organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Hydr­­oxy-2-nitro­benzyl­­idene)-2-meth­oxy­benzohydrazide

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: desuoyang@yahoo.com.cn

(Received 19 October 2009; accepted 23 October 2009; online 28 October 2009)

The asymmetric unit of the title compound, C15H13N3O5, contains two independent mol­ecules. Each mol­ecule displays an E configuration with respect to its C=N double bond. The dihedral angles between the two benzene rings are 11.1 (2) and 10.9 (2)° in the two mol­ecules. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds, forming chains running along the a axis.

Related literature

For the biological and structural chemistry of hydrazone compounds, see: Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]); Charkoudian et al. (2007[Charkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031-5042.]); Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]). For related structures, see: Yang (2008a[Yang, D.-S. (2008a). Acta Cryst. E64, o1758.],b[Yang, D.-S. (2008b). Acta Cryst. E64, o1759.],c[Yang, D.-S. (2008c). Acta Cryst. E64, o1849.],d[Yang, D.-S. (2008d). Acta Cryst. E64, o1850.],e, 2007a[Yang, D.-S. (2007a). J. Chem. Crystallogr. 37, 343-348.],b[Yang, D.-S. (2007b). Acta Cryst. E63, o3738.],c[Yang, D.-S. (2007c). Acta Cryst. E63, o3739.]); Yang & Guo (2006[Yang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414-o4415.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O5

  • Mr = 315.28

  • Triclinic, [P \overline 1]

  • a = 8.7540 (9) Å

  • b = 9.0529 (9) Å

  • c = 18.2159 (17) Å

  • α = 86.902 (5)°

  • β = 83.023 (5)°

  • γ = 82.509 (5)°

  • V = 1419.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.983

  • 8779 measured reflections

  • 6066 independent reflections

  • 4236 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.04

  • 6066 reflections

  • 425 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O6i 0.82 1.91 2.721 (2) 169
O10—H10⋯O1 0.82 1.88 2.689 (2) 168
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have been of great interest for a long time. These compounds play an important role in biological and structural chemistry (Avaji et al., 2009; Charkoudian et al., 2007; Cukurovali et al., 2006). Recently, we have reported a few hydrazone compounds (Yang, 2008a,b,c,d,e, 2007a,b,c; Yang & Guo, 2006). As a further investigation in this area, the crystal structure of the new title hydrazone compound is reported.

The asymmetric unit of the title compound, Fig. 1, consists of two independent molecules. Each molecule displays an E configuration with respect to the CN double bond. The dihedral angle between the C1—C6 and C9—C14 benzene rings is 11.1 (2)°, and that between the C16—C21 and C24—C29 benzene rings is 10.9 (2)°. All the bond lengths are within normal ranges (Allen et al., 1987). The C7N1 and C22N4 bond lengths of 1.256 (2) and 1.260 (2) Å, respectively, conform to the values for double bonds. The bond length of 1.348 (2) Å between atoms C8 and N2, and that of 1.351 (2) Å between atoms C23 and N5, are intermediate between C—N single bonds and CN double bonds, because of conjugation effects in the molecules.

In the crystal structure, molecules are linked through intermolecular O—H···O hydrogen bonds (Table 1), forming chains running along the a axis (Fig. 2).

Related literature top

For the biological and structural chemistry of hydrazone compounds, see: Avaji et al. (2009); Charkoudian et al. (2007); Cukurovali et al. (2006). For related structures, see: Yang (2008a,b,c,d,e, 2007a,b,c); Yang & Guo (2006). For reference bond-length data, see: Allen et al. (1987).

Experimental top

5-Hydroxy-2-nitrobenzaldehyde (0.1 mmol, 16.7 mg) and 2-methoxybenzohydrazide (0.1 mmol, 16.6 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of 5 days at room temperature.

Refinement top

Nitrogen-bound atoms H2 and H5A were located in a difference Fourier map and refined isotropically, with N—H distances restrained to 0.90 (1) Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H distances of 0.82 Å, C—H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Structure description top

Hydrazone compounds have been of great interest for a long time. These compounds play an important role in biological and structural chemistry (Avaji et al., 2009; Charkoudian et al., 2007; Cukurovali et al., 2006). Recently, we have reported a few hydrazone compounds (Yang, 2008a,b,c,d,e, 2007a,b,c; Yang & Guo, 2006). As a further investigation in this area, the crystal structure of the new title hydrazone compound is reported.

The asymmetric unit of the title compound, Fig. 1, consists of two independent molecules. Each molecule displays an E configuration with respect to the CN double bond. The dihedral angle between the C1—C6 and C9—C14 benzene rings is 11.1 (2)°, and that between the C16—C21 and C24—C29 benzene rings is 10.9 (2)°. All the bond lengths are within normal ranges (Allen et al., 1987). The C7N1 and C22N4 bond lengths of 1.256 (2) and 1.260 (2) Å, respectively, conform to the values for double bonds. The bond length of 1.348 (2) Å between atoms C8 and N2, and that of 1.351 (2) Å between atoms C23 and N5, are intermediate between C—N single bonds and CN double bonds, because of conjugation effects in the molecules.

In the crystal structure, molecules are linked through intermolecular O—H···O hydrogen bonds (Table 1), forming chains running along the a axis (Fig. 2).

For the biological and structural chemistry of hydrazone compounds, see: Avaji et al. (2009); Charkoudian et al. (2007); Cukurovali et al. (2006). For related structures, see: Yang (2008a,b,c,d,e, 2007a,b,c); Yang & Guo (2006). For reference bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Molecular packing, viewed along the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
N'-(5-Hydroxy-2-nitrobenzylidene)-2-methoxybenzohydrazide top
Crystal data top
C15H13N3O5Z = 4
Mr = 315.28F(000) = 656
Triclinic, P1Dx = 1.475 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7540 (9) ÅCell parameters from 2340 reflections
b = 9.0529 (9) Åθ = 2.5–25.3°
c = 18.2159 (17) ŵ = 0.11 mm1
α = 86.902 (5)°T = 298 K
β = 83.023 (5)°Block, colorless
γ = 82.509 (5)°0.17 × 0.15 × 0.15 mm
V = 1419.6 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
6066 independent reflections
Radiation source: fine-focus sealed tube4236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.981, Tmax = 0.983k = 119
8779 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.1933P]
where P = (Fo2 + 2Fc2)/3
6066 reflections(Δ/σ)max = 0.001
425 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H13N3O5γ = 82.509 (5)°
Mr = 315.28V = 1419.6 (2) Å3
Triclinic, P1Z = 4
a = 8.7540 (9) ÅMo Kα radiation
b = 9.0529 (9) ŵ = 0.11 mm1
c = 18.2159 (17) ÅT = 298 K
α = 86.902 (5)°0.17 × 0.15 × 0.15 mm
β = 83.023 (5)°
Data collection top
Bruker SMART CCD
diffractometer
6066 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4236 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.983Rint = 0.017
8779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
6066 reflectionsΔρmin = 0.26 e Å3
425 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43038 (17)0.56766 (15)0.20225 (9)0.0651 (4)
O20.51734 (15)0.97729 (14)0.11083 (7)0.0496 (3)
O30.04575 (17)0.86066 (17)0.04665 (8)0.0648 (4)
O40.19271 (18)0.88756 (16)0.06698 (8)0.0642 (4)
O50.22760 (16)0.36644 (15)0.16573 (7)0.0516 (4)
H50.17930.36390.20170.077*
O60.93551 (17)0.39747 (18)0.28075 (8)0.0630 (4)
O71.02232 (16)0.21547 (16)0.48449 (7)0.0548 (4)
O80.54241 (17)0.09248 (17)0.43071 (8)0.0655 (4)
O90.30249 (18)0.12659 (17)0.44316 (8)0.0662 (4)
O100.27735 (16)0.33708 (14)0.18156 (7)0.0489 (3)
H100.32490.40940.18140.073*
N10.20958 (17)0.68586 (16)0.12448 (8)0.0415 (4)
N20.32509 (17)0.76663 (16)0.13956 (9)0.0426 (4)
N30.08536 (19)0.82546 (17)0.03512 (8)0.0426 (4)
N40.71155 (17)0.24869 (17)0.34137 (8)0.0405 (4)
N50.82807 (18)0.27753 (18)0.38088 (8)0.0437 (4)
N60.41209 (19)0.06591 (17)0.41211 (8)0.0435 (4)
C10.02579 (19)0.67167 (19)0.07731 (9)0.0346 (4)
C20.1160 (2)0.70609 (19)0.01894 (9)0.0357 (4)
C30.2360 (2)0.6249 (2)0.00901 (10)0.0413 (4)
H30.29260.64850.03100.050*
C40.2708 (2)0.5109 (2)0.05763 (10)0.0433 (4)
H40.35050.45640.05070.052*
C50.1862 (2)0.47659 (19)0.11782 (9)0.0378 (4)
C60.06376 (19)0.55545 (19)0.12606 (9)0.0366 (4)
H60.00570.52960.16530.044*
C70.1012 (2)0.7541 (2)0.09190 (10)0.0398 (4)
H70.10110.85420.07730.048*
C80.4347 (2)0.6969 (2)0.17976 (10)0.0404 (4)
C90.56063 (19)0.7798 (2)0.19878 (10)0.0380 (4)
C100.6016 (2)0.9147 (2)0.16516 (10)0.0395 (4)
C110.7241 (2)0.9775 (2)0.18779 (11)0.0497 (5)
H110.75101.06730.16610.060*
C120.8050 (2)0.9064 (3)0.24229 (12)0.0584 (6)
H120.88650.94920.25730.070*
C130.7685 (2)0.7741 (3)0.27496 (12)0.0576 (6)
H130.82500.72670.31150.069*
C140.6473 (2)0.7120 (2)0.25317 (10)0.0479 (5)
H140.62240.62200.27540.058*
C150.5651 (2)1.1071 (2)0.07190 (12)0.0562 (5)
H15A0.55491.18700.10540.084*
H15B0.50111.13530.03300.084*
H15C0.67141.08660.05110.084*
C160.47579 (19)0.15649 (19)0.33463 (9)0.0350 (4)
C170.3836 (2)0.04192 (19)0.35190 (9)0.0352 (4)
C180.2637 (2)0.0237 (2)0.31102 (10)0.0404 (4)
H180.20520.05470.32310.048*
C190.2313 (2)0.1207 (2)0.25315 (10)0.0419 (4)
H190.15250.10710.22510.050*
C200.3170 (2)0.23981 (19)0.23648 (9)0.0373 (4)
C210.43944 (19)0.25484 (19)0.27658 (9)0.0365 (4)
H210.49830.33290.26410.044*
C220.6037 (2)0.1839 (2)0.37580 (10)0.0400 (4)
H220.60480.15440.42550.048*
C230.9387 (2)0.3552 (2)0.34549 (10)0.0413 (4)
C241.0637 (2)0.3942 (2)0.38721 (10)0.0420 (4)
C251.1028 (2)0.3282 (2)0.45480 (11)0.0451 (5)
C261.2213 (2)0.3780 (3)0.48783 (13)0.0611 (6)
H261.24810.33510.53280.073*
C271.2983 (3)0.4902 (3)0.45383 (16)0.0701 (7)
H271.37510.52460.47700.084*
C281.2647 (3)0.5530 (3)0.38670 (15)0.0669 (7)
H281.31990.62720.36370.080*
C291.1482 (2)0.5044 (2)0.35392 (12)0.0531 (5)
H291.12520.54640.30820.064*
C301.0611 (3)0.1437 (3)0.55204 (11)0.0626 (6)
H30A1.16980.10730.54720.094*
H30B1.00190.06170.56370.094*
H30C1.03800.21340.59090.094*
H20.331 (3)0.8598 (14)0.1214 (12)0.080*
H5A0.833 (3)0.243 (2)0.4276 (7)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0588 (9)0.0480 (9)0.0964 (12)0.0217 (7)0.0397 (8)0.0299 (8)
O20.0452 (8)0.0470 (8)0.0607 (9)0.0190 (6)0.0160 (6)0.0159 (6)
O30.0507 (9)0.0761 (11)0.0666 (10)0.0205 (8)0.0020 (7)0.0268 (8)
O40.0730 (10)0.0556 (9)0.0715 (10)0.0181 (7)0.0394 (8)0.0242 (7)
O50.0604 (9)0.0534 (8)0.0477 (8)0.0284 (7)0.0168 (7)0.0145 (6)
O60.0574 (9)0.0893 (11)0.0492 (9)0.0331 (8)0.0201 (7)0.0254 (8)
O70.0522 (8)0.0695 (10)0.0476 (8)0.0127 (7)0.0238 (7)0.0083 (7)
O80.0525 (9)0.0743 (10)0.0677 (10)0.0008 (7)0.0205 (8)0.0273 (8)
O90.0741 (11)0.0728 (10)0.0595 (9)0.0395 (8)0.0200 (8)0.0271 (8)
O100.0550 (9)0.0468 (8)0.0502 (8)0.0150 (6)0.0250 (6)0.0149 (6)
N10.0358 (8)0.0410 (9)0.0513 (9)0.0146 (7)0.0137 (7)0.0082 (7)
N20.0386 (8)0.0378 (8)0.0558 (10)0.0144 (7)0.0182 (7)0.0112 (7)
N30.0461 (9)0.0428 (9)0.0404 (9)0.0097 (7)0.0102 (7)0.0051 (7)
N40.0372 (8)0.0488 (9)0.0391 (8)0.0115 (7)0.0156 (7)0.0050 (7)
N50.0394 (9)0.0598 (10)0.0360 (8)0.0171 (7)0.0143 (7)0.0085 (7)
N60.0506 (10)0.0404 (9)0.0406 (9)0.0082 (7)0.0098 (7)0.0053 (7)
C10.0298 (9)0.0360 (9)0.0385 (9)0.0057 (7)0.0052 (7)0.0017 (7)
C20.0378 (9)0.0355 (9)0.0339 (9)0.0055 (7)0.0052 (7)0.0022 (7)
C30.0422 (10)0.0476 (11)0.0368 (10)0.0089 (8)0.0142 (8)0.0024 (8)
C40.0435 (11)0.0459 (11)0.0450 (11)0.0171 (8)0.0119 (8)0.0011 (8)
C50.0410 (10)0.0360 (9)0.0365 (9)0.0083 (8)0.0029 (8)0.0022 (7)
C60.0337 (9)0.0405 (10)0.0371 (9)0.0076 (7)0.0097 (7)0.0043 (7)
C70.0388 (10)0.0363 (10)0.0458 (10)0.0105 (8)0.0100 (8)0.0091 (8)
C80.0368 (10)0.0391 (10)0.0471 (11)0.0101 (8)0.0108 (8)0.0078 (8)
C90.0314 (9)0.0426 (10)0.0409 (10)0.0061 (7)0.0060 (7)0.0028 (8)
C100.0325 (9)0.0446 (10)0.0422 (10)0.0068 (8)0.0044 (8)0.0033 (8)
C110.0421 (11)0.0505 (12)0.0602 (13)0.0177 (9)0.0063 (9)0.0070 (10)
C120.0470 (12)0.0711 (15)0.0638 (14)0.0138 (11)0.0193 (10)0.0179 (12)
C130.0543 (13)0.0689 (15)0.0540 (13)0.0043 (11)0.0241 (10)0.0102 (11)
C140.0476 (11)0.0512 (12)0.0459 (11)0.0042 (9)0.0124 (9)0.0013 (9)
C150.0533 (13)0.0510 (12)0.0652 (14)0.0200 (10)0.0035 (10)0.0141 (10)
C160.0319 (9)0.0398 (10)0.0327 (9)0.0039 (7)0.0040 (7)0.0022 (7)
C170.0369 (9)0.0353 (9)0.0331 (9)0.0036 (7)0.0058 (7)0.0025 (7)
C180.0431 (10)0.0391 (10)0.0417 (10)0.0153 (8)0.0075 (8)0.0032 (8)
C190.0421 (10)0.0451 (11)0.0421 (10)0.0109 (8)0.0149 (8)0.0007 (8)
C200.0386 (10)0.0392 (10)0.0341 (9)0.0034 (8)0.0080 (7)0.0040 (7)
C210.0350 (9)0.0379 (10)0.0383 (9)0.0094 (7)0.0081 (7)0.0050 (7)
C220.0385 (10)0.0479 (11)0.0351 (9)0.0090 (8)0.0116 (8)0.0084 (8)
C230.0371 (10)0.0455 (11)0.0426 (10)0.0073 (8)0.0096 (8)0.0045 (8)
C240.0312 (9)0.0459 (11)0.0498 (11)0.0020 (8)0.0087 (8)0.0084 (9)
C250.0348 (10)0.0507 (11)0.0509 (12)0.0012 (9)0.0104 (8)0.0107 (9)
C260.0478 (12)0.0715 (15)0.0688 (15)0.0012 (11)0.0264 (11)0.0182 (12)
C270.0467 (13)0.0724 (16)0.099 (2)0.0132 (12)0.0231 (13)0.0300 (15)
C280.0499 (13)0.0615 (15)0.0938 (19)0.0185 (11)0.0072 (13)0.0183 (13)
C290.0434 (11)0.0504 (12)0.0667 (14)0.0097 (9)0.0041 (10)0.0077 (10)
C300.0601 (14)0.0785 (16)0.0502 (12)0.0022 (12)0.0255 (10)0.0047 (11)
Geometric parameters (Å, º) top
O1—C81.223 (2)C9—C101.405 (3)
O2—C101.361 (2)C10—C111.391 (2)
O2—C151.423 (2)C11—C121.373 (3)
O3—N31.2217 (19)C11—H110.9300
O4—N31.2228 (19)C12—C131.367 (3)
O5—C51.346 (2)C12—H120.9300
O5—H50.8200C13—C141.371 (3)
O6—C231.223 (2)C13—H130.9300
O7—C251.366 (2)C14—H140.9300
O7—C301.418 (2)C15—H15A0.9600
O8—N61.220 (2)C15—H15B0.9600
O9—N61.231 (2)C15—H15C0.9600
O10—C201.344 (2)C16—C211.385 (2)
O10—H100.8200C16—C171.395 (2)
N1—C71.256 (2)C16—C221.475 (2)
N1—N21.3837 (19)C17—C181.390 (2)
N2—C81.348 (2)C18—C191.367 (2)
N2—H20.895 (10)C18—H180.9300
N3—C21.451 (2)C19—C201.393 (2)
N4—C221.260 (2)C19—H190.9300
N4—N51.3764 (19)C20—C211.393 (2)
N5—C231.351 (2)C21—H210.9300
N5—H5A0.895 (10)C22—H220.9300
N6—C171.451 (2)C23—C241.493 (2)
C1—C61.387 (2)C24—C291.388 (3)
C1—C21.399 (2)C24—C251.400 (3)
C1—C71.474 (2)C25—C261.394 (3)
C2—C31.392 (2)C26—C271.371 (3)
C3—C41.364 (2)C26—H260.9300
C3—H30.9300C27—C281.368 (3)
C4—C51.396 (2)C27—H270.9300
C4—H40.9300C28—C291.373 (3)
C5—C61.390 (2)C28—H280.9300
C6—H60.9300C29—H290.9300
C7—H70.9300C30—H30A0.9600
C8—C91.495 (2)C30—H30B0.9600
C9—C141.389 (3)C30—H30C0.9600
C10—O2—C15117.91 (15)C13—C14—C9121.9 (2)
C5—O5—H5109.5C13—C14—H14119.1
C25—O7—C30118.82 (15)C9—C14—H14119.1
C20—O10—H10109.5O2—C15—H15A109.5
C7—N1—N2117.33 (15)O2—C15—H15B109.5
C8—N2—N1117.45 (14)H15A—C15—H15B109.5
C8—N2—H2120.6 (15)O2—C15—H15C109.5
N1—N2—H2121.8 (15)H15A—C15—H15C109.5
O3—N3—O4122.64 (16)H15B—C15—H15C109.5
O3—N3—C2118.98 (15)C21—C16—C17117.22 (15)
O4—N3—C2118.38 (15)C21—C16—C22118.02 (16)
C22—N4—N5117.22 (15)C17—C16—C22124.70 (15)
C23—N5—N4117.46 (15)C18—C17—C16121.56 (15)
C23—N5—H5A121.0 (15)C18—C17—N6117.20 (15)
N4—N5—H5A121.5 (16)C16—C17—N6121.22 (15)
O8—N6—O9122.25 (16)C19—C18—C17120.27 (16)
O8—N6—C17119.37 (16)C19—C18—H18119.9
O9—N6—C17118.38 (15)C17—C18—H18119.9
C6—C1—C2117.02 (15)C18—C19—C20119.51 (16)
C6—C1—C7118.44 (15)C18—C19—H19120.2
C2—C1—C7124.49 (15)C20—C19—H19120.2
C3—C2—C1121.54 (16)O10—C20—C21122.29 (16)
C3—C2—N3117.21 (15)O10—C20—C19118.01 (15)
C1—C2—N3121.23 (15)C21—C20—C19119.70 (16)
C4—C3—C2120.29 (16)C16—C21—C20121.65 (16)
C4—C3—H3119.9C16—C21—H21119.2
C2—C3—H3119.9C20—C21—H21119.2
C3—C4—C5119.66 (16)N4—C22—C16117.72 (16)
C3—C4—H4120.2N4—C22—H22121.1
C5—C4—H4120.2C16—C22—H22121.1
O5—C5—C6122.68 (16)O6—C23—N5121.09 (16)
O5—C5—C4117.72 (16)O6—C23—C24119.70 (17)
C6—C5—C4119.59 (16)N5—C23—C24119.17 (16)
C1—C6—C5121.84 (16)C29—C24—C25118.61 (17)
C1—C6—H6119.1C29—C24—C23115.53 (17)
C5—C6—H6119.1C25—C24—C23125.85 (18)
N1—C7—C1118.35 (16)O7—C25—C26123.40 (19)
N1—C7—H7120.8O7—C25—C24117.22 (16)
C1—C7—H7120.8C26—C25—C24119.4 (2)
O1—C8—N2120.76 (16)C27—C26—C25119.8 (2)
O1—C8—C9119.55 (16)C27—C26—H26120.1
N2—C8—C9119.67 (15)C25—C26—H26120.1
C14—C9—C10118.09 (16)C28—C27—C26121.6 (2)
C14—C9—C8115.65 (16)C28—C27—H27119.2
C10—C9—C8126.22 (16)C26—C27—H27119.2
O2—C10—C11123.15 (17)C27—C28—C29118.8 (2)
O2—C10—C9117.06 (15)C27—C28—H28120.6
C11—C10—C9119.79 (17)C29—C28—H28120.6
C12—C11—C10119.68 (19)C28—C29—C24121.7 (2)
C12—C11—H11120.2C28—C29—H29119.1
C10—C11—H11120.2C24—C29—H29119.1
C13—C12—C11121.47 (19)O7—C30—H30A109.5
C13—C12—H12119.3O7—C30—H30B109.5
C11—C12—H12119.3H30A—C30—H30B109.5
C12—C13—C14119.1 (2)O7—C30—H30C109.5
C12—C13—H13120.5H30A—C30—H30C109.5
C14—C13—H13120.5H30B—C30—H30C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O6i0.821.912.721 (2)169
O10—H10···O10.821.882.689 (2)168
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O5
Mr315.28
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.7540 (9), 9.0529 (9), 18.2159 (17)
α, β, γ (°)86.902 (5), 83.023 (5), 82.509 (5)
V3)1419.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8779, 6066, 4236
Rint0.017
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.04
No. of reflections6066
No. of parameters425
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O6i0.821.912.721 (2)169
O10—H10···O10.821.882.689 (2)168
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The author acknowledges Baoji University of Arts and Sciences for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031–5042.  Web of Science CSD CrossRef Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2007a). J. Chem. Crystallogr. 37, 343–348.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, D.-S. (2007b). Acta Cryst. E63, o3738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2007c). Acta Cryst. E63, o3739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2008a). Acta Cryst. E64, o1758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2008b). Acta Cryst. E64, o1759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2008c). Acta Cryst. E64, o1849.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2008d). Acta Cryst. E64, o1850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414–o4415.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds