organic compounds
1-(6-Chloro-2-methyl-4-phenyl-3-quinolyl)ethanone
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Science, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C18H14ClNO, the quinoline ring system is approximately planar with a maximum devation of 0.022 (1) Å and forms a dihedral angle of 62.70 (3)° with the phenyl ring. In the crystal, pairs of C—H⋯O intermolecular hydrogen bonds link neighbouring molecules into inversion dimers, forming R22(14) ring motifs. These inversion dimers are stacked along the b axis. The structure is further stabilized by C—H⋯π interactions.
Related literature
For reference bond-length data, see: Allen et al. (1987). For background to quinolines, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880); Katritzky & Arend (1998); Jiang & Si (2002). For the biological activity of see: Dimmock et al. (1999); Yamazaki et al. (2002). For a related structure, see: Fun et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536809040306/wn2352sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809040306/wn2352Isup2.hkl
A mixture of 2-amino-5-chlorobenzophenone (2.3 g, 0.01 mol) and acetylacetone (1.0 g, 0.01 mol) with 0.15 ml concentrated HCl in a beaker was subjected to microwave irradiation for about 6 min. After completion of the reaction (monitored by TLC), the reaction mixture was washed with saturated solvent NaHCO3 (10 ml) and then it was dried. After that it was washed with petroleum ether and recrystallized with chloroform (M. p. 224–226°C). IR (cm-1): 1704, 1480, 1385, 840, 711.
All H atoms were positioned geometrically [C—H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(methyl C). A rotating-group model was applied for the methyl groups.
Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and have found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as the Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines, but due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).
are open-chain possessing a variety of biological activities, including antioxidant, anti-inflammatory, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock et al., 1999). More importantly, have shown several anticancer activities, such as inhibitors of cancer cell proliferation, carcinogenesis, and metastasis (Yamazaki et al., 2002).In the π interactions (Table 1), involving the C1–C9/N1 (centroid Cg1) and C10–C15 (centroid Cg2) ring systems.
(Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those in a closely related structure (Fun et al., 2009). The quinoline ring system (C1–C9/N1) is approximately planar, with a maximum devation of 0.022 (1) Å at atom C1. The phenyl ring (C10–C15) forms a dihedral angle of 62.70 (3)° with the mean plane of the quinoline ring system. In the crystal packing (Fig. 2), pairs of C15—H15A···O1 hydrogen bonds link neighbouring molecules into dimers, forming R22(14) ring motifs (Bernstein et al., 1995). These inversion dimers are stacked along the b axis. The is further stabilized by C—H···For reference bond-length data, see: Allen et al. (1987). For background to quinolines, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880); Katritzky & Arend (1998); Jiang & Si (2002). For the biological activity of
see: Dimmock et al. (1999); Yamazaki et al. (2002). For a related structure, see: Fun et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the C1–C9/N1and C10–C15 ring systems, respectively.Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C18H14ClNO | F(000) = 616 |
Mr = 295.75 | Dx = 1.369 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9994 reflections |
a = 10.4633 (2) Å | θ = 2.3–37.6° |
b = 7.7959 (1) Å | µ = 0.26 mm−1 |
c = 17.5925 (3) Å | T = 100 K |
β = 90.887 (1)° | Block, yellow |
V = 1434.86 (4) Å3 | 0.57 × 0.34 × 0.27 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 7613 independent reflections |
Radiation source: fine-focus sealed tube | 6588 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
φ and ω scans | θmax = 37.6°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −17→16 |
Tmin = 0.865, Tmax = 0.932 | k = −13→12 |
32340 measured reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0574P)2 + 0.2858P] where P = (Fo2 + 2Fc2)/3 |
7613 reflections | (Δ/σ)max < 0.001 |
192 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C18H14ClNO | V = 1434.86 (4) Å3 |
Mr = 295.75 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.4633 (2) Å | µ = 0.26 mm−1 |
b = 7.7959 (1) Å | T = 100 K |
c = 17.5925 (3) Å | 0.57 × 0.34 × 0.27 mm |
β = 90.887 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 7613 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 6588 reflections with I > 2σ(I) |
Tmin = 0.865, Tmax = 0.932 | Rint = 0.023 |
32340 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.58 e Å−3 |
7613 reflections | Δρmin = −0.24 e Å−3 |
192 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.179322 (16) | 0.65521 (3) | 0.247848 (10) | 0.02152 (5) | |
O1 | 0.56817 (6) | 0.27543 (9) | 0.51440 (4) | 0.02585 (12) | |
N1 | 0.98196 (6) | 0.23575 (8) | 0.49910 (3) | 0.01532 (10) | |
C1 | 0.98802 (6) | 0.50843 (9) | 0.32517 (4) | 0.01414 (10) | |
H1A | 0.9336 | 0.5589 | 0.2894 | 0.017* | |
C2 | 1.11760 (6) | 0.53229 (9) | 0.32124 (4) | 0.01548 (11) | |
C3 | 1.20321 (6) | 0.46250 (9) | 0.37595 (4) | 0.01719 (11) | |
H3A | 1.2907 | 0.4809 | 0.3723 | 0.021* | |
C4 | 1.15518 (6) | 0.36706 (9) | 0.43465 (4) | 0.01614 (11) | |
H4A | 1.2107 | 0.3226 | 0.4714 | 0.019* | |
C5 | 1.02224 (6) | 0.33535 (8) | 0.43995 (4) | 0.01347 (10) | |
C6 | 0.93765 (6) | 0.40614 (8) | 0.38437 (3) | 0.01243 (10) | |
C7 | 0.80451 (6) | 0.36943 (8) | 0.39077 (3) | 0.01238 (10) | |
C8 | 0.76613 (6) | 0.26872 (8) | 0.45085 (3) | 0.01334 (10) | |
C9 | 0.85868 (6) | 0.20413 (9) | 0.50445 (4) | 0.01465 (10) | |
C10 | 0.70864 (6) | 0.44156 (8) | 0.33610 (3) | 0.01260 (10) | |
C11 | 0.70861 (6) | 0.39520 (9) | 0.25902 (4) | 0.01491 (10) | |
H11A | 0.7714 | 0.3219 | 0.2410 | 0.018* | |
C12 | 0.61476 (6) | 0.45857 (9) | 0.20938 (4) | 0.01612 (11) | |
H12A | 0.6143 | 0.4263 | 0.1585 | 0.019* | |
C13 | 0.52150 (6) | 0.57038 (9) | 0.23602 (4) | 0.01573 (11) | |
H13A | 0.4589 | 0.6126 | 0.2029 | 0.019* | |
C14 | 0.52217 (6) | 0.61880 (9) | 0.31229 (4) | 0.01545 (11) | |
H14A | 0.4607 | 0.6947 | 0.3298 | 0.019* | |
C15 | 0.61476 (6) | 0.55367 (9) | 0.36233 (4) | 0.01429 (10) | |
H15A | 0.6141 | 0.5849 | 0.4133 | 0.017* | |
C16 | 0.81736 (8) | 0.09262 (10) | 0.56922 (4) | 0.02031 (13) | |
H16B | 0.8914 | 0.0471 | 0.5951 | 0.030* | |
H16C | 0.7660 | −0.0001 | 0.5499 | 0.030* | |
H16A | 0.7683 | 0.1595 | 0.6041 | 0.030* | |
C17 | 0.62761 (6) | 0.22144 (9) | 0.46068 (4) | 0.01645 (11) | |
C18 | 0.56993 (9) | 0.09744 (14) | 0.40461 (5) | 0.02852 (17) | |
H18A | 0.4785 | 0.1000 | 0.4083 | 0.043* | |
H18B | 0.6004 | −0.0162 | 0.4156 | 0.043* | |
H18C | 0.5940 | 0.1292 | 0.3541 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01532 (7) | 0.02794 (10) | 0.02141 (8) | −0.00307 (5) | 0.00332 (5) | 0.00537 (6) |
O1 | 0.0226 (3) | 0.0312 (3) | 0.0242 (3) | 0.0004 (2) | 0.0103 (2) | −0.0010 (2) |
N1 | 0.0162 (2) | 0.0145 (2) | 0.0153 (2) | 0.00089 (17) | −0.00179 (17) | 0.00089 (17) |
C1 | 0.0122 (2) | 0.0158 (2) | 0.0145 (2) | 0.00001 (19) | 0.00039 (18) | 0.00054 (19) |
C2 | 0.0132 (2) | 0.0166 (3) | 0.0167 (2) | −0.00137 (19) | 0.00138 (19) | 0.0000 (2) |
C3 | 0.0123 (2) | 0.0174 (3) | 0.0219 (3) | −0.0004 (2) | −0.0010 (2) | −0.0008 (2) |
C4 | 0.0133 (2) | 0.0153 (3) | 0.0197 (3) | 0.00069 (19) | −0.0032 (2) | −0.0008 (2) |
C5 | 0.0136 (2) | 0.0125 (2) | 0.0143 (2) | 0.00098 (18) | −0.00177 (18) | −0.00102 (18) |
C6 | 0.0118 (2) | 0.0130 (2) | 0.0125 (2) | 0.00046 (18) | −0.00022 (17) | −0.00075 (18) |
C7 | 0.0121 (2) | 0.0135 (2) | 0.0115 (2) | 0.00065 (17) | 0.00041 (17) | −0.00052 (18) |
C8 | 0.0136 (2) | 0.0143 (2) | 0.0122 (2) | 0.00014 (18) | 0.00090 (18) | −0.00009 (18) |
C9 | 0.0168 (2) | 0.0135 (2) | 0.0136 (2) | 0.00065 (19) | −0.00055 (19) | 0.00067 (19) |
C10 | 0.0108 (2) | 0.0151 (2) | 0.0119 (2) | −0.00022 (18) | 0.00032 (17) | 0.00094 (18) |
C11 | 0.0140 (2) | 0.0181 (3) | 0.0127 (2) | 0.0014 (2) | 0.00037 (18) | −0.0009 (2) |
C12 | 0.0151 (2) | 0.0200 (3) | 0.0132 (2) | −0.0002 (2) | −0.00113 (19) | 0.0002 (2) |
C13 | 0.0127 (2) | 0.0181 (3) | 0.0164 (2) | −0.00090 (19) | −0.00199 (19) | 0.0024 (2) |
C14 | 0.0116 (2) | 0.0171 (3) | 0.0176 (3) | 0.00086 (19) | 0.00059 (19) | 0.0011 (2) |
C15 | 0.0122 (2) | 0.0171 (3) | 0.0136 (2) | 0.00082 (19) | 0.00122 (18) | −0.00023 (19) |
C16 | 0.0232 (3) | 0.0199 (3) | 0.0177 (3) | 0.0000 (2) | 0.0000 (2) | 0.0065 (2) |
C17 | 0.0150 (2) | 0.0194 (3) | 0.0150 (2) | −0.0010 (2) | 0.00195 (19) | 0.0031 (2) |
C18 | 0.0256 (4) | 0.0377 (5) | 0.0222 (3) | −0.0151 (3) | 0.0014 (3) | −0.0032 (3) |
Cl1—C2 | 1.7401 (7) | C10—C15 | 1.3985 (9) |
O1—C17 | 1.2146 (9) | C10—C11 | 1.4032 (9) |
N1—C9 | 1.3181 (9) | C11—C12 | 1.3944 (9) |
N1—C5 | 1.3701 (9) | C11—H11A | 0.9300 |
C1—C2 | 1.3714 (9) | C12—C13 | 1.3949 (10) |
C1—C6 | 1.4196 (9) | C12—H12A | 0.9300 |
C1—H1A | 0.9300 | C13—C14 | 1.3937 (10) |
C2—C3 | 1.4137 (10) | C13—H13A | 0.9300 |
C3—C4 | 1.3742 (10) | C14—C15 | 1.3947 (9) |
C3—H3A | 0.9300 | C14—H14A | 0.9300 |
C4—C5 | 1.4173 (9) | C15—H15A | 0.9300 |
C4—H4A | 0.9300 | C16—H16B | 0.9600 |
C5—C6 | 1.4203 (9) | C16—H16C | 0.9600 |
C6—C7 | 1.4284 (9) | C16—H16A | 0.9600 |
C7—C8 | 1.3813 (9) | C17—C18 | 1.5012 (11) |
C7—C10 | 1.4891 (9) | C18—H18A | 0.9600 |
C8—C9 | 1.4325 (9) | C18—H18B | 0.9600 |
C8—C17 | 1.5081 (9) | C18—H18C | 0.9600 |
C9—C16 | 1.5021 (10) | ||
C9—N1—C5 | 118.23 (6) | C12—C11—C10 | 120.24 (6) |
C2—C1—C6 | 119.46 (6) | C12—C11—H11A | 119.9 |
C2—C1—H1A | 120.3 | C10—C11—H11A | 119.9 |
C6—C1—H1A | 120.3 | C11—C12—C13 | 120.03 (6) |
C1—C2—C3 | 122.01 (6) | C11—C12—H12A | 120.0 |
C1—C2—Cl1 | 119.39 (5) | C13—C12—H12A | 120.0 |
C3—C2—Cl1 | 118.59 (5) | C14—C13—C12 | 119.97 (6) |
C4—C3—C2 | 119.00 (6) | C14—C13—H13A | 120.0 |
C4—C3—H3A | 120.5 | C12—C13—H13A | 120.0 |
C2—C3—H3A | 120.5 | C13—C14—C15 | 120.14 (6) |
C3—C4—C5 | 120.97 (6) | C13—C14—H14A | 119.9 |
C3—C4—H4A | 119.5 | C15—C14—H14A | 119.9 |
C5—C4—H4A | 119.5 | C14—C15—C10 | 120.25 (6) |
N1—C5—C4 | 117.56 (6) | C14—C15—H15A | 119.9 |
N1—C5—C6 | 123.19 (6) | C10—C15—H15A | 119.9 |
C4—C5—C6 | 119.25 (6) | C9—C16—H16B | 109.5 |
C1—C6—C5 | 119.27 (6) | C9—C16—H16C | 109.5 |
C1—C6—C7 | 122.95 (6) | H16B—C16—H16C | 109.5 |
C5—C6—C7 | 117.78 (6) | C9—C16—H16A | 109.5 |
C8—C7—C6 | 118.01 (6) | H16B—C16—H16A | 109.5 |
C8—C7—C10 | 120.53 (5) | H16C—C16—H16A | 109.5 |
C6—C7—C10 | 121.43 (5) | O1—C17—C18 | 121.94 (7) |
C7—C8—C9 | 120.13 (6) | O1—C17—C8 | 120.60 (7) |
C7—C8—C17 | 121.19 (6) | C18—C17—C8 | 117.34 (6) |
C9—C8—C17 | 118.67 (6) | C17—C18—H18A | 109.5 |
N1—C9—C8 | 122.66 (6) | C17—C18—H18B | 109.5 |
N1—C9—C16 | 117.12 (6) | H18A—C18—H18B | 109.5 |
C8—C9—C16 | 120.21 (6) | C17—C18—H18C | 109.5 |
C15—C10—C11 | 119.35 (6) | H18A—C18—H18C | 109.5 |
C15—C10—C7 | 119.49 (5) | H18B—C18—H18C | 109.5 |
C11—C10—C7 | 121.13 (6) | ||
C6—C1—C2—C3 | −2.09 (10) | C5—N1—C9—C8 | 0.38 (10) |
C6—C1—C2—Cl1 | 179.09 (5) | C5—N1—C9—C16 | 179.18 (6) |
C1—C2—C3—C4 | 0.36 (11) | C7—C8—C9—N1 | −0.40 (10) |
Cl1—C2—C3—C4 | 179.19 (5) | C17—C8—C9—N1 | 178.37 (6) |
C2—C3—C4—C5 | 1.27 (10) | C7—C8—C9—C16 | −179.17 (6) |
C9—N1—C5—C4 | −179.52 (6) | C17—C8—C9—C16 | −0.40 (9) |
C9—N1—C5—C6 | 0.11 (10) | C8—C7—C10—C15 | 61.18 (9) |
C3—C4—C5—N1 | 178.51 (6) | C6—C7—C10—C15 | −116.81 (7) |
C3—C4—C5—C6 | −1.13 (10) | C8—C7—C10—C11 | −116.99 (7) |
C2—C1—C6—C5 | 2.18 (10) | C6—C7—C10—C11 | 65.01 (9) |
C2—C1—C6—C7 | −177.46 (6) | C15—C10—C11—C12 | −0.88 (10) |
N1—C5—C6—C1 | 179.78 (6) | C7—C10—C11—C12 | 177.30 (6) |
C4—C5—C6—C1 | −0.60 (9) | C10—C11—C12—C13 | 0.91 (10) |
N1—C5—C6—C7 | −0.57 (9) | C11—C12—C13—C14 | 0.02 (10) |
C4—C5—C6—C7 | 179.06 (6) | C12—C13—C14—C15 | −0.97 (10) |
C1—C6—C7—C8 | −179.83 (6) | C13—C14—C15—C10 | 1.00 (10) |
C5—C6—C7—C8 | 0.52 (9) | C11—C10—C15—C14 | −0.07 (10) |
C1—C6—C7—C10 | −1.79 (10) | C7—C10—C15—C14 | −178.28 (6) |
C5—C6—C7—C10 | 178.56 (6) | C7—C8—C17—O1 | −113.46 (8) |
C6—C7—C8—C9 | −0.08 (9) | C9—C8—C17—O1 | 67.78 (9) |
C10—C7—C8—C9 | −178.14 (6) | C7—C8—C17—C18 | 70.31 (9) |
C6—C7—C8—C17 | −178.81 (6) | C9—C8—C17—C18 | −108.45 (8) |
C10—C7—C8—C17 | 3.13 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···O1i | 0.93 | 2.55 | 3.2047 (10) | 128 |
C11—H11A···Cg1ii | 0.93 | 2.78 | 3.6416 (7) | 155 |
C13—H13A···Cg2iii | 0.93 | 2.92 | 3.6255 (8) | 133 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H14ClNO |
Mr | 295.75 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 10.4633 (2), 7.7959 (1), 17.5925 (3) |
β (°) | 90.887 (1) |
V (Å3) | 1434.86 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.57 × 0.34 × 0.27 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.865, 0.932 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32340, 7613, 6588 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.859 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.107, 1.07 |
No. of reflections | 7613 |
No. of parameters | 192 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.24 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···O1i | 0.9300 | 2.5500 | 3.2047 (10) | 128.00 |
C11—H11A···Cg1ii | 0.9300 | 2.78 | 3.6416 (7) | 155 |
C13—H13A···Cg2iii | 0.9300 | 2.92 | 3.6255 (8) | 133 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
HKF and WSL thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035. CrossRef CAS PubMed Web of Science Google Scholar
Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377. Web of Science CrossRef PubMed CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. Web of Science PubMed CAS Google Scholar
Fun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009). Acta Cryst. E65, o2665–o2666. Web of Science CrossRef IUCr Journals Google Scholar
Jiang, B. & Si, Y.-G. (2002). J. Org. Chem. 67, 9449–9451. Web of Science CrossRef PubMed CAS Google Scholar
Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404. Web of Science CrossRef CAS PubMed Google Scholar
Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989–9991. Web of Science CrossRef CAS Google Scholar
Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137. CrossRef CAS PubMed Web of Science Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–608. CrossRef CAS Web of Science Google Scholar
Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203. CrossRef Google Scholar
Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skraup, H. (1880). Ber. Dtsch Chem. Ges. 13, 2086–2088. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamazaki, S., Morita, T. & Endo, H. (2002). Cancer Lett. 183, 23–30. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and have found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as the Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines, but due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002). Chalcones are open-chain flavonoids, possessing a variety of biological activities, including antioxidant, anti-inflammatory, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock et al., 1999). More importantly, chalcones have shown several anticancer activities, such as inhibitors of cancer cell proliferation, carcinogenesis, and metastasis (Yamazaki et al., 2002).
In the crystal structure (Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those in a closely related structure (Fun et al., 2009). The quinoline ring system (C1–C9/N1) is approximately planar, with a maximum devation of 0.022 (1) Å at atom C1. The phenyl ring (C10–C15) forms a dihedral angle of 62.70 (3)° with the mean plane of the quinoline ring system. In the crystal packing (Fig. 2), pairs of C15—H15A···O1 hydrogen bonds link neighbouring molecules into dimers, forming R22(14) ring motifs (Bernstein et al., 1995). These inversion dimers are stacked along the b axis. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the C1–C9/N1 (centroid Cg1) and C10–C15 (centroid Cg2) ring systems.