organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(6-Chloro-2-methyl-4-phenyl-3-quinol­yl)ethanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Science, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 September 2009; accepted 2 October 2009; online 10 October 2009)

In the title compound, C18H14ClNO, the quinoline ring system is approximately planar with a maximum devation of 0.022 (1) Å and forms a dihedral angle of 62.70 (3)° with the phenyl ring. In the crystal, pairs of C—H⋯O inter­molecular hydrogen bonds link neighbouring mol­ecules into inversion dimers, forming R22(14) ring motifs. These inversion dimers are stacked along the b axis. The structure is further stabilized by C—H⋯π inter­actions.

Related literature

For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to quinolines, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]); Maguire et al. (1994[Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129-2137.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1026.]); Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.]); Skraup (1880[Skraup, H. (1880). Ber. Dtsch Chem. Ges. 13, 2086-2088.]); Katritzky & Arend (1998[Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989-9991.]); Jiang & Si (2002[Jiang, B. & Si, Y.-G. (2002). J. Org. Chem. 67, 9449-9451.]). For the biological activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Yamazaki et al. (2002[Yamazaki, S., Morita, T. & Endo, H. (2002). Cancer Lett. 183, 23-30.]). For a related structure, see: Fun et al. (2009[Fun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009). Acta Cryst. E65, o2665-o2666.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14ClNO

  • Mr = 295.75

  • Monoclinic, P 21 /n

  • a = 10.4633 (2) Å

  • b = 7.7959 (1) Å

  • c = 17.5925 (3) Å

  • β = 90.887 (1)°

  • V = 1434.86 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.57 × 0.34 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.932

  • 32340 measured reflections

  • 7613 independent reflections

  • 6588 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.107

  • S = 1.07

  • 7613 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O1i 0.93 2.55 3.2047 (10) 128
C11—H11ACg1ii 0.93 2.78 3.6416 (7) 155
C13—H13ACg2iii 0.93 2.92 3.6255 (8) 133
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C9/N1 and C10–C15 ring systems, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and have found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as the Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines, but due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002). Chalcones are open-chain flavonoids, possessing a variety of biological activities, including antioxidant, anti-inflammatory, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock et al., 1999). More importantly, chalcones have shown several anticancer activities, such as inhibitors of cancer cell proliferation, carcinogenesis, and metastasis (Yamazaki et al., 2002).

In the crystal structure (Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those in a closely related structure (Fun et al., 2009). The quinoline ring system (C1–C9/N1) is approximately planar, with a maximum devation of 0.022 (1) Å at atom C1. The phenyl ring (C10–C15) forms a dihedral angle of 62.70 (3)° with the mean plane of the quinoline ring system. In the crystal packing (Fig. 2), pairs of C15—H15A···O1 hydrogen bonds link neighbouring molecules into dimers, forming R22(14) ring motifs (Bernstein et al., 1995). These inversion dimers are stacked along the b axis. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the C1–C9/N1 (centroid Cg1) and C10–C15 (centroid Cg2) ring systems.

Related literature top

For reference bond-length data, see: Allen et al. (1987). For background to quinolines, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880); Katritzky & Arend (1998); Jiang & Si (2002). For the biological activity of chalcones, see: Dimmock et al. (1999); Yamazaki et al. (2002). For a related structure, see: Fun et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the C1–C9/N1and C10–C15 ring systems, respectively.

Experimental top

A mixture of 2-amino-5-chlorobenzophenone (2.3 g, 0.01 mol) and acetylacetone (1.0 g, 0.01 mol) with 0.15 ml concentrated HCl in a beaker was subjected to microwave irradiation for about 6 min. After completion of the reaction (monitored by TLC), the reaction mixture was washed with saturated solvent NaHCO3 (10 ml) and then it was dried. After that it was washed with petroleum ether and recrystallized with chloroform (M. p. 224–226°C). IR (cm-1): 1704, 1480, 1385, 840, 711.

Refinement top

All H atoms were positioned geometrically [C—H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(methyl C). A rotating-group model was applied for the methyl groups.

Structure description top

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and have found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as the Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines, but due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002). Chalcones are open-chain flavonoids, possessing a variety of biological activities, including antioxidant, anti-inflammatory, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock et al., 1999). More importantly, chalcones have shown several anticancer activities, such as inhibitors of cancer cell proliferation, carcinogenesis, and metastasis (Yamazaki et al., 2002).

In the crystal structure (Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those in a closely related structure (Fun et al., 2009). The quinoline ring system (C1–C9/N1) is approximately planar, with a maximum devation of 0.022 (1) Å at atom C1. The phenyl ring (C10–C15) forms a dihedral angle of 62.70 (3)° with the mean plane of the quinoline ring system. In the crystal packing (Fig. 2), pairs of C15—H15A···O1 hydrogen bonds link neighbouring molecules into dimers, forming R22(14) ring motifs (Bernstein et al., 1995). These inversion dimers are stacked along the b axis. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the C1–C9/N1 (centroid Cg1) and C10–C15 (centroid Cg2) ring systems.

For reference bond-length data, see: Allen et al. (1987). For background to quinolines, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880); Katritzky & Arend (1998); Jiang & Si (2002). For the biological activity of chalcones, see: Dimmock et al. (1999); Yamazaki et al. (2002). For a related structure, see: Fun et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the C1–C9/N1and C10–C15 ring systems, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing the R22(14) ring motifs. C—H···O intermolecular interactions are shown as dashed lines.
1-(6-Chloro-2-methyl-4-phenyl-3-quinolyl)ethanone top
Crystal data top
C18H14ClNOF(000) = 616
Mr = 295.75Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9994 reflections
a = 10.4633 (2) Åθ = 2.3–37.6°
b = 7.7959 (1) ŵ = 0.26 mm1
c = 17.5925 (3) ÅT = 100 K
β = 90.887 (1)°Block, yellow
V = 1434.86 (4) Å30.57 × 0.34 × 0.27 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7613 independent reflections
Radiation source: fine-focus sealed tube6588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 37.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1716
Tmin = 0.865, Tmax = 0.932k = 1312
32340 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.2858P]
where P = (Fo2 + 2Fc2)/3
7613 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H14ClNOV = 1434.86 (4) Å3
Mr = 295.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4633 (2) ŵ = 0.26 mm1
b = 7.7959 (1) ÅT = 100 K
c = 17.5925 (3) Å0.57 × 0.34 × 0.27 mm
β = 90.887 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7613 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6588 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.932Rint = 0.023
32340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.07Δρmax = 0.58 e Å3
7613 reflectionsΔρmin = 0.24 e Å3
192 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.179322 (16)0.65521 (3)0.247848 (10)0.02152 (5)
O10.56817 (6)0.27543 (9)0.51440 (4)0.02585 (12)
N10.98196 (6)0.23575 (8)0.49910 (3)0.01532 (10)
C10.98802 (6)0.50843 (9)0.32517 (4)0.01414 (10)
H1A0.93360.55890.28940.017*
C21.11760 (6)0.53229 (9)0.32124 (4)0.01548 (11)
C31.20321 (6)0.46250 (9)0.37595 (4)0.01719 (11)
H3A1.29070.48090.37230.021*
C41.15518 (6)0.36706 (9)0.43465 (4)0.01614 (11)
H4A1.21070.32260.47140.019*
C51.02224 (6)0.33535 (8)0.43995 (4)0.01347 (10)
C60.93765 (6)0.40614 (8)0.38437 (3)0.01243 (10)
C70.80451 (6)0.36943 (8)0.39077 (3)0.01238 (10)
C80.76613 (6)0.26872 (8)0.45085 (3)0.01334 (10)
C90.85868 (6)0.20413 (9)0.50445 (4)0.01465 (10)
C100.70864 (6)0.44156 (8)0.33610 (3)0.01260 (10)
C110.70861 (6)0.39520 (9)0.25902 (4)0.01491 (10)
H11A0.77140.32190.24100.018*
C120.61476 (6)0.45857 (9)0.20938 (4)0.01612 (11)
H12A0.61430.42630.15850.019*
C130.52150 (6)0.57038 (9)0.23602 (4)0.01573 (11)
H13A0.45890.61260.20290.019*
C140.52217 (6)0.61880 (9)0.31229 (4)0.01545 (11)
H14A0.46070.69470.32980.019*
C150.61476 (6)0.55367 (9)0.36233 (4)0.01429 (10)
H15A0.61410.58490.41330.017*
C160.81736 (8)0.09262 (10)0.56922 (4)0.02031 (13)
H16B0.89140.04710.59510.030*
H16C0.76600.00010.54990.030*
H16A0.76830.15950.60410.030*
C170.62761 (6)0.22144 (9)0.46068 (4)0.01645 (11)
C180.56993 (9)0.09744 (14)0.40461 (5)0.02852 (17)
H18A0.47850.10000.40830.043*
H18B0.60040.01620.41560.043*
H18C0.59400.12920.35410.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01532 (7)0.02794 (10)0.02141 (8)0.00307 (5)0.00332 (5)0.00537 (6)
O10.0226 (3)0.0312 (3)0.0242 (3)0.0004 (2)0.0103 (2)0.0010 (2)
N10.0162 (2)0.0145 (2)0.0153 (2)0.00089 (17)0.00179 (17)0.00089 (17)
C10.0122 (2)0.0158 (2)0.0145 (2)0.00001 (19)0.00039 (18)0.00054 (19)
C20.0132 (2)0.0166 (3)0.0167 (2)0.00137 (19)0.00138 (19)0.0000 (2)
C30.0123 (2)0.0174 (3)0.0219 (3)0.0004 (2)0.0010 (2)0.0008 (2)
C40.0133 (2)0.0153 (3)0.0197 (3)0.00069 (19)0.0032 (2)0.0008 (2)
C50.0136 (2)0.0125 (2)0.0143 (2)0.00098 (18)0.00177 (18)0.00102 (18)
C60.0118 (2)0.0130 (2)0.0125 (2)0.00046 (18)0.00022 (17)0.00075 (18)
C70.0121 (2)0.0135 (2)0.0115 (2)0.00065 (17)0.00041 (17)0.00052 (18)
C80.0136 (2)0.0143 (2)0.0122 (2)0.00014 (18)0.00090 (18)0.00009 (18)
C90.0168 (2)0.0135 (2)0.0136 (2)0.00065 (19)0.00055 (19)0.00067 (19)
C100.0108 (2)0.0151 (2)0.0119 (2)0.00022 (18)0.00032 (17)0.00094 (18)
C110.0140 (2)0.0181 (3)0.0127 (2)0.0014 (2)0.00037 (18)0.0009 (2)
C120.0151 (2)0.0200 (3)0.0132 (2)0.0002 (2)0.00113 (19)0.0002 (2)
C130.0127 (2)0.0181 (3)0.0164 (2)0.00090 (19)0.00199 (19)0.0024 (2)
C140.0116 (2)0.0171 (3)0.0176 (3)0.00086 (19)0.00059 (19)0.0011 (2)
C150.0122 (2)0.0171 (3)0.0136 (2)0.00082 (19)0.00122 (18)0.00023 (19)
C160.0232 (3)0.0199 (3)0.0177 (3)0.0000 (2)0.0000 (2)0.0065 (2)
C170.0150 (2)0.0194 (3)0.0150 (2)0.0010 (2)0.00195 (19)0.0031 (2)
C180.0256 (4)0.0377 (5)0.0222 (3)0.0151 (3)0.0014 (3)0.0032 (3)
Geometric parameters (Å, º) top
Cl1—C21.7401 (7)C10—C151.3985 (9)
O1—C171.2146 (9)C10—C111.4032 (9)
N1—C91.3181 (9)C11—C121.3944 (9)
N1—C51.3701 (9)C11—H11A0.9300
C1—C21.3714 (9)C12—C131.3949 (10)
C1—C61.4196 (9)C12—H12A0.9300
C1—H1A0.9300C13—C141.3937 (10)
C2—C31.4137 (10)C13—H13A0.9300
C3—C41.3742 (10)C14—C151.3947 (9)
C3—H3A0.9300C14—H14A0.9300
C4—C51.4173 (9)C15—H15A0.9300
C4—H4A0.9300C16—H16B0.9600
C5—C61.4203 (9)C16—H16C0.9600
C6—C71.4284 (9)C16—H16A0.9600
C7—C81.3813 (9)C17—C181.5012 (11)
C7—C101.4891 (9)C18—H18A0.9600
C8—C91.4325 (9)C18—H18B0.9600
C8—C171.5081 (9)C18—H18C0.9600
C9—C161.5021 (10)
C9—N1—C5118.23 (6)C12—C11—C10120.24 (6)
C2—C1—C6119.46 (6)C12—C11—H11A119.9
C2—C1—H1A120.3C10—C11—H11A119.9
C6—C1—H1A120.3C11—C12—C13120.03 (6)
C1—C2—C3122.01 (6)C11—C12—H12A120.0
C1—C2—Cl1119.39 (5)C13—C12—H12A120.0
C3—C2—Cl1118.59 (5)C14—C13—C12119.97 (6)
C4—C3—C2119.00 (6)C14—C13—H13A120.0
C4—C3—H3A120.5C12—C13—H13A120.0
C2—C3—H3A120.5C13—C14—C15120.14 (6)
C3—C4—C5120.97 (6)C13—C14—H14A119.9
C3—C4—H4A119.5C15—C14—H14A119.9
C5—C4—H4A119.5C14—C15—C10120.25 (6)
N1—C5—C4117.56 (6)C14—C15—H15A119.9
N1—C5—C6123.19 (6)C10—C15—H15A119.9
C4—C5—C6119.25 (6)C9—C16—H16B109.5
C1—C6—C5119.27 (6)C9—C16—H16C109.5
C1—C6—C7122.95 (6)H16B—C16—H16C109.5
C5—C6—C7117.78 (6)C9—C16—H16A109.5
C8—C7—C6118.01 (6)H16B—C16—H16A109.5
C8—C7—C10120.53 (5)H16C—C16—H16A109.5
C6—C7—C10121.43 (5)O1—C17—C18121.94 (7)
C7—C8—C9120.13 (6)O1—C17—C8120.60 (7)
C7—C8—C17121.19 (6)C18—C17—C8117.34 (6)
C9—C8—C17118.67 (6)C17—C18—H18A109.5
N1—C9—C8122.66 (6)C17—C18—H18B109.5
N1—C9—C16117.12 (6)H18A—C18—H18B109.5
C8—C9—C16120.21 (6)C17—C18—H18C109.5
C15—C10—C11119.35 (6)H18A—C18—H18C109.5
C15—C10—C7119.49 (5)H18B—C18—H18C109.5
C11—C10—C7121.13 (6)
C6—C1—C2—C32.09 (10)C5—N1—C9—C80.38 (10)
C6—C1—C2—Cl1179.09 (5)C5—N1—C9—C16179.18 (6)
C1—C2—C3—C40.36 (11)C7—C8—C9—N10.40 (10)
Cl1—C2—C3—C4179.19 (5)C17—C8—C9—N1178.37 (6)
C2—C3—C4—C51.27 (10)C7—C8—C9—C16179.17 (6)
C9—N1—C5—C4179.52 (6)C17—C8—C9—C160.40 (9)
C9—N1—C5—C60.11 (10)C8—C7—C10—C1561.18 (9)
C3—C4—C5—N1178.51 (6)C6—C7—C10—C15116.81 (7)
C3—C4—C5—C61.13 (10)C8—C7—C10—C11116.99 (7)
C2—C1—C6—C52.18 (10)C6—C7—C10—C1165.01 (9)
C2—C1—C6—C7177.46 (6)C15—C10—C11—C120.88 (10)
N1—C5—C6—C1179.78 (6)C7—C10—C11—C12177.30 (6)
C4—C5—C6—C10.60 (9)C10—C11—C12—C130.91 (10)
N1—C5—C6—C70.57 (9)C11—C12—C13—C140.02 (10)
C4—C5—C6—C7179.06 (6)C12—C13—C14—C150.97 (10)
C1—C6—C7—C8179.83 (6)C13—C14—C15—C101.00 (10)
C5—C6—C7—C80.52 (9)C11—C10—C15—C140.07 (10)
C1—C6—C7—C101.79 (10)C7—C10—C15—C14178.28 (6)
C5—C6—C7—C10178.56 (6)C7—C8—C17—O1113.46 (8)
C6—C7—C8—C90.08 (9)C9—C8—C17—O167.78 (9)
C10—C7—C8—C9178.14 (6)C7—C8—C17—C1870.31 (9)
C6—C7—C8—C17178.81 (6)C9—C8—C17—C18108.45 (8)
C10—C7—C8—C173.13 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O1i0.932.553.2047 (10)128
C11—H11A···Cg1ii0.932.783.6416 (7)155
C13—H13A···Cg2iii0.932.923.6255 (8)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H14ClNO
Mr295.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.4633 (2), 7.7959 (1), 17.5925 (3)
β (°) 90.887 (1)
V3)1434.86 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.57 × 0.34 × 0.27
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.865, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
32340, 7613, 6588
Rint0.023
(sin θ/λ)max1)0.859
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.107, 1.07
No. of reflections7613
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O1i0.93002.55003.2047 (10)128.00
C11—H11A···Cg1ii0.93002.783.6416 (7)155
C13—H13A···Cg2iii0.93002.923.6255 (8)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009). Acta Cryst. E65, o2665–o2666.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, B. & Si, Y.-G. (2002). J. Org. Chem. 67, 9449–9451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKatritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989–9991.  Web of Science CrossRef CAS Google Scholar
First citationMaguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkraup, H. (1880). Ber. Dtsch Chem. Ges. 13, 2086–2088.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamazaki, S., Morita, T. & Endo, H. (2002). Cancer Lett. 183, 23–30.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds