organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[2-(2-Nitro­phen­yl)ethen­yl]-8-quinolyl acetate

aDepartment of Chemistry, Huangshan University, Huangshan 245041, People's Republic of China, and bFaculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong 510006, People's Republic of China
*Correspondence e-mail: tigerhuo1974@yahoo.com.cn

(Received 18 October 2009; accepted 23 October 2009; online 31 October 2009)

The title compound, C19H14N2O4, crystallizes with two molecules with very similar conformations in the asymmetric unit; the angles between the two ring systems are 8.7 (1) and 4.2 (1)°. In the crystal, inter­molecular ππ inter­actions [centroid–centroid distance 3.973 (1) Å] lead to a three-dimensional network.

Related literature

For the biological properties of 8-hydroxy­quinoline derivatives, see: Chen et al. (2002[Chen, C.-S., Lai, S.-Y. & Hsu, P.-S. (2002). Chin. Pharm. J. (Taipei, Taiwan), 54, 353-374.]); Fakhfakh et al. (2003[Fakhfakh, M. A., Fournet, A. & Prina, E. (2003). Bioorg. Med. Chem. 11, 5013-5023.]); Mekouar et al. (1998[Mekouar, K., Mouscadet, J. F. & Desmaele, D. (1998). J. Med. Chem. 41, 2846-2857.]); Ouali et al. (2000[Ouali, M., Laboulais, C. & Leh, H. (2000). J. Med. Chem. 43, 1949-1957.]); Storz et al. (2004[Storz, T., Marti, R., Meier, R., Nury, P., Roeder, M. & Zhang, K. (2004). Org. Proc. Res. Dev. 8, 663-665.]); Zeng, Wang et al. (2006[Zeng, H. P., Wang, T. T., OuYang, X. H. & Chen, D. F. (2006). Bioorg. Med. Chem. 14, 5446-5450.]). For a related crystal structure, see: Zeng, OuYang et al. (2006[Zeng, H. P., OuYang, X. H., Wang, T. T., Yuan, G. Z., Zhang, G. H. & Zhang, X. M. (2006). Cryst. Growth Des. 6, 1697-1702.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14N2O4

  • Mr = 334.32

  • Orthorhombic, P n a 21

  • a = 25.8466 (13) Å

  • b = 11.8451 (6) Å

  • c = 10.5870 (5) Å

  • V = 3241.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.47 × 0.45 × 0.26 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.975

  • 17451 measured reflections

  • 3731 independent reflections

  • 2785 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.171

  • S = 1.04

  • 3731 reflections

  • 453 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

8-Hydroxyquinoline derivatives are important constituents in a variety of classes of pharmaceutically important compounds. They have generated interest as a new class of potent HIV-1 integrase inhibitors (Mekouar et al., 1998), for modeling of the inhibition of retroviral integrases (Ouali et al., 2000), as protein tyrosine kinase inhibitors (Chen et al., 2002), as protozoal and retroviral co-infections (Fakhfakh et al., 2003), and as anti-HIV-1 agents (Storz et al., 2004). Zeng, Wang et al. (2006) reported that a series of 8-hydroxyquinoline derivatives with vinyl substituents at the 2-position could induce the proliferation of rMSCs (rat mesenchymal stem cells). With these findings, some analogs need to be synthesized for structure activity relationship research to find more potent molecules.

One of these analogs, the title compound, (E)-2-[2-(2-nitrophenyl)ethenyl]-8-acetoxyquinoline, was prepared by the Knoevenagel condensation reaction between 8-hydroxyquinaldine and 2-nitrobenzaldehyde (Zeng, OuYang et al. (2006)) (Fig. 1). To provide structural information for the title compound, we studied its crystal structure.

The molecular structure of the two molecules per asymmetric unit is illustrated in Fig. 2. In one molecule, the angle between the two ring systems is 8.7 (1)°; in the other it is 4.2 (1)°. In this crystal structure, the ethylenic bond lengths for C1—C2 and C26—C27 are 1.322 (5) and 1.329 (5) Å, respectively. The analogous bond reported by Zeng, OuYang et al. (2006) has a length of 1.335 (2) Å. Intermolecular ππ interactions, with a centroid···centroid distance of 3.973 (1) Å, lead directly to a three-dimensional supramolecular network (Fig. 3).

Related literature top

For the biological properties of 8-hydroxyquinoline derivatives, see: Chen et al. (2002); Fakhfakh et al. (2003); Mekouar et al. (1998); Ouali et al. (2000); Storz et al. (2004); Zeng, Wang et al. (2006). For a related crystal structure, see: Zeng, OuYang et al. (2006).

Experimental top

To a solution of 8-hydroxyquinaldine (1.19 g, 7.5 mmol) in acetic anhydride (5 ml) was added 2-nitrobenzaldehyde (1.12 g, 7.5 mmol). The mixture was heated under reflux for 11 h. After cooling, it was poured into ice water (50 ml) and stirred overnight. The yellow solid obtained was filtered and washed with water. The solid residue was recrystallized from CH2Cl2 to afford the title compound (2.04 g, 75%). mp 143–144 °C. 20 mg was dissolved in 10 ml (EtOAc:petroleum ether 1:4) and the solution was kept at room temperature for 4 d. Natural evaporation gave orange single crystals suitable for X-ray analysis.

Refinement top

All H atoms were positioned geometrically and refined using a riding model (including free rotation about the acetoxy C—C bond), with C—H = 0.95 Å (Csp2) and 0.98 Å (methyl C); Uiso(H) = kUeq(C), where k = 1.5 for methyl H atoms and 1.2 for all other H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Structure description top

8-Hydroxyquinoline derivatives are important constituents in a variety of classes of pharmaceutically important compounds. They have generated interest as a new class of potent HIV-1 integrase inhibitors (Mekouar et al., 1998), for modeling of the inhibition of retroviral integrases (Ouali et al., 2000), as protein tyrosine kinase inhibitors (Chen et al., 2002), as protozoal and retroviral co-infections (Fakhfakh et al., 2003), and as anti-HIV-1 agents (Storz et al., 2004). Zeng, Wang et al. (2006) reported that a series of 8-hydroxyquinoline derivatives with vinyl substituents at the 2-position could induce the proliferation of rMSCs (rat mesenchymal stem cells). With these findings, some analogs need to be synthesized for structure activity relationship research to find more potent molecules.

One of these analogs, the title compound, (E)-2-[2-(2-nitrophenyl)ethenyl]-8-acetoxyquinoline, was prepared by the Knoevenagel condensation reaction between 8-hydroxyquinaldine and 2-nitrobenzaldehyde (Zeng, OuYang et al. (2006)) (Fig. 1). To provide structural information for the title compound, we studied its crystal structure.

The molecular structure of the two molecules per asymmetric unit is illustrated in Fig. 2. In one molecule, the angle between the two ring systems is 8.7 (1)°; in the other it is 4.2 (1)°. In this crystal structure, the ethylenic bond lengths for C1—C2 and C26—C27 are 1.322 (5) and 1.329 (5) Å, respectively. The analogous bond reported by Zeng, OuYang et al. (2006) has a length of 1.335 (2) Å. Intermolecular ππ interactions, with a centroid···centroid distance of 3.973 (1) Å, lead directly to a three-dimensional supramolecular network (Fig. 3).

For the biological properties of 8-hydroxyquinoline derivatives, see: Chen et al. (2002); Fakhfakh et al. (2003); Mekouar et al. (1998); Ouali et al. (2000); Storz et al. (2004); Zeng, Wang et al. (2006). For a related crystal structure, see: Zeng, OuYang et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthesis of (E)-2-[2-(2-nitrophenyl)ethenyl]-8-acetoxyquinoline.
[Figure 2] Fig. 2. View of the asymmetric unit of the title compound. Hydrogen atoms have been omitted.
[Figure 3] Fig. 3. View of the three-dimensional supramolecular structure.
(E)-2-[2-(2-Nitrophenyl)ethenyl]-8-quinolyl acetate top
Crystal data top
C19H14N2O4F(000) = 1392
Mr = 334.32Dx = 1.370 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5386 reflections
a = 25.8466 (13) Åθ = 2.3–26.3°
b = 11.8451 (6) ŵ = 0.10 mm1
c = 10.5870 (5) ÅT = 173 K
V = 3241.3 (3) Å3Block, yellow
Z = 80.47 × 0.45 × 0.26 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3731 independent reflections
Radiation source: fine-focus sealed tube2785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2933
Tmin = 0.956, Tmax = 0.975k = 1315
17451 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1126P)2 + 0.5654P]
where P = (Fo2 + 2Fc2)/3
3731 reflections(Δ/σ)max = 0.004
453 parametersΔρmax = 0.56 e Å3
7 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H14N2O4V = 3241.3 (3) Å3
Mr = 334.32Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 25.8466 (13) ŵ = 0.10 mm1
b = 11.8451 (6) ÅT = 173 K
c = 10.5870 (5) Å0.47 × 0.45 × 0.26 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3731 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2785 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.975Rint = 0.039
17451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0587 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.04Δρmax = 0.56 e Å3
3731 reflectionsΔρmin = 0.22 e Å3
453 parameters
Special details top

Experimental. 1H NMR (CDCl3, 300 MHz) δ 8.17–8.26 (m, 2H), 7.94 (d, J=7.5 Hz, 1H), 7.82 (d, J=7.8 Hz 1H), 7.64–7.70 (m, 4H), 7.47–7.53 (m, 3H), 2.58(s, 3H); IR (KBr, cm-1): 3067, 1723, 1577, 1520, 1457, 1175, 1128, 970, 850, 765, 708; ESI-MS m/z: 335.9 ([M+H]+); Elemental analysis: found C: 68.45, H: 4.40, N: 8.38 (%)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79027 (14)0.4406 (3)0.2939 (4)0.0354 (9)
H10.77530.51180.27480.043*
C20.83678 (14)0.4416 (3)0.3458 (4)0.0347 (8)
H20.85220.37120.36640.042*
C30.92068 (14)0.7392 (3)0.4307 (4)0.0337 (9)
C40.87102 (14)0.7393 (3)0.3743 (4)0.0301 (8)
N50.84409 (11)0.6440 (3)0.3460 (3)0.0299 (7)
C60.86607 (13)0.5452 (3)0.3734 (4)0.0321 (8)
C70.91645 (16)0.5376 (4)0.4257 (4)0.0383 (9)
H70.93150.46560.44030.046*
C80.94344 (14)0.6324 (4)0.4549 (4)0.0396 (10)
H80.97700.62730.49100.048*
C90.94489 (16)0.8434 (4)0.4613 (4)0.0432 (10)
H90.97790.84360.50070.052*
C100.92101 (17)0.9425 (4)0.4346 (4)0.0447 (10)
H100.93721.01160.45690.054*
C110.87218 (16)0.9444 (3)0.3739 (4)0.0393 (9)
H110.85601.01430.35440.047*
C120.84871 (14)0.8454 (3)0.3436 (4)0.0310 (8)
O130.79975 (10)0.8466 (2)0.2896 (3)0.0343 (6)
C140.75968 (15)0.3408 (3)0.2631 (4)0.0360 (9)
C150.71059 (16)0.3464 (4)0.2113 (5)0.0470 (11)
C160.67993 (18)0.2511 (5)0.1900 (6)0.0594 (15)
H160.64580.25890.15760.071*
C170.6995 (2)0.1471 (5)0.2162 (5)0.0580 (14)
H170.67940.08150.20050.070*
C180.74860 (19)0.1373 (4)0.2656 (5)0.0492 (11)
H180.76230.06460.28340.059*
C190.77801 (16)0.2319 (3)0.2896 (4)0.0395 (10)
H190.81160.22310.32490.047*
C200.79586 (15)0.8136 (3)0.1658 (4)0.0330 (8)
O210.83315 (11)0.7982 (2)0.1009 (3)0.0417 (7)
C220.74072 (15)0.8026 (4)0.1270 (5)0.0473 (11)
H22A0.73850.80110.03460.071*
H22B0.72100.86700.15940.071*
H22C0.72640.73240.16140.071*
N230.68857 (17)0.4577 (5)0.1744 (6)0.0746 (17)
O240.7137 (2)0.5202 (4)0.1073 (7)0.101 (2)
O250.64504 (18)0.4750 (5)0.2109 (7)0.124 (2)
C260.46521 (13)0.0779 (3)0.1266 (4)0.0304 (8)
H260.48080.00790.14830.036*
C270.41923 (15)0.0756 (3)0.0705 (4)0.0358 (9)
H270.40450.14580.04590.043*
C280.33041 (14)0.2153 (3)0.0099 (4)0.0321 (8)
C290.37963 (13)0.2194 (3)0.0491 (4)0.0290 (8)
N300.40900 (11)0.1266 (3)0.0752 (3)0.0308 (7)
C310.38950 (14)0.0269 (3)0.0438 (4)0.0318 (8)
C320.33986 (15)0.0140 (3)0.0117 (4)0.0378 (9)
H320.32680.05920.02980.045*
C330.31110 (15)0.1068 (4)0.0387 (4)0.0376 (9)
H330.27800.09880.07680.045*
C340.30335 (15)0.3162 (3)0.0367 (4)0.0364 (9)
H340.27050.31320.07670.044*
C350.32446 (16)0.4174 (4)0.0053 (4)0.0415 (10)
H350.30630.48490.02470.050*
C360.37324 (15)0.4241 (3)0.0561 (4)0.0383 (9)
H360.38760.49550.07720.046*
C370.39908 (14)0.3276 (3)0.0842 (4)0.0314 (8)
O380.44801 (10)0.3328 (2)0.1386 (3)0.0339 (6)
C390.49328 (13)0.1817 (3)0.1570 (4)0.0305 (8)
C400.54472 (14)0.1848 (3)0.2014 (4)0.0340 (9)
C410.57112 (16)0.2840 (4)0.2254 (5)0.0425 (11)
H410.60630.28220.25130.051*
C420.54573 (16)0.3852 (4)0.2111 (5)0.0458 (10)
H420.56280.45400.23110.055*
C430.49544 (15)0.3867 (3)0.1678 (5)0.0428 (10)
H430.47820.45680.15640.051*
C440.46994 (14)0.2877 (3)0.1411 (4)0.0360 (9)
H440.43540.29120.11090.043*
C450.45270 (15)0.2938 (3)0.2601 (4)0.0345 (9)
O460.41633 (11)0.2756 (3)0.3261 (3)0.0436 (7)
C470.50824 (17)0.2795 (4)0.2951 (5)0.0510 (12)
H47A0.51120.27150.38700.076*
H47B0.52790.34580.26740.076*
H47C0.52210.21180.25400.076*
N480.57481 (13)0.0810 (3)0.2185 (4)0.0428 (9)
O490.55389 (14)0.0009 (3)0.2665 (4)0.0621 (10)
O500.62029 (12)0.0830 (3)0.1858 (4)0.0628 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (2)0.033 (2)0.036 (2)0.0056 (15)0.0016 (16)0.0013 (16)
C20.0349 (19)0.0296 (19)0.039 (2)0.0053 (15)0.0015 (16)0.0038 (16)
C30.0286 (19)0.049 (2)0.023 (2)0.0057 (16)0.0027 (16)0.0050 (16)
C40.0296 (19)0.038 (2)0.0223 (19)0.0017 (15)0.0006 (15)0.0022 (15)
N50.0253 (15)0.0350 (17)0.0293 (17)0.0025 (12)0.0008 (13)0.0008 (13)
C60.0279 (18)0.036 (2)0.032 (2)0.0030 (15)0.0030 (15)0.0058 (16)
C70.039 (2)0.045 (2)0.031 (2)0.0094 (17)0.0005 (17)0.0089 (18)
C80.0250 (19)0.059 (3)0.035 (2)0.0009 (17)0.0046 (16)0.0100 (19)
C90.031 (2)0.061 (3)0.038 (2)0.0135 (19)0.0060 (18)0.002 (2)
C100.048 (2)0.049 (3)0.037 (2)0.021 (2)0.0052 (19)0.0014 (19)
C110.040 (2)0.037 (2)0.040 (2)0.0045 (17)0.0010 (18)0.0002 (18)
C120.0263 (18)0.038 (2)0.029 (2)0.0030 (14)0.0012 (15)0.0016 (15)
O130.0299 (13)0.0375 (15)0.0356 (15)0.0027 (10)0.0024 (11)0.0036 (11)
C140.032 (2)0.039 (2)0.036 (2)0.0017 (16)0.0026 (16)0.0066 (17)
C150.039 (2)0.060 (3)0.042 (3)0.0037 (19)0.004 (2)0.016 (2)
C160.036 (2)0.089 (4)0.054 (3)0.007 (2)0.006 (2)0.023 (3)
C170.062 (3)0.067 (4)0.046 (3)0.027 (3)0.012 (2)0.008 (2)
C180.058 (3)0.042 (2)0.047 (3)0.011 (2)0.010 (2)0.001 (2)
C190.040 (2)0.038 (2)0.041 (3)0.0021 (17)0.0066 (19)0.0015 (18)
C200.0354 (19)0.0249 (18)0.039 (2)0.0032 (14)0.0032 (17)0.0015 (16)
O210.0397 (16)0.0473 (16)0.0382 (17)0.0054 (12)0.0026 (13)0.0020 (13)
C220.036 (2)0.061 (3)0.044 (3)0.0046 (19)0.0094 (19)0.000 (2)
N230.045 (3)0.089 (4)0.090 (4)0.028 (2)0.035 (3)0.039 (3)
O240.102 (4)0.053 (2)0.150 (5)0.014 (2)0.063 (4)0.004 (3)
O250.077 (3)0.167 (5)0.126 (4)0.071 (3)0.028 (3)0.049 (4)
C260.0292 (18)0.0292 (18)0.0326 (19)0.0033 (14)0.0012 (15)0.0004 (15)
C270.038 (2)0.0288 (19)0.041 (2)0.0020 (15)0.0058 (17)0.0073 (16)
C280.0293 (19)0.043 (2)0.024 (2)0.0012 (16)0.0011 (15)0.0016 (16)
C290.0227 (17)0.036 (2)0.028 (2)0.0018 (14)0.0017 (15)0.0010 (15)
N300.0277 (15)0.0323 (16)0.0324 (18)0.0018 (12)0.0006 (13)0.0036 (13)
C310.0308 (18)0.035 (2)0.029 (2)0.0003 (15)0.0018 (15)0.0031 (15)
C320.036 (2)0.035 (2)0.043 (2)0.0014 (16)0.0104 (17)0.0033 (17)
C330.0266 (18)0.047 (2)0.039 (2)0.0024 (16)0.0088 (16)0.0033 (19)
C340.031 (2)0.043 (2)0.035 (2)0.0056 (16)0.0038 (17)0.0001 (18)
C350.039 (2)0.043 (2)0.042 (3)0.0125 (18)0.0008 (18)0.0050 (19)
C360.039 (2)0.033 (2)0.043 (2)0.0005 (16)0.0005 (18)0.0004 (18)
C370.0279 (18)0.038 (2)0.029 (2)0.0001 (14)0.0028 (15)0.0016 (16)
O380.0295 (13)0.0325 (13)0.0398 (16)0.0051 (10)0.0011 (11)0.0029 (12)
C390.0291 (18)0.0318 (18)0.031 (2)0.0006 (14)0.0026 (15)0.0011 (16)
C400.0313 (19)0.036 (2)0.035 (2)0.0040 (15)0.0038 (17)0.0019 (17)
C410.032 (2)0.045 (3)0.051 (3)0.0033 (17)0.006 (2)0.000 (2)
C420.043 (2)0.037 (2)0.058 (3)0.0068 (17)0.000 (2)0.000 (2)
C430.035 (2)0.032 (2)0.060 (3)0.0005 (16)0.0018 (19)0.0030 (19)
C440.0267 (18)0.039 (2)0.042 (2)0.0043 (15)0.0031 (16)0.0013 (18)
C450.038 (2)0.0258 (18)0.040 (2)0.0047 (15)0.0043 (17)0.0021 (16)
O460.0421 (17)0.0522 (18)0.0366 (17)0.0094 (13)0.0040 (14)0.0005 (14)
C470.043 (3)0.066 (3)0.043 (3)0.004 (2)0.010 (2)0.008 (2)
N480.045 (2)0.0363 (19)0.047 (2)0.0037 (15)0.0175 (17)0.0026 (16)
O490.065 (2)0.0429 (19)0.079 (3)0.0009 (16)0.0301 (19)0.0133 (18)
O500.0353 (16)0.062 (2)0.091 (3)0.0134 (15)0.0157 (17)0.009 (2)
Geometric parameters (Å, º) top
C1—C21.322 (5)C26—C271.329 (5)
C1—C141.459 (5)C26—C391.464 (5)
C1—H10.9500C26—H260.9500
C2—C61.471 (5)C27—C311.465 (5)
C2—H20.9500C27—H270.9500
C3—C41.415 (5)C28—C331.412 (6)
C3—C81.418 (6)C28—C341.414 (5)
C3—C91.421 (6)C28—C291.418 (5)
C4—N51.361 (5)C29—N301.364 (5)
C4—C121.420 (5)C29—C371.426 (5)
N5—C61.332 (5)N30—C311.327 (5)
C6—C71.418 (5)C31—C321.419 (5)
C7—C81.358 (6)C32—C331.358 (6)
C7—H70.9500C32—H320.9500
C8—H80.9500C33—H330.9500
C9—C101.357 (6)C34—C351.358 (6)
C9—H90.9500C34—H340.9500
C10—C111.417 (6)C35—C361.420 (6)
C10—H100.9500C35—H350.9500
C11—C121.358 (5)C36—C371.357 (5)
C11—H110.9500C36—H360.9500
C12—O131.389 (4)C37—O381.391 (5)
O13—C201.372 (5)O38—C451.372 (5)
C14—C151.384 (6)C39—C441.403 (5)
C14—C191.403 (6)C39—C401.411 (5)
C15—C161.397 (7)C40—C411.382 (6)
C15—N231.488 (7)C40—N481.466 (5)
C16—C171.361 (8)C41—C421.375 (6)
C16—H160.9500C41—H410.9500
C17—C181.377 (7)C42—C431.378 (6)
C17—H170.9500C42—H420.9500
C18—C191.378 (6)C43—C441.375 (6)
C18—H180.9500C43—H430.9500
C19—H190.9500C44—H440.9500
C20—O211.197 (5)C45—O461.191 (5)
C20—C221.489 (5)C45—C471.492 (6)
C22—H22A0.9800C47—H47A0.9800
C22—H22B0.9800C47—H47B0.9800
C22—H22C0.9800C47—H47C0.9800
N23—O251.207 (6)N48—O491.222 (5)
N23—O241.215 (7)N48—O501.226 (5)
C2—C1—C14126.4 (4)C27—C26—C39123.9 (3)
C2—C1—H1116.8C27—C26—H26118.0
C14—C1—H1116.8C39—C26—H26118.0
C1—C2—C6123.9 (3)C26—C27—C31124.9 (3)
C1—C2—H2118.0C26—C27—H27117.6
C6—C2—H2118.0C31—C27—H27117.6
C4—C3—C8117.0 (4)C33—C28—C34123.4 (3)
C4—C3—C9119.7 (4)C33—C28—C29116.3 (3)
C8—C3—C9123.4 (4)C34—C28—C29120.2 (3)
N5—C4—C3123.8 (3)N30—C29—C28124.1 (3)
N5—C4—C12118.4 (3)N30—C29—C37118.4 (3)
C3—C4—C12117.8 (3)C28—C29—C37117.5 (3)
C6—N5—C4117.6 (3)C31—N30—C29117.1 (3)
N5—C6—C7122.2 (4)N30—C31—C32122.9 (3)
N5—C6—C2118.0 (3)N30—C31—C27119.4 (3)
C7—C6—C2119.8 (3)C32—C31—C27117.7 (3)
C8—C7—C6120.6 (4)C33—C32—C31119.7 (4)
C8—C7—H7119.7C33—C32—H32120.2
C6—C7—H7119.7C31—C32—H32120.2
C7—C8—C3118.9 (4)C32—C33—C28119.9 (3)
C7—C8—H8120.6C32—C33—H33120.1
C3—C8—H8120.6C28—C33—H33120.1
C10—C9—C3120.2 (4)C35—C34—C28119.9 (4)
C10—C9—H9119.9C35—C34—H34120.1
C3—C9—H9119.9C28—C34—H34120.1
C9—C10—C11120.9 (4)C34—C35—C36121.2 (4)
C9—C10—H10119.5C34—C35—H35119.4
C11—C10—H10119.5C36—C35—H35119.4
C12—C11—C10119.4 (4)C37—C36—C35119.3 (4)
C12—C11—H11120.3C37—C36—H36120.3
C10—C11—H11120.3C35—C36—H36120.3
C11—C12—O13119.7 (3)C36—C37—O38120.1 (3)
C11—C12—C4121.9 (4)C36—C37—C29121.8 (3)
O13—C12—C4118.3 (3)O38—C37—C29117.9 (3)
C20—O13—C12117.2 (3)C45—O38—C37117.0 (3)
C15—C14—C19115.6 (4)C44—C39—C40114.9 (3)
C15—C14—C1123.2 (4)C44—C39—C26120.8 (3)
C19—C14—C1121.2 (4)C40—C39—C26124.2 (3)
C14—C15—C16123.1 (5)C41—C40—C39123.3 (4)
C14—C15—N23119.8 (4)C41—C40—N48115.3 (3)
C16—C15—N23117.2 (4)C39—C40—N48121.3 (3)
C17—C16—C15119.2 (4)C42—C41—C40119.0 (4)
C17—C16—H16120.4C42—C41—H41120.5
C15—C16—H16120.4C40—C41—H41120.5
C16—C17—C18119.8 (4)C41—C42—C43119.8 (4)
C16—C17—H17120.1C41—C42—H42120.1
C18—C17—H17120.1C43—C42—H42120.1
C17—C18—C19120.6 (5)C44—C43—C42120.7 (4)
C17—C18—H18119.7C44—C43—H43119.7
C19—C18—H18119.7C42—C43—H43119.7
C18—C19—C14121.7 (4)C43—C44—C39122.2 (4)
C18—C19—H19119.2C43—C44—H44118.9
C14—C19—H19119.2C39—C44—H44118.9
O21—C20—O13122.2 (4)O46—C45—O38122.7 (4)
O21—C20—C22126.8 (4)O46—C45—C47126.4 (4)
O13—C20—C22111.0 (3)O38—C45—C47110.9 (4)
C20—C22—H22A109.5C45—C47—H47A109.5
C20—C22—H22B109.5C45—C47—H47B109.5
H22A—C22—H22B109.5H47A—C47—H47B109.5
C20—C22—H22C109.5C45—C47—H47C109.5
H22A—C22—H22C109.5H47A—C47—H47C109.5
H22B—C22—H22C109.5H47B—C47—H47C109.5
O25—N23—O24125.6 (7)O49—N48—O50123.8 (4)
O25—N23—C15115.0 (7)O49—N48—C40118.9 (4)
O24—N23—C15119.3 (4)O50—N48—C40117.3 (4)
C14—C1—C2—C6179.3 (4)C39—C26—C27—C31177.4 (4)
C8—C3—C4—N51.8 (6)C33—C28—C29—N302.0 (6)
C9—C3—C4—N5177.5 (4)C34—C28—C29—N30178.1 (4)
C8—C3—C4—C12176.9 (4)C33—C28—C29—C37177.3 (4)
C9—C3—C4—C123.8 (6)C34—C28—C29—C372.6 (5)
C3—C4—N5—C60.1 (6)C28—C29—N30—C310.7 (6)
C12—C4—N5—C6178.8 (3)C37—C29—N30—C31178.7 (4)
C4—N5—C6—C72.5 (6)C29—N30—C31—C321.6 (6)
C4—N5—C6—C2178.7 (3)C29—N30—C31—C27179.5 (3)
C1—C2—C6—N50.9 (6)C26—C27—C31—N300.9 (7)
C1—C2—C6—C7178.0 (4)C26—C27—C31—C32177.2 (4)
N5—C6—C7—C82.9 (6)N30—C31—C32—C332.3 (6)
C2—C6—C7—C8178.2 (4)C27—C31—C32—C33179.7 (4)
C6—C7—C8—C30.9 (6)C31—C32—C33—C280.8 (7)
C4—C3—C8—C71.3 (6)C34—C28—C33—C32178.9 (4)
C9—C3—C8—C7178.0 (4)C29—C28—C33—C321.2 (6)
C4—C3—C9—C101.2 (7)C33—C28—C34—C35179.6 (4)
C8—C3—C9—C10179.5 (4)C29—C28—C34—C350.4 (6)
C3—C9—C10—C111.2 (7)C28—C34—C35—C360.9 (6)
C9—C10—C11—C120.9 (7)C34—C35—C36—C370.3 (6)
C10—C11—C12—O13176.9 (4)C35—C36—C37—O38176.8 (4)
C10—C11—C12—C41.8 (6)C35—C36—C37—C292.7 (6)
N5—C4—C12—C11177.1 (4)N30—C29—C37—C36176.8 (4)
C3—C4—C12—C114.1 (6)C28—C29—C37—C363.8 (6)
N5—C4—C12—O132.0 (6)N30—C29—C37—O382.5 (5)
C3—C4—C12—O13179.3 (3)C28—C29—C37—O38178.1 (3)
C11—C12—O13—C20111.1 (4)C36—C37—O38—C45113.4 (4)
C4—C12—O13—C2073.7 (4)C29—C37—O38—C4572.2 (4)
C2—C1—C14—C15178.5 (4)C27—C26—C39—C447.5 (6)
C2—C1—C14—C191.1 (7)C27—C26—C39—C40171.5 (4)
C19—C14—C15—C162.1 (7)C44—C39—C40—C411.3 (6)
C1—C14—C15—C16175.4 (4)C26—C39—C40—C41177.7 (4)
C19—C14—C15—N23177.3 (4)C44—C39—C40—N48177.9 (4)
C1—C14—C15—N235.2 (7)C26—C39—C40—N481.2 (6)
C14—C15—C16—C172.7 (8)C39—C40—C41—C423.1 (7)
N23—C15—C16—C17176.7 (5)N48—C40—C41—C42179.8 (4)
C15—C16—C17—C181.4 (8)C40—C41—C42—C433.0 (8)
C16—C17—C18—C190.4 (8)C41—C42—C43—C441.3 (8)
C17—C18—C19—C141.0 (7)C42—C43—C44—C390.4 (7)
C15—C14—C19—C180.3 (7)C40—C39—C44—C430.4 (6)
C1—C14—C19—C18177.3 (4)C26—C39—C44—C43179.5 (4)
C12—O13—C20—O219.5 (5)C37—O38—C45—O4613.8 (5)
C12—O13—C20—C22171.4 (3)C37—O38—C45—C47166.9 (3)
C14—C15—N23—O25132.0 (5)C41—C40—N48—O49140.5 (4)
C16—C15—N23—O2548.6 (7)C39—C40—N48—O4942.7 (6)
C14—C15—N23—O2451.4 (7)C41—C40—N48—O5037.9 (6)
C16—C15—N23—O24128.0 (6)C39—C40—N48—O50138.9 (4)

Experimental details

Crystal data
Chemical formulaC19H14N2O4
Mr334.32
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)25.8466 (13), 11.8451 (6), 10.5870 (5)
V3)3241.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.47 × 0.45 × 0.26
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.956, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
17451, 3731, 2785
Rint0.039
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.171, 1.04
No. of reflections3731
No. of parameters453
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.22

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20802010), the Natural Science Foundation of Guangdong Province (No. 07300884) and the 211 project of Guangdong University of Technology.

References

First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C.-S., Lai, S.-Y. & Hsu, P.-S. (2002). Chin. Pharm. J. (Taipei, Taiwan), 54, 353–374.  Google Scholar
First citationFakhfakh, M. A., Fournet, A. & Prina, E. (2003). Bioorg. Med. Chem. 11, 5013–5023.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMekouar, K., Mouscadet, J. F. & Desmaele, D. (1998). J. Med. Chem. 41, 2846–2857.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOuali, M., Laboulais, C. & Leh, H. (2000). J. Med. Chem. 43, 1949–1957.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorz, T., Marti, R., Meier, R., Nury, P., Roeder, M. & Zhang, K. (2004). Org. Proc. Res. Dev. 8, 663–665.  Web of Science CrossRef CAS Google Scholar
First citationZeng, H. P., OuYang, X. H., Wang, T. T., Yuan, G. Z., Zhang, G. H. & Zhang, X. M. (2006). Cryst. Growth Des. 6, 1697–1702.  Web of Science CSD CrossRef CAS Google Scholar
First citationZeng, H. P., Wang, T. T., OuYang, X. H. & Chen, D. F. (2006). Bioorg. Med. Chem. 14, 5446–5450.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds