organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexa­hydro-1H-pyrrolo[3,4-b]quinoline

aDepartment of Physics, Anna University Chennai, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
*Correspondence e-mail: kali@annauniv.edu

(Received 24 October 2009; accepted 26 October 2009; online 31 October 2009)

In the title compound, C31H30N2O2S, the pyrrolidine ring adopts a twist conformation while the tetra­hydro­pyridine ring is in a half-chair conformation. The two rings are trans-fused. The pyridine-bound phenyl ring forms dihedral angles of 17.7 (1) and 48.1 (1)°, respectively, with the tosyl and benzyl phenyl rings. The mol­ecular structure is stabilized by an N—H⋯π inter­action involving the benzyl phenyl ring. In the crystal structure, mol­ecules translated by one unit along the a axis are linked into chains by C—H⋯π inter­actions involving the benzene ring of the tosyl group.

Related literature

For the biological activity of pyrroloquinoline derivatives, see: Ferlin et al. (2005[Ferlin, M. G., Chiarelotto, G., Gasparotto, V., Dalla Via, L., Pezzi, V., Barzon, L., Palù, G. & Castagliuolo, I. (2005). J. Med. Chem. 48, 3417-3427.]); Dalla Via et al. (2008[Dalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur. J. Med. Chem. 43, 429-434.]); Xiao et al. (2006[Xiao, X.-S., Antony, S., Pommier, Y. & Cushman, M. (2006). J. Med. Chem. 49, 1408-1412.]); Fujita et al. (1996[Fujita, M., Egawa, H., Miyamoto, T., Nakano, J. & Matsumoto, J. (1996). Eur. J. Med. Chem. 31, 981-988.]); Crenshaw et al. (1976[Crenshaw, R. R., Luke, G. M. & Siminoff, P. (1976). J. Med. Chem. 19, 262-275.]). For the crystal structure of the 3-ethyl analogue, see: Sudha et al. (2008[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008). Acta Cryst. E64, o425.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C31H30N2O2S

  • Mr = 494.63

  • Triclinic, [P \overline 1]

  • a = 10.9521 (3) Å

  • b = 11.2563 (3) Å

  • c = 12.5132 (3) Å

  • α = 100.930 (2)°

  • β = 108.577 (1)°

  • γ = 114.539 (1)°

  • V = 1234.00 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.48 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.761, Tmax = 0.963

  • 27773 measured reflections

  • 6486 independent reflections

  • 5001 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.01

  • 6486 reflections

  • 330 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯Cg2 0.83 (2) 2.61 (2) 3.374 (2) 152 (2)
C29—H29⋯Cg1i 0.93 2.90 3.605 (2) 134
Symmetry code: (i) x+1, y, z. Cg1 and Cg2 are the centroids of the C19–C24 and C26–C31 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrroloquinoline derivatives exhibit antitumor (Ferlin et al., 2005; Dalla Via et al., 2008), cytotoxic (Xiao et al., 2006), antibacterial (Fujita et al., 1996) and interferon-inducing activities (Crenshaw et al., 1976). As part of our studies on pyrroloquinoline derivatives, we report here the crystal structure of the title compound.

In the title molecule, the pyrrolidine ring adopts a twist conformation; the asymmetry parameter ΔC2[C2—C10] (Duax et al., 1976) and the puckering parameters q2 and φ (Cremer & Pople, 1975) are 7.5 (2)°, 0.394 (2) Å and 96.5 (3)°, respectively. The tosyl group is attached to the pyrrolidine ring in an equatorial position. The tetrahydropyridine ring adopts a half-chair conformation, with Q, θ, φ and ΔC2[C4—C9] values of 0.543 (2) Å, 131.1 (2)°, 93.1 (3)° and 6.6 (2)°, respectively. The phenyl group is attached to the tetrahydropyridine ring in a biaxial position. The C19—C24 phenyl ring forms dihedral angles of 74.0 (1) and 17.7 (1)°, respectively, with the C4—C9 and C12—C17 benzene rings. The C12—C17 and C26—C31 rings are oriented at a dihedral angle of 48.1 (1)°. The molecular structure is stabilized by an N—H···π interaction (Table 1, Fig. 1). Bond lengths and angles are comparable to those observed in the 3-ethyl analogue (Sudha et al., 2008).

In the crystal structure, molecules translated by one unit along the a axis are linked into chains by C—H···π interactions (Fig.2, Table 1) involving the benzene ring of the tosyl group.

Related literature top

For biological activitiy of pyrroloquinoline derivatives, see: Ferlin et al. (2005); Dalla Via et al. (2008); Xiao et al. (2006); Fujita et al. (1996); Crenshaw et al. (1976). For the crystal structure of the 3-ethyl analogue, see: Sudha et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). Cg1 and Cg2 are the centroids of the C19–C24 and C26–C31 rings, respectively.

Experimental top

InCl3 (20 mol%) was added to a mixture of 2-(N-cinnamyl-N-tosylamino)-3-phenyl propanal (1 mmol) and aniline (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 1 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the crude product was chromatographed on silica gel using a hexane-ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

The N-bound H atom was located from a difference map and refined freely. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Structure description top

Pyrroloquinoline derivatives exhibit antitumor (Ferlin et al., 2005; Dalla Via et al., 2008), cytotoxic (Xiao et al., 2006), antibacterial (Fujita et al., 1996) and interferon-inducing activities (Crenshaw et al., 1976). As part of our studies on pyrroloquinoline derivatives, we report here the crystal structure of the title compound.

In the title molecule, the pyrrolidine ring adopts a twist conformation; the asymmetry parameter ΔC2[C2—C10] (Duax et al., 1976) and the puckering parameters q2 and φ (Cremer & Pople, 1975) are 7.5 (2)°, 0.394 (2) Å and 96.5 (3)°, respectively. The tosyl group is attached to the pyrrolidine ring in an equatorial position. The tetrahydropyridine ring adopts a half-chair conformation, with Q, θ, φ and ΔC2[C4—C9] values of 0.543 (2) Å, 131.1 (2)°, 93.1 (3)° and 6.6 (2)°, respectively. The phenyl group is attached to the tetrahydropyridine ring in a biaxial position. The C19—C24 phenyl ring forms dihedral angles of 74.0 (1) and 17.7 (1)°, respectively, with the C4—C9 and C12—C17 benzene rings. The C12—C17 and C26—C31 rings are oriented at a dihedral angle of 48.1 (1)°. The molecular structure is stabilized by an N—H···π interaction (Table 1, Fig. 1). Bond lengths and angles are comparable to those observed in the 3-ethyl analogue (Sudha et al., 2008).

In the crystal structure, molecules translated by one unit along the a axis are linked into chains by C—H···π interactions (Fig.2, Table 1) involving the benzene ring of the tosyl group.

For biological activitiy of pyrroloquinoline derivatives, see: Ferlin et al. (2005); Dalla Via et al. (2008); Xiao et al. (2006); Fujita et al. (1996); Crenshaw et al. (1976). For the crystal structure of the 3-ethyl analogue, see: Sudha et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). Cg1 and Cg2 are the centroids of the C19–C24 and C26–C31 rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The dotted line indicates an N—H···π interaction.
[Figure 2] Fig. 2. Crystal packing of the title compound. C—H···π interactions are shown as dashed lines. For the sake of clarity, H atoms not involved in these interactions have been omitted.
3-Benzyl-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexahydro-1H- pyrrolo[3,4-b]quinoline top
Crystal data top
C31H30N2O2SZ = 2
Mr = 494.63F(000) = 524
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9521 (3) ÅCell parameters from 9232 reflections
b = 11.2563 (3) Åθ = 2.3–30.0°
c = 12.5132 (3) ŵ = 0.16 mm1
α = 100.930 (2)°T = 100 K
β = 108.577 (1)°Block, colourless
γ = 114.539 (1)°0.48 × 0.24 × 0.23 mm
V = 1234.00 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6486 independent reflections
Radiation source: fine-focus sealed tube5001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.761, Tmax = 0.963k = 1515
27773 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.046P)2 + 0.7475P]
where P = (Fo2 + 2Fc2)/3
6486 reflections(Δ/σ)max = 0.001
330 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C31H30N2O2Sγ = 114.539 (1)°
Mr = 494.63V = 1234.00 (6) Å3
Triclinic, P1Z = 2
a = 10.9521 (3) ÅMo Kα radiation
b = 11.2563 (3) ŵ = 0.16 mm1
c = 12.5132 (3) ÅT = 100 K
α = 100.930 (2)°0.48 × 0.24 × 0.23 mm
β = 108.577 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6486 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5001 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.963Rint = 0.040
27773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.51 e Å3
6486 reflectionsΔρmin = 0.42 e Å3
330 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36310 (4)0.70596 (4)0.01644 (4)0.01857 (10)
O10.25363 (13)0.74003 (13)0.07610 (11)0.0250 (3)
O20.40078 (13)0.62325 (12)0.08784 (10)0.0240 (3)
N10.51710 (14)0.85539 (13)0.07238 (12)0.0173 (3)
N20.87750 (15)1.02866 (14)0.33742 (12)0.0179 (3)
H1N20.939 (2)1.009 (2)0.3253 (18)0.026 (5)*
C10.50851 (17)0.96845 (16)0.14938 (14)0.0181 (3)
H1A0.41810.92920.16040.022*
H1B0.51091.03810.11360.022*
C20.64811 (17)1.03222 (15)0.26952 (14)0.0150 (3)
H20.62440.97700.31940.018*
C30.72246 (17)1.18825 (15)0.34620 (14)0.0151 (3)
H30.73431.24080.29250.018*
C40.87963 (17)1.23749 (16)0.44241 (14)0.0158 (3)
C50.95793 (18)1.36418 (16)0.54193 (15)0.0185 (3)
H50.91221.41670.54960.022*
C61.10111 (18)1.41433 (17)0.62954 (15)0.0210 (3)
H61.15091.49950.69450.025*
C71.16958 (18)1.33567 (17)0.61916 (15)0.0215 (3)
H71.26591.36830.67740.026*
C81.09513 (18)1.20931 (17)0.52270 (15)0.0194 (3)
H81.14141.15700.51690.023*
C90.95044 (17)1.15885 (16)0.43336 (14)0.0165 (3)
C100.75726 (17)1.00918 (16)0.23056 (14)0.0156 (3)
H100.79821.07790.19540.019*
C110.66205 (17)0.86091 (16)0.13260 (14)0.0171 (3)
H110.64870.79060.17030.021*
C120.30055 (17)0.61554 (16)0.07342 (14)0.0183 (3)
C130.35945 (18)0.53371 (16)0.11236 (15)0.0207 (3)
H130.43320.52910.09330.025*
C140.30604 (19)0.45969 (17)0.17978 (15)0.0218 (3)
H140.34520.40570.20600.026*
C150.19503 (18)0.46425 (16)0.20920 (15)0.0202 (3)
C160.13799 (18)0.54575 (17)0.16856 (15)0.0217 (3)
H160.06320.54920.18660.026*
C170.19011 (18)0.62183 (16)0.10184 (15)0.0208 (3)
H170.15150.67650.07640.025*
C180.1399 (2)0.38679 (18)0.28517 (17)0.0254 (4)
H18A0.03550.35530.25930.038*
H18B0.19580.44870.36910.038*
H18C0.15330.30700.27550.038*
C190.63082 (17)1.21998 (16)0.40329 (14)0.0164 (3)
C200.61254 (18)1.17490 (17)0.49677 (15)0.0205 (3)
H200.65251.12060.52110.025*
C210.53582 (19)1.20987 (18)0.55365 (16)0.0254 (4)
H210.52501.17960.61600.031*
C220.47489 (19)1.29029 (18)0.51758 (17)0.0270 (4)
H220.42271.31340.55530.032*
C230.49216 (19)1.33563 (18)0.42575 (16)0.0248 (4)
H230.45231.39020.40210.030*
C240.56895 (18)1.30027 (16)0.36793 (15)0.0200 (3)
H240.57891.33050.30540.024*
C250.72722 (18)0.83906 (18)0.04379 (15)0.0213 (3)
H25A0.66720.74160.01200.026*
H25B0.72350.89770.00340.026*
C260.88731 (18)0.87601 (17)0.11140 (14)0.0193 (3)
C271.00564 (19)1.00373 (17)0.12935 (15)0.0219 (3)
H270.98551.06330.09420.026*
C281.1526 (2)1.04302 (18)0.19876 (16)0.0251 (4)
H281.23041.12720.20770.030*
C291.18447 (19)0.95779 (19)0.25491 (16)0.0262 (4)
H291.28330.98530.30300.031*
C301.0679 (2)0.83100 (19)0.23886 (17)0.0259 (4)
H301.08860.77390.27730.031*
C310.92062 (19)0.78886 (17)0.16586 (16)0.0226 (4)
H310.84340.70190.15310.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01624 (19)0.01639 (19)0.01461 (19)0.00506 (15)0.00412 (15)0.00178 (14)
O10.0177 (6)0.0274 (6)0.0207 (6)0.0083 (5)0.0026 (5)0.0090 (5)
O20.0232 (6)0.0204 (6)0.0171 (6)0.0060 (5)0.0082 (5)0.0016 (5)
N10.0150 (6)0.0137 (6)0.0176 (7)0.0066 (5)0.0048 (5)0.0009 (5)
N20.0174 (7)0.0189 (7)0.0163 (7)0.0124 (6)0.0047 (5)0.0017 (5)
C10.0167 (7)0.0165 (7)0.0197 (8)0.0095 (6)0.0072 (6)0.0033 (6)
C20.0156 (7)0.0141 (7)0.0158 (7)0.0083 (6)0.0074 (6)0.0043 (6)
C30.0156 (7)0.0134 (7)0.0160 (7)0.0076 (6)0.0070 (6)0.0042 (6)
C40.0149 (7)0.0154 (7)0.0166 (7)0.0069 (6)0.0077 (6)0.0053 (6)
C50.0200 (8)0.0152 (7)0.0207 (8)0.0091 (6)0.0106 (6)0.0046 (6)
C60.0179 (8)0.0163 (7)0.0188 (8)0.0042 (6)0.0062 (6)0.0012 (6)
C70.0146 (7)0.0235 (8)0.0186 (8)0.0064 (6)0.0052 (6)0.0042 (7)
C80.0178 (8)0.0227 (8)0.0206 (8)0.0129 (7)0.0088 (6)0.0074 (7)
C90.0172 (7)0.0164 (7)0.0158 (7)0.0081 (6)0.0085 (6)0.0048 (6)
C100.0157 (7)0.0144 (7)0.0154 (7)0.0078 (6)0.0064 (6)0.0035 (6)
C110.0153 (7)0.0154 (7)0.0164 (7)0.0074 (6)0.0049 (6)0.0022 (6)
C120.0179 (8)0.0135 (7)0.0148 (7)0.0045 (6)0.0047 (6)0.0011 (6)
C130.0203 (8)0.0175 (7)0.0209 (8)0.0094 (7)0.0091 (7)0.0016 (6)
C140.0270 (9)0.0176 (7)0.0226 (8)0.0135 (7)0.0112 (7)0.0055 (6)
C150.0212 (8)0.0136 (7)0.0184 (8)0.0059 (6)0.0071 (6)0.0013 (6)
C160.0182 (8)0.0198 (8)0.0246 (9)0.0089 (7)0.0097 (7)0.0052 (7)
C170.0182 (8)0.0163 (7)0.0229 (8)0.0082 (6)0.0063 (7)0.0042 (6)
C180.0301 (9)0.0217 (8)0.0292 (9)0.0142 (7)0.0165 (8)0.0109 (7)
C190.0138 (7)0.0133 (7)0.0163 (7)0.0050 (6)0.0056 (6)0.0012 (6)
C200.0201 (8)0.0176 (7)0.0220 (8)0.0088 (6)0.0096 (7)0.0058 (6)
C210.0212 (8)0.0238 (8)0.0224 (9)0.0050 (7)0.0119 (7)0.0029 (7)
C220.0177 (8)0.0249 (9)0.0282 (9)0.0077 (7)0.0109 (7)0.0037 (7)
C230.0201 (8)0.0224 (8)0.0289 (9)0.0138 (7)0.0081 (7)0.0016 (7)
C240.0185 (8)0.0165 (7)0.0203 (8)0.0086 (6)0.0062 (6)0.0030 (6)
C250.0215 (8)0.0218 (8)0.0173 (8)0.0116 (7)0.0073 (7)0.0018 (6)
C260.0212 (8)0.0201 (8)0.0157 (7)0.0120 (7)0.0090 (6)0.0002 (6)
C270.0253 (8)0.0210 (8)0.0200 (8)0.0126 (7)0.0113 (7)0.0053 (7)
C280.0229 (8)0.0221 (8)0.0231 (9)0.0070 (7)0.0118 (7)0.0024 (7)
C290.0191 (8)0.0304 (9)0.0229 (9)0.0123 (7)0.0075 (7)0.0019 (7)
C300.0296 (9)0.0260 (9)0.0277 (9)0.0198 (8)0.0124 (8)0.0082 (7)
C310.0243 (8)0.0183 (8)0.0245 (9)0.0114 (7)0.0124 (7)0.0030 (7)
Geometric parameters (Å, º) top
S1—O11.4360 (12)C14—C151.395 (2)
S1—O21.4401 (12)C14—H140.93
S1—N11.6277 (13)C15—C161.393 (2)
S1—C121.7649 (17)C15—C181.507 (2)
N1—C111.4934 (19)C16—C171.387 (2)
N1—C11.4996 (19)C16—H160.93
N2—C91.406 (2)C17—H170.93
N2—C101.448 (2)C18—H18A0.96
N2—H1N20.83 (2)C18—H18B0.96
C1—C21.526 (2)C18—H18C0.96
C1—H1A0.97C19—C241.393 (2)
C1—H1B0.97C19—C201.399 (2)
C2—C101.521 (2)C20—C211.385 (2)
C2—C31.531 (2)C20—H200.93
C2—H20.98C21—C221.390 (3)
C3—C191.518 (2)C21—H210.93
C3—C41.534 (2)C22—C231.377 (3)
C3—H30.98C22—H220.93
C4—C51.397 (2)C23—C241.395 (2)
C4—C91.409 (2)C23—H230.93
C5—C61.384 (2)C24—H240.93
C5—H50.93C25—C261.510 (2)
C6—C71.390 (2)C25—H25A0.97
C6—H60.93C25—H25B0.97
C7—C81.380 (2)C26—C271.393 (2)
C7—H70.93C26—C311.397 (2)
C8—C91.402 (2)C27—C281.383 (2)
C8—H80.93C27—H270.93
C10—C111.530 (2)C28—C291.383 (3)
C10—H100.98C28—H280.93
C11—C251.534 (2)C29—C301.386 (3)
C11—H110.98C29—H290.93
C12—C171.389 (2)C30—C311.387 (2)
C12—C131.402 (2)C30—H300.93
C13—C141.387 (2)C31—H310.93
C13—H130.93
O1—S1—O2119.68 (7)C14—C13—C12118.98 (15)
O1—S1—N1106.27 (7)C14—C13—H13120.5
O2—S1—N1106.96 (7)C12—C13—H13120.5
O1—S1—C12107.58 (8)C13—C14—C15121.68 (15)
O2—S1—C12107.09 (7)C13—C14—H14119.2
N1—S1—C12108.93 (7)C15—C14—H14119.2
C11—N1—C1111.99 (12)C16—C15—C14118.02 (16)
C11—N1—S1120.85 (10)C16—C15—C18120.34 (15)
C1—N1—S1118.57 (10)C14—C15—C18121.62 (15)
C9—N2—C10114.33 (12)C17—C16—C15121.59 (16)
C9—N2—H1N2111.4 (14)C17—C16—H16119.2
C10—N2—H1N2116.0 (14)C15—C16—H16119.2
N1—C1—C2103.14 (12)C16—C17—C12119.40 (15)
N1—C1—H1A111.1C16—C17—H17120.3
C2—C1—H1A111.1C12—C17—H17120.3
N1—C1—H1B111.1C15—C18—H18A109.5
C2—C1—H1B111.1C15—C18—H18B109.5
H1A—C1—H1B109.1H18A—C18—H18B109.5
C10—C2—C1103.00 (12)C15—C18—H18C109.5
C10—C2—C3109.13 (12)H18A—C18—H18C109.5
C1—C2—C3118.14 (13)H18B—C18—H18C109.5
C10—C2—H2108.7C24—C19—C20118.41 (15)
C1—C2—H2108.7C24—C19—C3120.85 (14)
C3—C2—H2108.7C20—C19—C3120.67 (14)
C19—C3—C2113.47 (12)C21—C20—C19120.97 (16)
C19—C3—C4111.61 (12)C21—C20—H20119.5
C2—C3—C4108.54 (12)C19—C20—H20119.5
C19—C3—H3107.7C20—C21—C22120.01 (17)
C2—C3—H3107.7C20—C21—H21120.0
C4—C3—H3107.7C22—C21—H21120.0
C5—C4—C9117.86 (14)C23—C22—C21119.69 (16)
C5—C4—C3120.29 (13)C23—C22—H22120.2
C9—C4—C3121.85 (13)C21—C22—H22120.2
C6—C5—C4122.35 (15)C22—C23—C24120.49 (16)
C6—C5—H5118.8C22—C23—H23119.8
C4—C5—H5118.8C24—C23—H23119.8
C5—C6—C7119.10 (15)C19—C24—C23120.42 (16)
C5—C6—H6120.4C19—C24—H24119.8
C7—C6—H6120.4C23—C24—H24119.8
C8—C7—C6120.19 (15)C26—C25—C11110.75 (13)
C8—C7—H7119.9C26—C25—H25A109.5
C6—C7—H7119.9C11—C25—H25A109.5
C7—C8—C9120.77 (15)C26—C25—H25B109.5
C7—C8—H8119.6C11—C25—H25B109.5
C9—C8—H8119.6H25A—C25—H25B108.1
C8—C9—N2119.04 (14)C27—C26—C31118.39 (15)
C8—C9—C4119.73 (14)C27—C26—C25120.46 (15)
N2—C9—C4121.22 (14)C31—C26—C25120.94 (15)
N2—C10—C2107.97 (13)C28—C27—C26120.86 (16)
N2—C10—C11115.04 (12)C28—C27—H27119.6
C2—C10—C11104.70 (12)C26—C27—H27119.6
N2—C10—H10109.6C27—C28—C29120.38 (16)
C2—C10—H10109.6C27—C28—H28119.8
C11—C10—H10109.6C29—C28—H28119.8
N1—C11—C10100.91 (11)C28—C29—C30119.44 (16)
N1—C11—C25112.14 (13)C28—C29—H29120.3
C10—C11—C25113.02 (13)C30—C29—H29120.3
N1—C11—H11110.2C29—C30—C31120.37 (17)
C10—C11—H11110.2C29—C30—H30119.8
C25—C11—H11110.2C31—C30—H30119.8
C17—C12—C13120.33 (15)C30—C31—C26120.50 (16)
C17—C12—S1120.10 (13)C30—C31—H31119.8
C13—C12—S1119.54 (13)C26—C31—H31119.8
O1—S1—N1—C11169.30 (12)N2—C10—C11—C2586.66 (17)
O2—S1—N1—C1140.37 (14)C2—C10—C11—C25155.01 (13)
C12—S1—N1—C1175.06 (13)O1—S1—C12—C1716.92 (15)
O1—S1—N1—C145.43 (13)O2—S1—C12—C17146.77 (13)
O2—S1—N1—C1174.35 (12)N1—S1—C12—C1797.88 (14)
C12—S1—N1—C170.22 (13)O1—S1—C12—C13160.95 (12)
C11—N1—C1—C27.78 (16)O2—S1—C12—C1331.10 (14)
S1—N1—C1—C2140.39 (11)N1—S1—C12—C1384.25 (13)
N1—C1—C2—C1029.34 (15)C17—C12—C13—C140.2 (2)
N1—C1—C2—C3149.66 (13)S1—C12—C13—C14178.03 (12)
C10—C2—C3—C19172.66 (13)C12—C13—C14—C150.3 (2)
C1—C2—C3—C1970.25 (18)C13—C14—C15—C160.1 (2)
C10—C2—C3—C447.97 (16)C13—C14—C15—C18178.40 (15)
C1—C2—C3—C4165.07 (13)C14—C15—C16—C170.7 (2)
C19—C3—C4—C538.87 (19)C18—C15—C16—C17177.88 (15)
C2—C3—C4—C5164.65 (14)C15—C16—C17—C120.8 (2)
C19—C3—C4—C9141.90 (15)C13—C12—C17—C160.4 (2)
C2—C3—C4—C916.12 (19)S1—C12—C17—C16177.50 (12)
C9—C4—C5—C60.7 (2)C2—C3—C19—C24113.47 (16)
C3—C4—C5—C6178.57 (15)C4—C3—C19—C24123.52 (15)
C4—C5—C6—C70.5 (3)C2—C3—C19—C2069.60 (18)
C5—C6—C7—C80.1 (3)C4—C3—C19—C2053.42 (18)
C6—C7—C8—C90.6 (3)C24—C19—C20—C210.5 (2)
C7—C8—C9—N2179.10 (15)C3—C19—C20—C21176.54 (14)
C7—C8—C9—C40.4 (2)C19—C20—C21—C220.4 (2)
C10—N2—C9—C8159.03 (14)C20—C21—C22—C230.4 (3)
C10—N2—C9—C422.3 (2)C21—C22—C23—C240.6 (3)
C5—C4—C9—C80.2 (2)C20—C19—C24—C230.7 (2)
C3—C4—C9—C8179.05 (14)C3—C19—C24—C23176.33 (14)
C5—C4—C9—N2178.46 (15)C22—C23—C24—C190.8 (2)
C3—C4—C9—N22.3 (2)N1—C11—C25—C26167.76 (13)
C9—N2—C10—C255.04 (17)C10—C11—C25—C2654.52 (18)
C9—N2—C10—C11171.53 (13)C11—C25—C26—C27102.25 (18)
C1—C2—C10—N2164.09 (12)C11—C25—C26—C3172.43 (19)
C3—C2—C10—N269.58 (15)C31—C26—C27—C280.4 (2)
C1—C2—C10—C1141.05 (15)C25—C26—C27—C28175.20 (15)
C3—C2—C10—C11167.38 (12)C26—C27—C28—C292.0 (3)
C1—N1—C11—C1016.78 (16)C27—C28—C29—C301.4 (3)
S1—N1—C11—C10164.12 (11)C28—C29—C30—C310.9 (3)
C1—N1—C11—C25137.32 (14)C29—C30—C31—C262.5 (3)
S1—N1—C11—C2575.33 (16)C27—C26—C31—C301.9 (2)
N2—C10—C11—N1153.42 (13)C25—C26—C31—C30172.91 (15)
C2—C10—C11—N135.09 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Cg20.83 (2)2.61 (2)3.374 (2)152 (2)
C29—H29···Cg1i0.932.903.605 (2)134
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC31H30N2O2S
Mr494.63
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.9521 (3), 11.2563 (3), 12.5132 (3)
α, β, γ (°)100.930 (2), 108.577 (1), 114.539 (1)
V3)1234.00 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.48 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.761, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
27773, 6486, 5001
Rint0.040
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.01
No. of reflections6486
No. of parameters330
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.42

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Cg20.83 (2)2.61 (2)3.374 (2)152 (2)
C29—H29···Cg1i0.932.903.605 (2)134
Symmetry code: (i) x+1, y, z.
 

Footnotes

Working at: Department of Physics, R. M. K Engineering Collge, R. S. M Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

§Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrenshaw, R. R., Luke, G. M. & Siminoff, P. (1976). J. Med. Chem. 19, 262–275.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur. J. Med. Chem. 43, 429–434.  Web of Science PubMed CAS Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationFerlin, M. G., Chiarelotto, G., Gasparotto, V., Dalla Via, L., Pezzi, V., Barzon, L., Palù, G. & Castagliuolo, I. (2005). J. Med. Chem. 48, 3417–3427.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFujita, M., Egawa, H., Miyamoto, T., Nakano, J. & Matsumoto, J. (1996). Eur. J. Med. Chem. 31, 981–988.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008). Acta Cryst. E64, o425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, X.-S., Antony, S., Pommier, Y. & Cushman, M. (2006). J. Med. Chem. 49, 1408–1412.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds