organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Phenyl­allyl­­idene)nicotinohydrazide monohydrate

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA.
*Correspondence e-mail: athiru@vsnl.net

(Received 15 October 2009; accepted 19 October 2009; online 23 October 2009)

In the title compound, C15H13N3O·H2O, the dihedral angle between the pyridine and phenyl rings is 35.45 (7)°. Inter­molecular O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds are found in the crystal structure. In addition, C—H⋯π inter­actions involving the pyridine and phenyl rings are also found.

Related literature

For a related crystal structure and its chemical and biological applications, see: Archana et al. (2009[Archana, R., Manimekalai, A., Saradhadevi, N., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o1659.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O·H2O

  • Mr = 269.30

  • Monoclinic, P 21 /c

  • a = 9.8456 (3) Å

  • b = 9.1288 (3) Å

  • c = 15.5389 (5) Å

  • β = 95.938 (3)°

  • V = 1389.12 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 110 K

  • 0.48 × 0.45 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur, Ruby, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.704, Tmax = 1.000

  • 6007 measured reflections

  • 2742 independent reflections

  • 2346 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.05

  • 2742 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O7i 0.86 (3) 2.52 (3) 3.1550 (14) 131.9 (19)
O1W—H1W⋯N9i 0.86 (3) 2.16 (3) 2.9655 (15) 157 (2)
O1W—H2W⋯N1ii 0.88 (3) 2.05 (3) 2.9222 (15) 176 (2)
N8—H8⋯O1W 0.914 (18) 1.944 (18) 2.8486 (15) 170.3 (17)
C2—H2⋯O7iii 0.95 2.33 3.2253 (17) 157
C4—H4⋯O1W 0.95 2.54 3.2392 (16) 130
C10—H10⋯O7i 0.95 2.57 3.1507 (17) 120
C22—H22⋯Cg1iv 0.95 2.94 3.7742 (16) 148
C5—H5⋯Cg2v 0.95 2.54 3.4342 (15) 157
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the N1–C6 and C21–C26 rings, respectively.

Data collection: CrysAlisPro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our research, we have synthesized the title compound and report its crystal structure here. Archana et al. (2009) have reported a related crystal structure, N'-(2-methyl-3-phenylallylidene) nicotinohydrazide monohydrate.

The molecular structure of the asymmetric unit is shown in Fig. 1. The dihedral angle between the pyridine ring and the phenyl ring is 35.45 (7)°. Intermolecular O—H···O, O—H···N, N—H···O and C—H···O hydrogen bonds are found in the crystal structure. Furthermore, a C22—H22···π interaction involving the pyridine (N1—C6) ring and a C5—H5···π interaction involving the phenyl (C21—C26) ring are also found.

Related literature top

For a related crystal structure and its chemical and biological applications, see: Archana et al. (2009). Cg1 and Cg2 are the centroids of the N1–C6 and C21–C26 rings, respectively.

Experimental top

Sodium hydroxide (0.4 g, 0.01 mol) in a stoppered conical flask was kept in an ice-cold environment. Ethanol (40 ml) was added to dissolve it and the mixture was stirred continuously using a magnetic stirrer. An equimolar quantity of nicotinic hydrazide (1.371 g, 0.01 mol) and cinnamaldehyde (1.32 g, 0.01 mol) was added to this mixture. The stirring was continued for 5 h in ice-cold conditions. The mixture was kept overnight in a refrigerator. The mixture was then allowed to stand for four days under normal conditions. A yellow solid was obtained. This was filtered, washed and recrystallized from ethanol. Yield 2.3 g, 46.80%.

Refinement top

H8 attached to N8, and H1W and H2W attached to O1W were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å. Uiso(H) = 1.2Ueq(C).

Structure description top

As part of our research, we have synthesized the title compound and report its crystal structure here. Archana et al. (2009) have reported a related crystal structure, N'-(2-methyl-3-phenylallylidene) nicotinohydrazide monohydrate.

The molecular structure of the asymmetric unit is shown in Fig. 1. The dihedral angle between the pyridine ring and the phenyl ring is 35.45 (7)°. Intermolecular O—H···O, O—H···N, N—H···O and C—H···O hydrogen bonds are found in the crystal structure. Furthermore, a C22—H22···π interaction involving the pyridine (N1—C6) ring and a C5—H5···π interaction involving the phenyl (C21—C26) ring are also found.

For a related crystal structure and its chemical and biological applications, see: Archana et al. (2009). Cg1 and Cg2 are the centroids of the N1–C6 and C21–C26 rings, respectively.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
N'-(3-Phenylallylidene)nicotinohydrazide monohydrate top
Crystal data top
C15H13N3O·H2OF(000) = 568
Mr = 269.30Dx = 1.288 Mg m3
Monoclinic, P21/cMelting point: 463 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 9.8456 (3) ÅCell parameters from 3706 reflections
b = 9.1288 (3) Åθ = 4.5–74.0°
c = 15.5389 (5) ŵ = 0.72 mm1
β = 95.938 (3)°T = 110 K
V = 1389.12 (8) Å3Plate, colourless
Z = 40.48 × 0.45 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur, Ruby, Gemini
diffractometer
2742 independent reflections
Radiation source: Enhance (Cu) X-ray Source2346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.5081 pixels mm-1θmax = 74.6°, θmin = 4.5°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 109
Tmin = 0.704, Tmax = 1.000l = 1318
6007 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0821P)2 + 0.2609P]
where P = (Fo2 + 2Fc2)/3
2742 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H13N3O·H2OV = 1389.12 (8) Å3
Mr = 269.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.8456 (3) ŵ = 0.72 mm1
b = 9.1288 (3) ÅT = 110 K
c = 15.5389 (5) Å0.48 × 0.45 × 0.24 mm
β = 95.938 (3)°
Data collection top
Oxford Diffraction Xcalibur, Ruby, Gemini
diffractometer
2742 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2346 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 1.000Rint = 0.022
6007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
2742 reflectionsΔρmin = 0.21 e Å3
193 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.47479 (10)0.51591 (11)0.11459 (6)0.0278 (3)
N10.16249 (12)0.38852 (13)0.06770 (7)0.0251 (3)
N80.40129 (11)0.37087 (13)0.21906 (7)0.0229 (3)
N90.50761 (11)0.41751 (13)0.27801 (7)0.0239 (3)
C20.26809 (14)0.41542 (15)0.00816 (8)0.0234 (4)
C30.26600 (13)0.38761 (14)0.08017 (8)0.0213 (3)
C40.14754 (14)0.32800 (15)0.10770 (8)0.0245 (4)
C50.03714 (14)0.30162 (16)0.04673 (9)0.0266 (4)
C60.04847 (14)0.33422 (15)0.03908 (9)0.0249 (4)
C70.39013 (13)0.43067 (15)0.13894 (8)0.0214 (3)
C100.51203 (13)0.35650 (15)0.35280 (9)0.0244 (4)
C110.61459 (14)0.39886 (15)0.42168 (9)0.0253 (4)
C120.61879 (13)0.33520 (16)0.49986 (8)0.0252 (4)
C210.71252 (14)0.36867 (15)0.57704 (8)0.0241 (4)
C220.79857 (16)0.49073 (16)0.58318 (9)0.0308 (4)
C230.89016 (17)0.51244 (18)0.65604 (10)0.0366 (5)
C240.89795 (15)0.41399 (17)0.72450 (9)0.0319 (4)
C250.80997 (15)0.29477 (17)0.72029 (9)0.0306 (4)
C260.71789 (14)0.27272 (17)0.64743 (9)0.0273 (4)
O1W0.26480 (10)0.11005 (11)0.26235 (6)0.0266 (3)
H20.348890.455660.027070.0281*
H40.142520.305880.167020.0294*
H50.045110.261710.063730.0320*
H60.028440.317340.080040.0299*
H80.3493 (18)0.294 (2)0.2342 (11)0.035 (5)*
H100.447330.282920.362910.0293*
H110.679480.472250.411570.0304*
H120.553720.260020.505880.0302*
H220.794300.559430.537060.0369*
H230.948330.595720.659150.0440*
H240.962600.428040.773570.0383*
H250.812720.228040.767350.0366*
H260.657680.191190.645430.0328*
H1W0.335 (3)0.054 (3)0.2663 (14)0.057 (6)*
H2W0.232 (3)0.106 (3)0.3128 (16)0.070 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0289 (5)0.0327 (5)0.0219 (5)0.0068 (4)0.0028 (4)0.0027 (4)
N10.0305 (6)0.0268 (6)0.0179 (5)0.0013 (5)0.0022 (4)0.0001 (4)
N80.0222 (5)0.0268 (6)0.0192 (6)0.0023 (4)0.0006 (4)0.0013 (4)
N90.0247 (5)0.0273 (6)0.0191 (5)0.0010 (4)0.0004 (4)0.0012 (4)
C20.0267 (6)0.0245 (7)0.0194 (6)0.0002 (5)0.0046 (5)0.0002 (5)
C30.0246 (6)0.0204 (6)0.0189 (6)0.0021 (5)0.0023 (5)0.0008 (5)
C40.0263 (7)0.0281 (7)0.0194 (6)0.0018 (5)0.0032 (5)0.0042 (5)
C50.0245 (6)0.0295 (7)0.0259 (7)0.0008 (5)0.0029 (5)0.0033 (5)
C60.0263 (6)0.0242 (7)0.0235 (7)0.0020 (5)0.0007 (5)0.0009 (5)
C70.0231 (6)0.0233 (6)0.0182 (6)0.0019 (5)0.0036 (5)0.0004 (5)
C100.0249 (6)0.0262 (7)0.0219 (7)0.0004 (5)0.0014 (5)0.0000 (5)
C110.0267 (7)0.0260 (7)0.0230 (7)0.0003 (5)0.0013 (5)0.0019 (5)
C120.0241 (6)0.0274 (7)0.0236 (7)0.0002 (5)0.0008 (5)0.0009 (5)
C210.0251 (6)0.0268 (7)0.0203 (6)0.0040 (5)0.0023 (5)0.0016 (5)
C220.0424 (8)0.0250 (7)0.0233 (7)0.0025 (6)0.0042 (6)0.0028 (5)
C230.0461 (9)0.0304 (8)0.0310 (8)0.0089 (7)0.0074 (7)0.0004 (6)
C240.0352 (8)0.0385 (8)0.0202 (7)0.0001 (6)0.0053 (6)0.0034 (6)
C250.0338 (7)0.0383 (8)0.0194 (6)0.0016 (6)0.0021 (5)0.0044 (5)
C260.0263 (6)0.0332 (7)0.0229 (7)0.0011 (5)0.0044 (5)0.0011 (5)
O1W0.0283 (5)0.0294 (5)0.0220 (5)0.0024 (4)0.0023 (4)0.0048 (4)
Geometric parameters (Å, º) top
O7—C71.2283 (16)C21—C261.3980 (19)
O1W—H1W0.86 (3)C22—C231.387 (2)
O1W—H2W0.88 (3)C23—C241.389 (2)
N1—C21.3410 (17)C24—C251.388 (2)
N1—C61.3443 (18)C25—C261.390 (2)
N8—N91.3848 (15)C2—H20.9500
N8—C71.3534 (17)C4—H40.9500
N9—C101.2854 (18)C5—H50.9500
N8—H80.914 (18)C6—H60.9500
C2—C31.3981 (18)C10—H100.9500
C3—C41.3938 (19)C11—H110.9500
C3—C71.5004 (18)C12—H120.9500
C4—C51.3871 (19)C22—H220.9500
C5—C61.382 (2)C23—H230.9500
C10—C111.4461 (19)C24—H240.9500
C11—C121.3435 (19)C25—H250.9500
C12—C211.4678 (18)C26—H260.9500
C21—C221.397 (2)
O1W···N1i2.9222 (15)C22···H112.8000
O1W···O7ii3.1550 (14)C23···H5ix2.9900
O1W···N9ii2.9655 (15)C24···H5ix3.0700
O1W···C43.2392 (16)C25···H5ix2.9900
O1W···N82.8486 (15)C26···H5ix2.8000
O7···C10iii3.1507 (17)H1W···N9ii2.16 (3)
O7···N92.6814 (14)H1W···H82.26 (3)
O7···C2iv3.2253 (17)H1W···O7ii2.52 (3)
O7···O1Wiii3.1550 (14)H1W···C10ii3.09 (3)
O1W···H102.7500H2···O72.4700
O1W···H81.944 (18)H2···O7iv2.3300
O1W···H42.5400H2W···N1i2.05 (3)
O7···H22.4700H2W···C2i2.78 (2)
O7···H10iii2.5700H2W···H82.46 (3)
O7···H12iii2.9100H4···O1W2.5400
O7···H2iv2.3300H4···N82.6600
O7···H26v2.6200H4···H82.1900
O7···H1Wiii2.52 (3)H5···C21x2.6900
N1···O1Wv2.9222 (15)H5···C22x2.8000
N8···O1W2.8486 (15)H5···C23x2.9900
N9···O1Wiii2.9655 (15)H5···C24x3.0700
N9···O72.6814 (14)H5···C25x2.9900
N1···H2Wv2.05 (3)H5···C26x2.8000
N8···H26v2.9300H6···H24viii2.4800
N8···H42.6600H6···H23ii2.5400
N9···H1Wiii2.16 (3)H8···H1W2.26 (3)
N9···H26v2.8400H8···O1W1.944 (18)
C2···O7iv3.2253 (17)H8···C42.664 (17)
C4···O1W3.2392 (16)H8···H102.1300
C4···C24vi3.576 (2)H8···H2W2.46 (3)
C5···C6vii3.429 (2)H8···H42.1900
C6···C22ii3.575 (2)H10···O7ii2.5700
C6···C6vii3.4332 (19)H10···O1W2.7500
C6···C23ii3.539 (2)H10···H82.1300
C6···C5vii3.429 (2)H10···H122.3700
C10···C22vi3.594 (2)H11···H222.2900
C10···O7ii3.1507 (17)H11···C222.8000
C10···C21vi3.5874 (19)H12···H102.3700
C21···C10vi3.5874 (19)H12···H262.3800
C22···C10vi3.594 (2)H12···O7ii2.9100
C22···C6iii3.575 (2)H22···C112.8000
C23···C6iii3.539 (2)H22···H112.2900
C24···C4vi3.576 (2)H22···C6iii2.9500
C2···H2Wv2.78 (2)H23···C6iii2.8700
C4···H82.664 (17)H23···H6iii2.5400
C6···H23ii2.8700H24···C6xi3.0700
C6···H22ii2.9500H24···H6xi2.4800
C6···H24viii3.0700H26···H122.3800
C7···H26v2.8500H26···O7i2.6200
C10···H1Wiii3.09 (3)H26···N8i2.9300
C11···H222.8000H26···N9i2.8400
C21···H5ix2.6900H26···C7i2.8500
C22···H5ix2.8000
H1W—O1W—H2W106 (2)C21—C26—C25121.01 (14)
C2—N1—C6116.98 (11)N1—C2—H2118.00
N9—N8—C7117.93 (11)C3—C2—H2118.00
N8—N9—C10114.67 (11)C5—C4—H4121.00
C7—N8—H8123.5 (11)C3—C4—H4121.00
N9—N8—H8118.1 (11)C4—C5—H5120.00
N1—C2—C3123.71 (12)C6—C5—H5120.00
C2—C3—C7117.14 (11)C5—C6—H6118.00
C4—C3—C7124.77 (11)N1—C6—H6118.00
C2—C3—C4118.03 (12)N9—C10—H10120.00
C3—C4—C5118.66 (12)C11—C10—H10120.00
C4—C5—C6119.07 (13)C12—C11—H11120.00
N1—C6—C5123.52 (13)C10—C11—H11120.00
N8—C7—C3115.96 (11)C11—C12—H12116.00
O7—C7—C3120.96 (11)C21—C12—H12116.00
O7—C7—N8123.08 (12)C23—C22—H22120.00
N9—C10—C11120.60 (12)C21—C22—H22120.00
C10—C11—C12120.49 (13)C22—C23—H23120.00
C11—C12—C21127.36 (13)C24—C23—H23120.00
C12—C21—C22123.19 (12)C25—C24—H24120.00
C12—C21—C26118.59 (12)C23—C24—H24120.00
C22—C21—C26118.21 (12)C24—C25—H25120.00
C21—C22—C23120.55 (13)C26—C25—H25120.00
C22—C23—C24120.84 (15)C21—C26—H26119.00
C23—C24—C25119.11 (14)C25—C26—H26119.00
C24—C25—C26120.21 (13)
C6—N1—C2—C31.2 (2)C3—C4—C5—C60.4 (2)
C2—N1—C6—C52.0 (2)C4—C5—C6—N11.2 (2)
C7—N8—N9—C10179.89 (12)N9—C10—C11—C12179.83 (13)
N9—N8—C7—O75.25 (19)C10—C11—C12—C21177.76 (13)
N9—N8—C7—C3174.34 (11)C11—C12—C21—C2210.7 (2)
N8—N9—C10—C11177.62 (12)C11—C12—C21—C26168.23 (14)
N1—C2—C3—C40.3 (2)C12—C21—C22—C23176.56 (14)
N1—C2—C3—C7177.10 (12)C26—C21—C22—C232.4 (2)
C2—C3—C4—C51.10 (19)C12—C21—C26—C25176.51 (13)
C7—C3—C4—C5176.05 (13)C22—C21—C26—C252.5 (2)
C2—C3—C7—O716.54 (19)C21—C22—C23—C240.3 (2)
C2—C3—C7—N8163.87 (12)C22—C23—C24—C251.7 (2)
C4—C3—C7—O7160.64 (13)C23—C24—C25—C261.6 (2)
C4—C3—C7—N818.96 (19)C24—C25—C26—C210.5 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z; (v) x, y+1/2, z1/2; (vi) x+1, y+1, z+1; (vii) x, y+1, z; (viii) x1, y, z1; (ix) x+1, y+1/2, z+1/2; (x) x1, y+1/2, z1/2; (xi) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O7ii0.86 (3)2.52 (3)3.1550 (14)131.9 (19)
O1W—H1W···N9ii0.86 (3)2.16 (3)2.9655 (15)157 (2)
O1W—H2W···N1i0.88 (3)2.05 (3)2.9222 (15)176 (2)
N8—H8···O1W0.914 (18)1.944 (18)2.8486 (15)170.3 (17)
C2—H2···O7iv0.952.333.2253 (17)157
C4—H4···O1W0.952.543.2392 (16)130
C10—H10···O7ii0.952.573.1507 (17)120
C22—H22···Cg1iii0.952.943.7742 (16)148
C5—H5···Cg2x0.952.543.4342 (15)157
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z; (x) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H13N3O·H2O
Mr269.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)9.8456 (3), 9.1288 (3), 15.5389 (5)
β (°) 95.938 (3)
V3)1389.12 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.48 × 0.45 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur, Ruby, Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.704, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6007, 2742, 2346
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.05
No. of reflections2742
No. of parameters193
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O7i0.86 (3)2.52 (3)3.1550 (14)131.9 (19)
O1W—H1W···N9i0.86 (3)2.16 (3)2.9655 (15)157 (2)
O1W—H2W···N1ii0.88 (3)2.05 (3)2.9222 (15)176 (2)
N8—H8···O1W0.914 (18)1.944 (18)2.8486 (15)170.3 (17)
C2—H2···O7iii0.952.333.2253 (17)157
C4—H4···O1W0.952.543.2392 (16)130
C10—H10···O7i0.952.573.1507 (17)120
C22—H22···Cg1iv0.952.943.7742 (16)148
C5—H5···Cg2v0.952.543.4342 (15)157
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x1, y+1/2, z1/2.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationArchana, R., Manimekalai, A., Saradhadevi, N., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o1659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds