organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­phenyl­penta-2,4-diene­nitrile

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 24 October 2009; accepted 27 October 2009; online 31 October 2009)

In the title compound, C17H13N, the dihedral angle between the two phenyl rings is 17.6 (1)°. An inter­molecular C—H⋯N hydrogen bond is found in the crystal structure, also a C—H⋯π inter­action involving the phenyl ring at position 5.

Related literature

For the prebiotic synthesis of biological mol­ecules, see: Guillemin et al. (1998[Guillemin, J. C., Breneman, C. M., Joseph, J. C. & Ferris, J. P. (1998). Chem. Eur. J. 4, 1074-1082.]). For the preparation of flavonoid pigments, see: Fringuelli et al. (1994[Fringuelli, F., Pani, G., Piermatti, O. & Pizzo, F. (1994). Tetrahedron, 50, 11499-11508.]). For sexual pheromones, see: Liu et al. (1981[Liu, R. S. H., Matsumoto, H., Asato, A. E., Denny, M., Shichida, Y., Yoshizawa, T. & Dahlquist, F. W. (1981). J. Am. Chem. Soc. 103, 7195-7201.]). For the manufacture of light-emitting diodes (LEDs) with air-stable electrodes, see: Maruyama et al. (1998[Maruyama, S., Tao, X. T., Hokari, H., Noh, T., Zhang, Y., Wada, T., Sasabe, H., Suzuki, H., Watanabe, T. & Miyata, S. (1998). Chem. Lett. pp. 749-750.]); Segura et al. (1999[Segura, J. L., Martin, N. & Hanack, M. (1999). Eur. J. Org. Chem. pp. 643-651.]); Gómez et al. (1999[Gómez, R., Segura, J. L. & Martin, N. (1999). Chem. Commun. pp. 619-620.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N

  • Mr = 231.28

  • Monoclinic, C 2/c

  • a = 16.9390 (5) Å

  • b = 7.5869 (2) Å

  • c = 19.3809 (6) Å

  • β = 99.521 (3)°

  • V = 2456.42 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 110 K

  • 0.53 × 0.36 × 0.29 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.713, Tmax = 1.000

  • 4517 measured reflections

  • 2420 independent reflections

  • 2322 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.02

  • 2420 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C54—H54⋯N13i 0.95 2.61 3.388 (2) 139
C56—H56⋯Cg1ii 0.95 2.83 3.657 (1) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C51–C56 phenyl ring.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Unsaturated nitriles play a key role in many of the pathways proposed for the prebiotic synthesis of biological molecules (Guillemin et al., 1998). Arylacrylonitriles are important synthons for the synthesis of several biologically active molecules in the preparation of flavonoid pigments (Fringuelli et al., 1994) and sexual pheromones(Liu et al., 1981). Recently arylacrylonitriles have been used to obtain high electron affinity polymers which can be used to manufacture light-emitting diodes (LEDs) with air-stable electrodes (Maruyama et al., 1998; Segura et al., 1999; Gómez et al., 1999).

As part of our research, we have synthesized the title compound and report its crystal structure here. In the molecule, the dihedral angle between the two phenyl rings is 17.6 (1)°. The angle N13—C12—C2 is 178.90 (13)°, indicating that atom C12 is sp hybridized. Atoms C2,C3,C4 and C5 are essentially coplanar. An intermolecular C54—H54···N13(1/2 - x, -1/2 + y, 1/2 - z) hydrogen bond is found in the crystal structure. In addition, a C56—H56···π(1/2 - x, 1/2 + y, 1/2 - z) interaction involving the phenyl ring (C51—C56) at position 5 is also found.

Related literature top

For the prebiotic synthesis of biological molecules, see: Guillemin et al. (1998). For the preparation of flavonoid pigments, see: Fringuelli et al. (1994). For sexual pheromones, see: Liu et al. (1981). For the manufacture of light-emitting diodes (LEDs) with air-stable electrodes, see: Maruyama et al. (1998); Segura et al. (1999); Gómez et al. (1999). Cg1 is the centroid of the C51–C56 phenyl ring.

Experimental top

To a mixture of benzyl cyanide (1.12 ml, 0.01 mol) and potassium hydroxide (0.66 g, 0.01 mol) in 50 ml ethanol, trans-cinnamaldehyde (1.3 ml, 0.01 mol) was added and the solution was stirred for five minutes at room temperature. The solid obtained was separated, dried and then recrystallized from absolute ethanol. The yield of isolated product was 1.81 g (82%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å; Uiso(H) = 1.2Ueq(C).

Structure description top

Unsaturated nitriles play a key role in many of the pathways proposed for the prebiotic synthesis of biological molecules (Guillemin et al., 1998). Arylacrylonitriles are important synthons for the synthesis of several biologically active molecules in the preparation of flavonoid pigments (Fringuelli et al., 1994) and sexual pheromones(Liu et al., 1981). Recently arylacrylonitriles have been used to obtain high electron affinity polymers which can be used to manufacture light-emitting diodes (LEDs) with air-stable electrodes (Maruyama et al., 1998; Segura et al., 1999; Gómez et al., 1999).

As part of our research, we have synthesized the title compound and report its crystal structure here. In the molecule, the dihedral angle between the two phenyl rings is 17.6 (1)°. The angle N13—C12—C2 is 178.90 (13)°, indicating that atom C12 is sp hybridized. Atoms C2,C3,C4 and C5 are essentially coplanar. An intermolecular C54—H54···N13(1/2 - x, -1/2 + y, 1/2 - z) hydrogen bond is found in the crystal structure. In addition, a C56—H56···π(1/2 - x, 1/2 + y, 1/2 - z) interaction involving the phenyl ring (C51—C56) at position 5 is also found.

For the prebiotic synthesis of biological molecules, see: Guillemin et al. (1998). For the preparation of flavonoid pigments, see: Fringuelli et al. (1994). For sexual pheromones, see: Liu et al. (1981). For the manufacture of light-emitting diodes (LEDs) with air-stable electrodes, see: Maruyama et al. (1998); Segura et al. (1999); Gómez et al. (1999). Cg1 is the centroid of the C51–C56 phenyl ring.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
2,5-Diphenylpenta-2,4-dienenitrile top
Crystal data top
C17H13NF(000) = 976
Mr = 231.28Dx = 1.251 Mg m3
Monoclinic, C2/cMelting point: 440 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54178 Å
a = 16.9390 (5) ÅCell parameters from 4071 reflections
b = 7.5869 (2) Åθ = 4.6–74.1°
c = 19.3809 (6) ŵ = 0.56 mm1
β = 99.521 (3)°T = 110 K
V = 2456.42 (13) Å3Prism, colourless
Z = 80.53 × 0.36 × 0.29 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2420 independent reflections
Radiation source: Enhance (Cu) X-ray Source2322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 10.5081 pixels mm-1θmax = 74.1°, θmin = 4.6°
ω scansh = 2015
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 89
Tmin = 0.713, Tmax = 1.000l = 2323
4517 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0729P)2 + 1.834P]
where P = (Fo2 + 2Fc2)/3
2420 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H13NV = 2456.42 (13) Å3
Mr = 231.28Z = 8
Monoclinic, C2/cCu Kα radiation
a = 16.9390 (5) ŵ = 0.56 mm1
b = 7.5869 (2) ÅT = 110 K
c = 19.3809 (6) Å0.53 × 0.36 × 0.29 mm
β = 99.521 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2420 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2322 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 1.000Rint = 0.014
4517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
2420 reflectionsΔρmin = 0.22 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N130.26391 (6)0.47605 (14)0.01895 (5)0.0260 (3)
C20.40160 (7)0.32134 (15)0.01356 (6)0.0195 (3)
C30.42079 (7)0.25057 (15)0.07831 (6)0.0211 (3)
C40.37331 (7)0.25955 (15)0.13347 (6)0.0209 (3)
C50.39654 (7)0.17874 (15)0.19524 (6)0.0214 (3)
C120.32517 (7)0.40883 (15)0.00422 (6)0.0204 (3)
C210.45270 (7)0.31560 (14)0.04165 (6)0.0189 (3)
C220.42867 (7)0.40207 (16)0.10539 (6)0.0224 (3)
C230.47643 (7)0.39861 (16)0.15733 (6)0.0250 (3)
C240.54848 (7)0.30767 (16)0.14678 (6)0.0245 (3)
C250.57313 (7)0.22103 (16)0.08366 (6)0.0242 (3)
C260.52583 (7)0.22532 (16)0.03154 (6)0.0224 (3)
C510.35609 (6)0.18244 (15)0.25646 (6)0.0194 (3)
C520.37767 (7)0.05962 (15)0.31035 (6)0.0212 (3)
C530.34045 (7)0.05941 (15)0.36908 (6)0.0222 (3)
C540.28173 (7)0.18303 (16)0.37571 (6)0.0230 (3)
C550.25983 (7)0.30566 (16)0.32272 (6)0.0240 (3)
C560.29636 (7)0.30601 (16)0.26368 (6)0.0219 (3)
H30.470240.189170.088340.0254*
H40.324540.323950.126010.0250*
H50.444520.111820.199680.0257*
H220.379210.463850.113330.0269*
H230.459600.458820.200220.0300*
H240.580770.304610.182450.0294*
H250.622450.158730.076140.0291*
H260.543310.166260.011500.0269*
H520.418270.024570.306650.0254*
H530.355240.025670.404850.0266*
H540.256730.183790.416130.0276*
H550.219480.390050.326950.0288*
H560.280800.390600.227870.0263*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N130.0243 (5)0.0299 (6)0.0246 (5)0.0032 (4)0.0064 (4)0.0016 (4)
C20.0198 (5)0.0191 (6)0.0198 (5)0.0021 (4)0.0038 (4)0.0030 (4)
C30.0205 (6)0.0216 (6)0.0214 (6)0.0006 (4)0.0037 (4)0.0013 (4)
C40.0199 (5)0.0219 (6)0.0209 (6)0.0005 (4)0.0037 (4)0.0009 (4)
C50.0194 (5)0.0229 (6)0.0220 (6)0.0003 (4)0.0034 (4)0.0009 (4)
C120.0243 (6)0.0216 (6)0.0161 (5)0.0030 (4)0.0060 (4)0.0010 (4)
C210.0206 (5)0.0175 (5)0.0188 (5)0.0036 (4)0.0035 (4)0.0034 (4)
C220.0221 (5)0.0240 (6)0.0210 (6)0.0010 (4)0.0034 (4)0.0015 (4)
C230.0291 (6)0.0274 (6)0.0187 (5)0.0008 (5)0.0045 (4)0.0001 (4)
C240.0267 (6)0.0264 (6)0.0228 (6)0.0032 (5)0.0109 (5)0.0040 (4)
C250.0214 (6)0.0243 (6)0.0279 (6)0.0004 (4)0.0070 (5)0.0019 (5)
C260.0235 (6)0.0230 (6)0.0208 (6)0.0001 (4)0.0036 (4)0.0013 (4)
C510.0181 (5)0.0215 (6)0.0179 (5)0.0029 (4)0.0010 (4)0.0009 (4)
C520.0188 (5)0.0209 (5)0.0228 (6)0.0009 (4)0.0002 (4)0.0002 (4)
C530.0245 (6)0.0219 (6)0.0188 (5)0.0025 (4)0.0002 (4)0.0037 (4)
C540.0250 (6)0.0258 (6)0.0190 (5)0.0039 (4)0.0059 (4)0.0008 (4)
C550.0239 (6)0.0248 (6)0.0240 (6)0.0036 (5)0.0062 (4)0.0005 (4)
C560.0229 (6)0.0233 (6)0.0192 (5)0.0020 (4)0.0023 (4)0.0039 (4)
Geometric parameters (Å, º) top
N13—C121.1491 (16)C53—C541.3885 (17)
C2—C31.3542 (16)C54—C551.3899 (17)
C2—C121.4450 (17)C55—C561.3880 (16)
C2—C211.4841 (17)C3—H30.9500
C3—C41.4418 (17)C4—H40.9500
C4—C51.3447 (16)C5—H50.9500
C5—C511.4653 (16)C22—H220.9500
C21—C221.3985 (16)C23—H230.9500
C21—C261.4006 (17)C24—H240.9500
C22—C231.3921 (17)C25—H250.9500
C23—C241.3874 (17)C26—H260.9500
C24—C251.3907 (16)C52—H520.9500
C25—C261.3897 (17)C53—H530.9500
C51—C521.4023 (16)C54—H540.9500
C51—C561.4032 (16)C55—H550.9500
C52—C531.3894 (16)C56—H560.9500
N13···C12i3.3510 (16)C56···H22vii3.1000
N13···C54ii3.3396 (16)H3···C262.6600
N13···C4i3.4376 (15)H3···H52.3500
N13···C54iii3.3883 (15)H3···H262.1000
N13···H54ii2.8600H4···C122.6100
N13···H54iii2.6100H4···C562.7900
N13···H25iv2.8300H4···H562.2800
N13···H222.8900H5···H32.3500
C3···C25v3.5805 (17)H5···H522.4200
C3···C23vi3.4028 (17)H5···C52x3.0800
C4···N13i3.4376 (15)H5···H5x2.4700
C4···C24vi3.5341 (17)H5···H52x2.5700
C12···N13i3.3510 (16)H22···N132.8900
C12···C25vi3.5755 (17)H22···C122.4700
C12···C12i3.5296 (17)H22···C55ii2.8000
C21···C21vi3.4853 (16)H22···C56ii3.1000
C23···C3vi3.4028 (17)H23···H23xi2.5400
C24···C4vi3.5341 (17)H23···H24xi2.5500
C25···C12vi3.5755 (17)H24···H23xi2.5500
C25···C3v3.5805 (17)H25···N13xii2.8300
C54···N13vii3.3396 (16)H25···H54xiii2.6000
C54···N13viii3.3883 (15)H26···C32.7000
C2···H53ix3.0900H26···H32.1000
C3···H262.7000H26···C53x2.9000
C4···H562.7800H52···H52.4200
C5···H55viii2.9300H52···H5x2.5700
C12···H222.4700H52···C23xiv3.0500
C12···H42.6100H53···C2xiv3.0900
C21···H53ix2.8400H53···C21xiv2.8400
C23···H52ix3.0500H54···N13vii2.8600
C26···H32.6600H54···N13viii2.6100
C51···H55viii2.9100H54···H25xv2.6000
C52···H5x3.0800H55···C5iii2.9300
C52···H56viii2.9600H55···C51iii2.9100
C53···H56viii2.8500H56···C42.7800
C53···H26x2.9000H56···H42.2800
C54···H56viii3.0600H56···C52iii2.9600
C55···H22vii2.8000H56···C53iii2.8500
C56···H42.7900H56···C54iii3.0600
C3—C2—C12118.13 (11)C3—C4—H4119.00
C3—C2—C21125.26 (11)C5—C4—H4119.00
C12—C2—C21116.61 (10)C4—C5—H5116.00
C2—C3—C4126.20 (11)C51—C5—H5116.00
C3—C4—C5121.44 (11)C21—C22—H22120.00
C4—C5—C51127.23 (11)C23—C22—H22120.00
N13—C12—C2178.90 (13)C22—C23—H23120.00
C2—C21—C22120.26 (10)C24—C23—H23120.00
C2—C21—C26121.42 (10)C23—C24—H24120.00
C22—C21—C26118.32 (11)C25—C24—H24120.00
C21—C22—C23120.72 (11)C24—C25—H25120.00
C22—C23—C24120.34 (11)C26—C25—H25120.00
C23—C24—C25119.57 (11)C21—C26—H26120.00
C24—C25—C26120.20 (11)C25—C26—H26120.00
C21—C26—C25120.84 (11)C51—C52—H52120.00
C5—C51—C52119.42 (10)C53—C52—H52120.00
C5—C51—C56122.34 (10)C52—C53—H53120.00
C52—C51—C56118.24 (10)C54—C53—H53120.00
C51—C52—C53120.88 (11)C53—C54—H54120.00
C52—C53—C54120.27 (11)C55—C54—H54120.00
C53—C54—C55119.44 (11)C54—C55—H55120.00
C54—C55—C56120.63 (11)C56—C55—H55120.00
C51—C56—C55120.54 (11)C51—C56—H56120.00
C2—C3—H3117.00C55—C56—H56120.00
C4—C3—H3117.00
C12—C2—C3—C42.66 (18)C22—C21—C26—C250.32 (17)
C21—C2—C3—C4177.83 (11)C21—C22—C23—C240.57 (18)
C3—C2—C21—C22176.35 (12)C22—C23—C24—C250.55 (18)
C3—C2—C21—C263.30 (18)C23—C24—C25—C260.10 (19)
C12—C2—C21—C224.13 (16)C24—C25—C26—C210.34 (18)
C12—C2—C21—C26176.22 (11)C5—C51—C52—C53179.94 (11)
C2—C3—C4—C5177.44 (12)C56—C51—C52—C530.50 (17)
C3—C4—C5—C51177.45 (11)C5—C51—C56—C55179.63 (11)
C4—C5—C51—C52165.27 (12)C52—C51—C56—C550.08 (17)
C4—C5—C51—C5615.19 (19)C51—C52—C53—C540.85 (18)
C2—C21—C22—C23179.52 (11)C52—C53—C54—C550.76 (18)
C26—C21—C22—C230.14 (17)C53—C54—C55—C560.34 (18)
C2—C21—C26—C25179.97 (10)C54—C55—C56—C510.00 (18)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x, y+1, z+1/2; (viii) x+1/2, y1/2, z+1/2; (ix) x, y, z1/2; (x) x+1, y, z+1/2; (xi) x+1, y, z1/2; (xii) x+1/2, y1/2, z; (xiii) x+1/2, y+1/2, z1/2; (xiv) x, y, z+1/2; (xv) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C54—H54···N13viii0.952.613.388 (2)139
C56—H56···Cg1iii0.952.833.657 (1)146
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H13N
Mr231.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)110
a, b, c (Å)16.9390 (5), 7.5869 (2), 19.3809 (6)
β (°) 99.521 (3)
V3)2456.42 (13)
Z8
Radiation typeCu Kα
µ (mm1)0.56
Crystal size (mm)0.53 × 0.36 × 0.29
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.713, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4517, 2420, 2322
Rint0.014
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.02
No. of reflections2420
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C54—H54···N13i0.952.613.388 (2)139
C56—H56···Cg1ii0.952.833.657 (1)146
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFringuelli, F., Pani, G., Piermatti, O. & Pizzo, F. (1994). Tetrahedron, 50, 11499–11508.  CrossRef CAS Google Scholar
First citationGómez, R., Segura, J. L. & Martin, N. (1999). Chem. Commun. pp. 619–620.  Google Scholar
First citationGuillemin, J. C., Breneman, C. M., Joseph, J. C. & Ferris, J. P. (1998). Chem. Eur. J. 4, 1074–1082.  CrossRef CAS Google Scholar
First citationLiu, R. S. H., Matsumoto, H., Asato, A. E., Denny, M., Shichida, Y., Yoshizawa, T. & Dahlquist, F. W. (1981). J. Am. Chem. Soc. 103, 7195–7201.  CrossRef CAS Web of Science Google Scholar
First citationMaruyama, S., Tao, X. T., Hokari, H., Noh, T., Zhang, Y., Wada, T., Sasabe, H., Suzuki, H., Watanabe, T. & Miyata, S. (1998). Chem. Lett. pp. 749–750.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSegura, J. L., Martin, N. & Hanack, M. (1999). Eur. J. Org. Chem. pp. 643–651.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds