organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl-3-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one

aInstitute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, People's Republic of China, and bSchool of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang Province, 325035, People's Republic of China
*Correspondence e-mail: proflxk@163.com

(Received 29 September 2009; accepted 13 October 2009; online 23 October 2009)

In the title compound, C18H18O4, a derivative of biologically active chalcones, the dihedral angle between the two rings is 7.43 (7)°. The molecule adopts an E configuration about the central olefinic bonds. In the crystal, there are no strong inter­actions between the mol­ecules.

Related literature

For related structures, see: Subbiah Pandi et al. (2003[Subbiah Pandi, A., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K. & Bansal, M. C. (2003). Acta Cryst. C59, o302-o304.]); Low et al. (2002[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42-o45.]); Yathirajan et al. (2006[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629-o3630.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.]); Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2009). Acta Cryst. E65, o1965-o1966.]). For background to and applications of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1150.]); Sivakumar et al. (2009[Sivakumar, P. M., Muthu Kumar, T. & Doble, M. (2009). Chem. Biol. Drug Des. 4, 68-79.]); Echeverria et al. (2009[Echeverria, C., Santibanez, J. F., Donoso-Tauda, O., Escobar, C. A. & Ramirez-Tagle, R. (2009). Int. J. Mol. Sci. 10, 221-31.]); Kontogiorgis et al. (2008[Kontogiorgis, C., Mantzanidou, M. & Hadjipavlou-Litina, D. (2008). Mini Rev. Med. Chem. 8, 1224-1242.]); Dominguez et al. (2005[Dominguez, J. N., Leon, C., Rodrigues, J., Gamboa de Dominguez, N., Gut, J. & Rosenthal, P. J. (2005). Farmaco. 60, 307-311.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O4

  • Mr = 298.32

  • Monoclinic, P 21 /c

  • a = 9.0052 (10) Å

  • b = 14.9245 (17) Å

  • c = 11.7658 (14) Å

  • β = 104.315 (2)°

  • V = 1532.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.12 × 0.10 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.989, Tmax = 0.996

  • 7895 measured reflections

  • 2701 independent reflections

  • 2125 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.132

  • S = 1.00

  • 2701 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones, which have the common skeleton of 1,3-diaryl-2-propen-1-ones, are natural products, distributed widely in fruits, vegetables etc. Natural and synthetical chalcones have wide-ranging biological properties, including antimicrobial, antifungal, antioxidant, antiangiogenic, antitumor and anti-inflammatory activities (Dimmock et al., 1999; Sivakumar et al., 2009; Echeverria et al., 2009; Kontogiorgis et al., 2008). The chalcone derivatives with trimethoxyphenyl substitution have also been reported to have a wide range of biological activities (Suwunwong et al., 2009; Jasinski et al., 2009; Dominguez et al., 2005; Nowakowska, 2007).

The present investigation is a continuation of our broad program of work on the synthesis and structural study of chalcones and their derivatives. Investigation of these structures may be helpful in the design and synthesis of new compounds. In order to understand the geometrical features and the underlying intermolecular interactions which hold the assembly of molecules in the crystal structure, an X-ray study of the title compound was carried out.

It is approximately planar and the dihedral angle between the two rings is 7.43 (7)°. The H atoms of the central propenone group are trans. The average value of the bond distances [1.385 (5) Å] and exocyclic bond angles [120.7 (4)°] in the benzene and phenyl rings have normal values which agree quite well with the values reported in the literature for some analogous structures (Subbiah Pandi et al., 2003; Low et al., 2002; Yathirajan et al., 2006).

Related literature top

For related structures, see: Subbiah Pandi et al. (2003); Low et al. (2002); Yathirajan et al. (2006); Suwunwong et al. (2009); Jasinski et al. (2009). For background to and applications of chalcones, see: Dimmock et al. (1999); Sivakumar et al. (2009); Echeverria et al. (2009); Kontogiorgis et al. (2008); Dominguez et al. (2005); Nowakowska (2007).

Experimental top

Acetophenone (15 mmol) was dissolved in ethanol (5 ml) and crushed KOH (15 mmol) was added. The flask was immersed in a bath of crushed ice and a solution of 2,4,6-trimethoxybenzaldehyde (15 mmol) in ethanol (5 mmol) was added. The reaction mixture was stirred at 300 K and completion of the reaction was monitored by thin-layer chromatography. Ice-cold water was added to the reaction mixture after 48 h and the yellow solid that separated was filtered off, washed with water and cold ethanol, dried and purified by column chromatography on silica gel (yield:68%). Single crystals of the title compound were grown in a CH2Cl2/CH3OH mixture (5:2 v/v) by slow evaporation (mp 436–437 K).

Refinement top

The H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Chalcones, which have the common skeleton of 1,3-diaryl-2-propen-1-ones, are natural products, distributed widely in fruits, vegetables etc. Natural and synthetical chalcones have wide-ranging biological properties, including antimicrobial, antifungal, antioxidant, antiangiogenic, antitumor and anti-inflammatory activities (Dimmock et al., 1999; Sivakumar et al., 2009; Echeverria et al., 2009; Kontogiorgis et al., 2008). The chalcone derivatives with trimethoxyphenyl substitution have also been reported to have a wide range of biological activities (Suwunwong et al., 2009; Jasinski et al., 2009; Dominguez et al., 2005; Nowakowska, 2007).

The present investigation is a continuation of our broad program of work on the synthesis and structural study of chalcones and their derivatives. Investigation of these structures may be helpful in the design and synthesis of new compounds. In order to understand the geometrical features and the underlying intermolecular interactions which hold the assembly of molecules in the crystal structure, an X-ray study of the title compound was carried out.

It is approximately planar and the dihedral angle between the two rings is 7.43 (7)°. The H atoms of the central propenone group are trans. The average value of the bond distances [1.385 (5) Å] and exocyclic bond angles [120.7 (4)°] in the benzene and phenyl rings have normal values which agree quite well with the values reported in the literature for some analogous structures (Subbiah Pandi et al., 2003; Low et al., 2002; Yathirajan et al., 2006).

For related structures, see: Subbiah Pandi et al. (2003); Low et al. (2002); Yathirajan et al. (2006); Suwunwong et al. (2009); Jasinski et al. (2009). For background to and applications of chalcones, see: Dimmock et al. (1999); Sivakumar et al. (2009); Echeverria et al. (2009); Kontogiorgis et al. (2008); Dominguez et al. (2005); Nowakowska (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.
1-Phenyl-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H18O4F(000) = 632
Mr = 298.32Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3499 reflections
a = 9.0052 (10) Åθ = 2.7–27.9°
b = 14.9245 (17) ŵ = 0.09 mm1
c = 11.7658 (14) ÅT = 273 K
β = 104.315 (2)°Block, colorless
V = 1532.2 (3) Å30.12 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2701 independent reflections
Radiation source: fine-focus sealed tube2125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.989, Tmax = 0.996k = 1715
7895 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0938P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2701 reflectionsΔρmax = 0.15 e Å3
203 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.353 (18)
Crystal data top
C18H18O4V = 1532.2 (3) Å3
Mr = 298.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0052 (10) ŵ = 0.09 mm1
b = 14.9245 (17) ÅT = 273 K
c = 11.7658 (14) Å0.12 × 0.10 × 0.05 mm
β = 104.315 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2701 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2125 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.996Rint = 0.044
7895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
2701 reflectionsΔρmin = 0.16 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9745 (2)0.05689 (12)0.14050 (16)0.0745 (5)
H1A1.01830.03760.21960.112*
H1B1.05480.06620.10120.112*
H1C0.91960.11190.14150.112*
C20.65289 (18)0.07567 (10)0.42207 (13)0.0599 (4)
H2A0.65790.12850.37650.090*
H2B0.61530.09130.48900.090*
H2C0.75340.05000.44790.090*
C30.44257 (19)0.21153 (10)0.08152 (13)0.0619 (4)
H3A0.53730.24410.06050.093*
H3B0.36080.25170.11660.093*
H3C0.44990.16520.13640.093*
C40.74716 (15)0.02951 (9)0.11985 (12)0.0466 (4)
C50.72022 (14)0.00525 (9)0.22193 (11)0.0462 (4)
H50.78980.04430.26870.055*
C60.58735 (14)0.01944 (9)0.25291 (11)0.0424 (4)
C70.47895 (14)0.07868 (8)0.18520 (11)0.0407 (4)
C80.51526 (15)0.11331 (9)0.08332 (11)0.0437 (4)
C90.64562 (16)0.08890 (9)0.05100 (12)0.0483 (4)
H90.66580.11220.01700.058*
C100.34214 (15)0.10052 (9)0.22290 (12)0.0456 (4)
H100.33690.07430.29350.055*
C110.22244 (15)0.15177 (10)0.17373 (12)0.0509 (4)
H110.21750.17750.10090.061*
C120.09861 (15)0.16858 (10)0.23113 (12)0.0512 (4)
C130.02269 (14)0.23528 (9)0.17775 (12)0.0469 (4)
C140.01819 (17)0.28712 (10)0.08031 (13)0.0557 (4)
H140.06000.27840.04260.067*
C150.12880 (19)0.35148 (11)0.03909 (15)0.0658 (5)
H150.12390.38630.02550.079*
C160.24600 (18)0.36410 (12)0.09338 (15)0.0665 (5)
H160.31970.40790.06610.080*
C170.25405 (17)0.31221 (12)0.18758 (15)0.0650 (5)
H170.33460.32000.22320.078*
C180.14374 (16)0.24862 (11)0.22991 (13)0.0568 (4)
H180.15010.21410.29430.068*
O10.09525 (13)0.13297 (9)0.32420 (10)0.0788 (4)
O20.41260 (11)0.17261 (7)0.02032 (8)0.0580 (3)
O30.87208 (11)0.01000 (7)0.08015 (9)0.0645 (4)
O40.55259 (11)0.01253 (7)0.35229 (9)0.0568 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0661 (10)0.0857 (12)0.0833 (11)0.0327 (9)0.0404 (9)0.0290 (10)
C20.0601 (9)0.0681 (10)0.0523 (9)0.0107 (8)0.0156 (7)0.0195 (7)
C30.0716 (10)0.0603 (10)0.0518 (9)0.0047 (8)0.0115 (8)0.0158 (7)
C40.0438 (7)0.0485 (8)0.0512 (8)0.0025 (6)0.0186 (6)0.0020 (6)
C50.0450 (8)0.0464 (8)0.0483 (8)0.0063 (6)0.0137 (6)0.0071 (6)
C60.0441 (7)0.0449 (7)0.0390 (7)0.0012 (6)0.0119 (6)0.0025 (6)
C70.0407 (7)0.0426 (7)0.0384 (7)0.0006 (5)0.0088 (5)0.0029 (5)
C80.0455 (8)0.0414 (7)0.0421 (7)0.0021 (6)0.0067 (6)0.0006 (6)
C90.0540 (8)0.0510 (8)0.0423 (8)0.0014 (6)0.0164 (6)0.0065 (6)
C100.0455 (8)0.0499 (8)0.0409 (7)0.0007 (6)0.0097 (6)0.0048 (6)
C110.0463 (8)0.0626 (9)0.0430 (8)0.0072 (6)0.0097 (6)0.0019 (6)
C120.0445 (8)0.0646 (9)0.0433 (8)0.0024 (7)0.0086 (6)0.0059 (7)
C130.0392 (7)0.0536 (8)0.0460 (8)0.0003 (6)0.0071 (6)0.0107 (6)
C140.0504 (8)0.0632 (9)0.0559 (9)0.0055 (7)0.0174 (7)0.0042 (7)
C150.0666 (10)0.0660 (10)0.0647 (10)0.0118 (8)0.0159 (8)0.0051 (8)
C160.0532 (9)0.0684 (11)0.0751 (11)0.0148 (8)0.0107 (8)0.0029 (9)
C170.0444 (8)0.0741 (11)0.0801 (12)0.0072 (7)0.0221 (8)0.0086 (9)
C180.0496 (8)0.0657 (9)0.0580 (9)0.0010 (7)0.0188 (7)0.0053 (7)
O10.0688 (8)0.1132 (10)0.0602 (7)0.0294 (7)0.0272 (6)0.0240 (7)
O20.0577 (6)0.0647 (7)0.0522 (6)0.0165 (5)0.0150 (5)0.0177 (5)
O30.0587 (7)0.0769 (8)0.0675 (7)0.0206 (5)0.0340 (6)0.0224 (5)
O40.0533 (6)0.0719 (7)0.0500 (6)0.0154 (5)0.0216 (5)0.0200 (5)
Geometric parameters (Å, º) top
C1—O31.4241 (17)C8—O21.3596 (15)
C1—H1A0.9600C8—C91.3697 (19)
C1—H1B0.9600C9—H90.9300
C1—H1C0.9600C10—C111.3317 (19)
C2—O41.4182 (16)C10—H100.9300
C2—H2A0.9600C11—C121.4611 (19)
C2—H2B0.9600C11—H110.9300
C2—H2C0.9600C12—O11.2244 (17)
C3—O21.4163 (17)C12—C131.496 (2)
C3—H3A0.9600C13—C181.391 (2)
C3—H3B0.9600C13—C141.392 (2)
C3—H3C0.9600C14—C151.382 (2)
C4—O31.3521 (16)C14—H140.9300
C4—C91.3827 (19)C15—C161.375 (2)
C4—C51.3836 (19)C15—H150.9300
C5—C61.3842 (17)C16—C171.369 (2)
C5—H50.9300C16—H160.9300
C6—O41.3688 (15)C17—C181.375 (2)
C6—C71.4088 (18)C17—H170.9300
C7—C81.4158 (18)C18—H180.9300
C7—C101.4461 (18)
O3—C1—H1A109.5C8—C9—C4119.73 (12)
O3—C1—H1B109.5C8—C9—H9120.1
H1A—C1—H1B109.5C4—C9—H9120.1
O3—C1—H1C109.5C11—C10—C7130.97 (13)
H1A—C1—H1C109.5C11—C10—H10114.5
H1B—C1—H1C109.5C7—C10—H10114.5
O4—C2—H2A109.5C10—C11—C12121.74 (13)
O4—C2—H2B109.5C10—C11—H11119.1
H2A—C2—H2B109.5C12—C11—H11119.1
O4—C2—H2C109.5O1—C12—C11121.96 (13)
H2A—C2—H2C109.5O1—C12—C13119.16 (13)
H2B—C2—H2C109.5C11—C12—C13118.79 (13)
O2—C3—H3A109.5C18—C13—C14117.99 (13)
O2—C3—H3B109.5C18—C13—C12118.71 (13)
H3A—C3—H3B109.5C14—C13—C12123.26 (12)
O2—C3—H3C109.5C15—C14—C13120.66 (14)
H3A—C3—H3C109.5C15—C14—H14119.7
H3B—C3—H3C109.5C13—C14—H14119.7
O3—C4—C9114.95 (12)C14—C15—C16120.09 (16)
O3—C4—C5123.95 (12)C14—C15—H15120.0
C9—C4—C5121.09 (12)C16—C15—H15120.0
C6—C5—C4118.50 (12)C15—C16—C17119.95 (15)
C6—C5—H5120.7C15—C16—H16120.0
C4—C5—H5120.7C17—C16—H16120.0
O4—C6—C5121.82 (11)C16—C17—C18120.38 (14)
O4—C6—C7115.41 (11)C16—C17—H17119.8
C5—C6—C7122.77 (11)C18—C17—H17119.8
C6—C7—C8115.79 (11)C13—C18—C17120.91 (15)
C6—C7—C10119.45 (11)C13—C18—H18119.6
C8—C7—C10124.75 (12)C17—C18—H18119.5
O2—C8—C9122.39 (12)C8—O2—C3118.82 (11)
O2—C8—C7115.53 (11)C4—O3—C1118.07 (11)
C9—C8—C7122.08 (12)C6—O4—C2118.61 (10)

Experimental details

Crystal data
Chemical formulaC18H18O4
Mr298.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.0052 (10), 14.9245 (17), 11.7658 (14)
β (°) 104.315 (2)
V3)1532.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.10 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.989, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
7895, 2701, 2125
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.132, 1.00
No. of reflections2701
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by Zhejiang Province Extremely Key Subject Building Funding (Pharmacology and Biochemical Pharmaceutics 2008), the Department of Education of Zhejiang Province (No. 20070907) and the Wenzhou Administration of Science and Technology project (No. Y20080016).

References

First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1150.  Web of Science PubMed CAS Google Scholar
First citationDominguez, J. N., Leon, C., Rodrigues, J., Gamboa de Dominguez, N., Gut, J. & Rosenthal, P. J. (2005). Farmaco. 60, 307–311.  CrossRef PubMed CAS Google Scholar
First citationEcheverria, C., Santibanez, J. F., Donoso-Tauda, O., Escobar, C. A. & Ramirez-Tagle, R. (2009). Int. J. Mol. Sci. 10, 221–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2009). Acta Cryst. E65, o1965–o1966.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKontogiorgis, C., Mantzanidou, M. & Hadjipavlou-Litina, D. (2008). Mini Rev. Med. Chem. 8, 1224–1242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLow, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42–o45.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P. M., Muthu Kumar, T. & Doble, M. (2009). Chem. Biol. Drug Des. 4, 68–79.  CrossRef Google Scholar
First citationSubbiah Pandi, A., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K. & Bansal, M. C. (2003). Acta Cryst. C59, o302–o304.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629–o3630.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds