 (2) | K3xiii—F4—K2xii | 86.55 (2) |
Li2xi—K2—F4xiii | 32.54 (5) | K1v—F4—K2xii | 75.704 (19) |
F3v—K2—F4xiii | 94.98 (2) | K2—F4—K2xii | 72.480 (17) |
Li2x—K2—F4xiii | 147.93 (5) | Eu1—F5—K2xx | 114.28 (3) |
F4xii—K3—F4xiv | 159.74 (4) | Eu1—F5—K2 | 114.28 (3) |
F4xii—K3—F6xv | 80.751 (19) | K2xx—F5—K2 | 79.15 (3) |
F4xiv—K3—F6xv | 80.751 (19) | Eu1—F5—K2xiii | 94.85 (3) |
F4xii—K3—F7x | 93.29 (2) | K2xx—F5—K2xiii | 150.40 (4) |
F4xiv—K3—F7x | 93.29 (2) | K2—F5—K2xiii | 84.342 (11) |
F6xv—K3—F7x | 133.01 (4) | Eu1—F5—K2xxxv | 94.85 (3) |
F4xii—K3—F3v | 63.21 (2) | K2xx—F5—K2xxxv | 84.342 (11) |
F4xiv—K3—F3v | 136.75 (3) | K2—F5—K2xxxv | 150.40 (4) |
F6xv—K3—F3v | 131.84 (3) | K2xiii—F5—K2xxxv | 98.89 (4) |
F7x—K3—F3v | 82.48 (3) | Li1x—F6—K3xxxvi | 152.17 (12) |
F4xii—K3—F3xvi | 136.75 (3) | Li1x—F6—K2xx | 98.23 (8) |
F4xiv—K3—F3xvi | 63.21 (2) | K3xxxvi—F6—K2xx | 102.81 (3) |
F6xv—K3—F3xvi | 131.84 (3) | Li1x—F6—K2 | 98.23 (8) |
F7x—K3—F3xvi | 82.48 (3) | K3xxxvi—F6—K2 | 102.81 (3) |
F3v—K3—F3xvi | 73.58 (3) | K2xx—F6—K2 | 81.18 (4) |
F4xii—K3—F2xvii | 90.874 (19) | Li1x—F6—K1xviii | 77.21 (7) |
F4xiv—K3—F2xvii | 90.874 (19) | K3xxxvi—F6—K1xviii | 85.04 (3) |
F6xv—K3—F2xvii | 71.03 (3) | K2xx—F6—K1xviii | 168.64 (4) |
F7x—K3—F2xvii | 155.96 (3) | K2—F6—K1xviii | 89.126 (9) |
F3v—K3—F2xvii | 78.33 (3) | Li1x—F6—K1xix | 77.21 (7) |
F3xvi—K3—F2xvii | 78.33 (3) | K3xxxvi—F6—K1xix | 85.04 (3) |
Li1x—K3—F2xvii | 78.49 (6) | K2xx—F6—K1xix | 89.126 (9) |
F5—Eu1—F2 | 147.91 (4) | K2—F6—K1xix | 168.64 (4) |
F5—Eu1—F3xviii | 96.48 (2) | K1xviii—F6—K1xix | 99.84 (4) |
F2—Eu1—F3xviii | 92.40 (2) | Li2—F7—K3xvii | 154.06 (11) |
F5—Eu1—F3xix | 96.48 (2) | Li2—F7—K2xxviii | 92.42 (8) |
F2—Eu1—F3xix | 92.40 (2) | K3xvii—F7—K2xxviii | 106.96 (3) |
F3xviii—Eu1—F3xix | 147.22 (4) | Li2—F7—K2xvii | 92.42 (8) |
F5—Eu1—F1 | 139.47 (4) | K3xvii—F7—K2xvii | 106.96 (3) |
F2—Eu1—F1 | 72.63 (4) | K2xxviii—F7—K2xvii | 81.97 (3) |
F3xviii—Eu1—F1 | 75.29 (2) | Li2—F7—K2xi | 78.37 (7) |
F3xix—Eu1—F1 | 75.30 (2) | K3xvii—F7—K2xi | 85.43 (3) |
F5—Eu1—F4xx | 76.34 (3) | K2xxviii—F7—K2xi | 165.38 (4) |
F2—Eu1—F4xx | 77.25 (3) | K2xvii—F7—K2xi | 87.055 (6) |
F3xviii—Eu1—F4xx | 140.49 (3) | Li2—F7—K2xxix | 78.37 (7) |
F3xix—Eu1—F4xx | 72.04 (3) | K3xvii—F7—K2xxix | 85.43 (3) |
F1—Eu1—F4xx | 133.97 (2) | K2xxviii—F7—K2xxix | 87.055 (6) |
F5—Eu1—F4 | 76.34 (3) | K2xvii—F7—K2xxix | 165.38 (4) |
F2—Eu1—F4 | 77.25 (3) | K2xi—F7—K2xxix | 101.95 (4) |
F3xviii—Eu1—F4 | 72.04 (3) | Li2—F8—Eu1vi | 163.91 (12) |
F3xix—Eu1—F4 | 140.49 (3) | Li2—F8—K1i | 89.41 (9) |
F1—Eu1—F4 | 133.97 (2) | Eu1vi—F8—K1i | 102.73 (3) |
F4xx—Eu1—F4 | 68.51 (4) | Li2—F8—K1xxiii | 89.41 (9) |
F5—Eu1—F8xxi | 70.51 (4) | Eu1vi—F8—K1xxiii | 102.73 (3) |
F2—Eu1—F8xxi | 141.59 (4) | K1i—F8—K1xxiii | 81.17 (3) |
F3xviii—Eu1—F8xxi | 78.10 (2) | Li2—F8—K2xxix | 76.74 (7) |
F3xix—Eu1—F8xxi | 78.10 (2) | Eu1vi—F8—K2xxix | 93.11 (3) |
F1—Eu1—F8xxi | 68.96 (4) | K1i—F8—K2xxix | 162.14 (4) |
F4xx—Eu1—F8xxi | 131.91 (2) | K1xxiii—F8—K2xxix | 87.386 (10) |
F4—Eu1—F8xxi | 131.91 (2) | Li2—F8—K2xi | 76.74 (7) |
F6xvii—Li1—F1xxii | 107.19 (16) | Eu1vi—F8—K2xi | 93.11 (3) |
F6xvii—Li1—F3i | 107.75 (11) | K1i—F8—K2xi | 87.386 (10) |
F1xxii—Li1—F3i | 105.42 (11) | K1xxiii—F8—K2xi | 162.14 (4) |
F6xvii—Li1—F3xxiii | 107.75 (11) | K2xxix—F8—K2xi | 100.09 (4) |
F1xxii—Li1—F3xxiii | 105.42 (11) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, y+1, −z+1/2; (iii) −x+1/2, −y+1, z−1/2; (iv) x, y+1, z; (v) −x+1/2, −y+1, z+1/2; (vi) x+1/2, y, −z+1/2; (vii) x−1/2, y+1, −z+3/2; (viii) −x+1/2, −y+2, z+1/2; (ix) −x+3/2, −y+1, z−1/2; (x) x−1/2, y, −z+3/2; (xi) −x+1, −y, −z+1; (xii) −x+1/2, −y, z+1/2; (xiii) −x+1/2, −y, z−1/2; (xiv) −x+1/2, y+1/2, z+1/2; (xv) x, y, z+1; (xvi) −x+1/2, y−1/2, z+1/2; (xvii) x+1/2, y, −z+3/2; (xviii) x, y−1, z; (xix) x, −y+3/2, z; (xx) x, −y+1/2, z; (xxi) x−1/2, y, −z+1/2; (xxii) x+1, y, z+1; (xxiii) −x+1, y−1/2, −z+1; (xxiv) x+1/2, −y+3/2, −z+3/2; (xxv) x+1/2, y−1, −z+3/2; (xxvi) −x+3/2, −y+1, z+1/2; (xxvii) −x+3/2, y−1/2, z+1/2; (xxviii) x+1/2, −y+1/2, −z+3/2; (xxix) −x+1, y+1/2, −z+1; (xxx) x−1, y, z−1; (xxxi) x−1/2, y−1, −z+1/2; (xxxii) x−1/2, −y+3/2, −z+1/2; (xxxiii) −x+1/2, y−1/2, z−1/2; (xxxiv) −x+1/2, −y+2, z−1/2; (xxxv) −x+1/2, y+1/2, z−1/2; (xxxvi) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | K5EuLi2F10 |
Mr | 551.35 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 295 |
a, b, c (Å) | 20.5539 (6), 7.7356 (2), 6.8721 (2) |
V (Å3) | 1092.64 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.75 |
Crystal size (mm) | 0.35 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Kuma KM-4 with CCD area-detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.146, 0.310 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23852, 4895, 3564 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 1.032 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.039, 0.83 |
No. of reflections | 4895 |
No. of parameters | 98 |
Δρmax, Δρmin (e Å−3) | 2.35, −3.02 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006).
Eu1—F5 | 2.2923 (11) | Li1—F6iii | 1.804 (3) |
Eu1—F2 | 2.3236 (11) | Li1—F1iv | 1.862 (3) |
Eu1—F3i | 2.3262 (7) | Li1—F3v | 1.8669 (16) |
Eu1—F1 | 2.3918 (10) | Li2—F7 | 1.801 (4) |
Eu1—F4 | 2.3954 (7) | Li2—F4iii | 1.817 (2) |
Eu1—F8ii | 2.3996 (10) | Li2—F8 | 1.844 (3) |
Symmetry codes: (i) x, y−1, z; (ii) x−1/2, y, −z+1/2; (iii) x+1/2, y, −z+3/2; (iv) x+1, y, z+1; (v) −x+1, −y+1, −z+1. |
References
Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. (1992). Acta Cryst. B48, 553–572. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry - The Bond Valence Model. IUCr monographs on Crystallography 12. Oxford University Press. Google Scholar
Gagor, A. (2009). Acta Cryst. E65, i81. Web of Science CrossRef IUCr Journals Google Scholar
Hong, H. Y.-P. & McCollum, B. C. (1979). Mat. Res. Bull. 14, 137–142. CrossRef CAS Web of Science Google Scholar
Mattausch, H. J., Eger, R. & Simon, A. (1991). Z. Anorg. Allg. Chem. 597, 145–150. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Ryba-Romanowski, W., Solarz, P., Gusowski, M. & Dominiak-Dzik, G. (2007). Rad. Meas. 42, 798–802. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Two different LiF4 tetrahedra together with EuF8 dodecahedra form sheets expanding perpendicular to [100]. Fig. 1 illustrates the crystal packing of K5EuLi2F10 as seen down [001]. K1 atoms occupy cavities within the sheets and are surrounded by 9 F- ions in a mean distance of 2.792 Å. Remaining potassium atoms are located between the sheets, leading to KF9 and KF8 polyhedra. The valence sums of K atoms are close to the formal charge of +1, with a slight tendency to over-bonding. The K2 ion in the K5EuLi2F10 structure is slightly under-bonded (S = 0.977 v.u.), whereas the Li position is over-bonded, with a 15.6% higher bond-valence sum than those expected from the formal charge of +1.
Each EuF8 dodecahedron is surrounded by twelve others with a shortest and longest Eu—Eu distance of 6.6968 (2) and 7.8353 (2) Å, respectively. The mean distance of Eu—Eu is 7.309 Å, with individual distances of 2× 6.6968 (2), 2× 6.8805 (2), 2× 6.8721 (2), 2× 7.7356 (2) and 4× 7.8353 (2) Å. The bond valence sums of all metal atoms have been calculated from the received structure model on the basis of the bond-valence method (Brown, 1992, 2002; Mattausch et al., 1991)]: Eu 2.81, K1 1.06, K2 1.00, K3 1.09 and Li 1.16 v.u. The Eu ion is slightly under-bonded. The lower value of Eu valence may be associated with the distorted surrounding of this cation. When such distortions occur, the equal-valence rule is not strictly obeyed (Brown, 1992).