organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl­enedi­ammonium di­chloro­iodide chloride

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 13 August 2009; accepted 25 September 2009; online 3 October 2009)

The asymmetric unit of the crystal structure of the title compound, C2H10N22+·Cl2I·Cl, contains two ethyl­ene­diammonium cations, two [ICl2] anions and two Cl anions, of which one cation, one [ICl2] anion and one Cl anion have site symmetry 2, with the mid-point of the C—C bond of the cation, the I atom of [ICl2] anion and the Cl anion located on the twofold rotation axes. The two independent cations show different conformations, the N—C—C—N torsion angles being 160.1 (2) and −73.1 (4)°. The crystal structure is stabilized by extensive inter­molecular N—H⋯Cl hydrogen bonding.

Related literature

For general background to combining protonated aromatic nitro­gen bases with halide or polyhalide ions, see: Tucker & Kroon (1973[Tucker, P. A. & Kroon, P. A. (1973). Acta Cryst. B29, 2967-2968.]); Bandoli et al. (1978[Bandoli, G., Clemente, D. A. & Nicolini, M. (1978). J. Cryst. Mol. Struct. 8, 279-293.]). For Cl—I bond lengths and Cl–I–Cl bond angles, see: Lang et al. (2000[Lang, E. S., Burrow, R. A. & Diniz, J. (2000). Acta Cryst. C56, 471-472.]); Wang et al. (1999a[Wang, Y.-Q., Wang, Z.-M., Liao, C.-S. & Yan, C.-H. (1999a). Acta Cryst. C55, 1503-1506.],b[Wang, Z.-M., Wang, Y.-Q., Liao, C.-S. & Yan, C.-H. (1999b). Acta Cryst. C55, 1506-1508.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·Cl2I·Cl

  • Mr = 295.37

  • Monoclinic, C 2/c

  • a = 8.565 (2) Å

  • b = 16.2186 (15) Å

  • c = 19.9631 (16) Å

  • β = 101.164 (16)°

  • V = 2720.8 (7) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 4.34 mm−1

  • T = 293 K

  • 0.36 × 0.30 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.230, Tmax = 0.301

  • 13418 measured reflections

  • 3106 independent reflections

  • 2821 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.10

  • 3106 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.89 2.65 3.410 (3) 144
N1—H1A⋯Cl3i 0.89 2.76 3.341 (3) 124
N1—H1B⋯Cl4 0.89 2.27 3.136 (2) 164
N1—H1C⋯Cl5i 0.89 2.27 3.148 (3) 168
N2—H2A⋯Cl4ii 0.89 2.38 3.232 (3) 161
N2—H2B⋯Cl5iii 0.89 2.26 3.123 (3) 162
N2—H2C⋯Cl3ii 0.89 2.40 3.246 (3) 159
N3—H3A⋯Cl3iv 0.89 2.42 3.297 (2) 167
N3—H3B⋯Cl5 0.89 2.32 3.144 (3) 154
N3—H3C⋯Cl1ii 0.89 2.49 3.319 (2) 155
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) x+1, y, z; (iv) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently much attention has been devoted to combining protonated aromatic nitrogen bases with halide or polyhalide ions due to their interesting structural features (Tucker & Kroon, 1973; Bandoli et al., 1978). In our laboratory, a compound containing diprotonated ethylenediamine and ICl2 anions has been synthesized, its crystal structure is reported herein.

The asymmetric unit of the title compound, [C2H10N2]2+.[ICl2]-.Cl-, (Fig. 1) consists of two diprotonated ethylenediammonium cations, two [ICl2]- anions and two Cl- anions. The dichloroiodide anion Cl1–I1–Cl1A has site symmetry 2 and is linear with Cl1—I1—Cl1A bond angle of 179.55 (4). The Cl1—I1 bond length is similar to the values of 2.5417 (11) to 2.5575 (10) Å reported by (Wang et al., 1999a,b). In Cl2—I2—Cl3 anion, the I2—Cl3 bond length of 2.6790 (9) Å is longer than I2—Cl2 bond length of 2.4518 (10) Å. The Cl2—I2—Cl3 is also nearly linear, the Cl2—I2—Cl3 bond angle being 178.30 (3)°. The nearly linear Cl—I—Cl bonds are similar to those reported by Lang et al. (2000) and Wang et al. (1999a,b). The two independent cations show the different conformations, the N-C-C-N torsion angles being 160.1 (2) and -73.1 (4)°. The crystal structure is stabilized by intermolecular N—H···Cl hydrogen bonds (Fig. 2).

Related literature top

For general background to combining protonated aromatic

nitrogen bases with halide or polyhalide ions, see: Tucker & Kroon (1973); Bandoli et al. (1978). For Cl—I bond lengths and Cl–I–Cl bond angles, see: Lang et al. (2000); Wang et al. (1999a,b).

Experimental top

KI (0.33 g) and I2 (0.5 g) were dissolved in a mixed solution of ethanol (30 ml) and concentrated hydrochloric acid (10 ml, 36%). On addition of ethylenediamine (0.60 g) to the above solution, the mixture was stirred for 2 h, then filtered. The filtrate was left at room temperature to allow the solvent to evaporate. Yellow transparent block crystals were obtained after two weeks.

Refinement top

H atoms were placed in calculated positions with C—H = 0.97 Å and N—H = 0.89 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Structure description top

Recently much attention has been devoted to combining protonated aromatic nitrogen bases with halide or polyhalide ions due to their interesting structural features (Tucker & Kroon, 1973; Bandoli et al., 1978). In our laboratory, a compound containing diprotonated ethylenediamine and ICl2 anions has been synthesized, its crystal structure is reported herein.

The asymmetric unit of the title compound, [C2H10N2]2+.[ICl2]-.Cl-, (Fig. 1) consists of two diprotonated ethylenediammonium cations, two [ICl2]- anions and two Cl- anions. The dichloroiodide anion Cl1–I1–Cl1A has site symmetry 2 and is linear with Cl1—I1—Cl1A bond angle of 179.55 (4). The Cl1—I1 bond length is similar to the values of 2.5417 (11) to 2.5575 (10) Å reported by (Wang et al., 1999a,b). In Cl2—I2—Cl3 anion, the I2—Cl3 bond length of 2.6790 (9) Å is longer than I2—Cl2 bond length of 2.4518 (10) Å. The Cl2—I2—Cl3 is also nearly linear, the Cl2—I2—Cl3 bond angle being 178.30 (3)°. The nearly linear Cl—I—Cl bonds are similar to those reported by Lang et al. (2000) and Wang et al. (1999a,b). The two independent cations show the different conformations, the N-C-C-N torsion angles being 160.1 (2) and -73.1 (4)°. The crystal structure is stabilized by intermolecular N—H···Cl hydrogen bonds (Fig. 2).

For general background to combining protonated aromatic

nitrogen bases with halide or polyhalide ions, see: Tucker & Kroon (1973); Bandoli et al. (1978). For Cl—I bond lengths and Cl–I–Cl bond angles, see: Lang et al. (2000); Wang et al. (1999a,b).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with atom labels. Displacement ellipsoids were drawn at the 40% probability level [symmetry code: (i) -x, y, -z+1/2; (ii) 2-x, y, -z+1/2].
Ethylenediammonium dichloroiodide chloride top
Crystal data top
C2H10N22+·Cl2I·ClF(000) = 1680
Mr = 295.37Dx = 2.163 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2821 reflections
a = 8.565 (2) Åθ = 2.5–27.5°
b = 16.2186 (15) ŵ = 4.34 mm1
c = 19.9631 (16) ÅT = 293 K
β = 101.164 (16)°Block, yellow
V = 2720.8 (7) Å30.36 × 0.30 × 0.28 mm
Z = 12
Data collection top
Rigaku SCXmini
diffractometer
3106 independent reflections
Radiation source: fine-focus sealed tube2821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2020
Tmin = 0.230, Tmax = 0.301l = 2525
13418 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0271P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3106 reflectionsΔρmax = 0.92 e Å3
114 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00017 (4)
Crystal data top
C2H10N22+·Cl2I·ClV = 2720.8 (7) Å3
Mr = 295.37Z = 12
Monoclinic, C2/cMo Kα radiation
a = 8.565 (2) ŵ = 4.34 mm1
b = 16.2186 (15) ÅT = 293 K
c = 19.9631 (16) Å0.36 × 0.30 × 0.28 mm
β = 101.164 (16)°
Data collection top
Rigaku SCXmini
diffractometer
3106 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2821 reflections with I > 2σ(I)
Tmin = 0.230, Tmax = 0.301Rint = 0.034
13418 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.10Δρmax = 0.92 e Å3
3106 reflectionsΔρmin = 0.65 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9115 (3)0.1716 (2)0.24029 (15)0.0472 (8)
H1D0.87580.22430.21990.057*
H1E0.87780.12890.20650.057*
C21.0658 (4)0.8169 (2)0.43343 (16)0.0412 (7)
H2D1.09880.84920.47470.049*
H2E1.11290.76260.44160.049*
C30.8881 (4)0.80844 (18)0.41979 (16)0.0415 (7)
H3D0.85390.78490.37470.050*
H3E0.85920.77000.45260.050*
Cl10.30378 (10)0.45106 (5)0.26597 (4)0.04654 (19)
Cl21.16812 (9)0.58195 (6)0.42064 (4)0.04530 (19)
Cl30.57256 (8)0.54598 (5)0.41952 (3)0.03576 (16)
Cl40.50000.23483 (7)0.25000.0401 (2)
Cl50.47720 (9)0.79063 (5)0.40942 (4)0.04283 (18)
I10.00000.450435 (17)0.25000.03375 (8)
I20.88263 (2)0.564990 (11)0.418170 (9)0.02956 (7)
N10.8379 (3)0.15711 (16)0.29954 (12)0.0395 (6)
H1A0.84850.10420.31140.059*
H1B0.73510.17000.28900.059*
H1C0.88550.18830.33420.059*
N21.1282 (3)0.85669 (15)0.37681 (12)0.0384 (6)
H2A1.08200.83420.33720.058*
H2B1.23300.84920.38320.058*
H2C1.10690.91040.37620.058*
N30.8007 (3)0.88669 (15)0.42352 (12)0.0382 (6)
H3A0.84010.91230.46260.057*
H3B0.69810.87590.42160.057*
H3C0.81150.91890.38860.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (16)0.084 (3)0.0303 (15)0.0052 (16)0.0042 (13)0.0027 (16)
C20.0345 (17)0.0478 (18)0.0391 (16)0.0067 (13)0.0013 (13)0.0026 (14)
C30.0399 (18)0.0322 (16)0.0529 (19)0.0026 (12)0.0100 (15)0.0020 (14)
Cl10.0356 (4)0.0628 (5)0.0405 (4)0.0103 (4)0.0056 (3)0.0010 (4)
Cl20.0291 (4)0.0586 (5)0.0487 (4)0.0054 (3)0.0089 (3)0.0000 (4)
Cl30.0263 (3)0.0409 (4)0.0391 (4)0.0016 (3)0.0038 (3)0.0005 (3)
Cl40.0340 (5)0.0407 (6)0.0420 (6)0.0000.0016 (4)0.000
Cl50.0300 (4)0.0488 (4)0.0488 (4)0.0043 (3)0.0055 (3)0.0040 (3)
I10.03698 (16)0.03827 (15)0.02565 (13)0.0000.00517 (11)0.000
I20.02793 (11)0.03197 (11)0.02788 (10)0.00081 (7)0.00317 (7)0.00044 (7)
N10.0337 (13)0.0450 (15)0.0410 (14)0.0042 (11)0.0099 (11)0.0038 (11)
N20.0295 (13)0.0401 (14)0.0463 (14)0.0023 (10)0.0090 (11)0.0025 (11)
N30.0310 (13)0.0435 (14)0.0413 (14)0.0039 (11)0.0103 (11)0.0044 (11)
Geometric parameters (Å, º) top
C1—N11.463 (4)Cl2—I22.4518 (10)
C1—C1i1.491 (6)Cl3—I22.6790 (9)
C1—H1D0.9700I1—Cl1ii2.5595 (10)
C1—H1E0.9700N1—H1A0.8900
C2—N21.488 (4)N1—H1B0.8900
C2—C31.499 (4)N1—H1C0.8900
C2—H2D0.9700N2—H2A0.8900
C2—H2E0.9700N2—H2B0.8900
C3—N31.483 (4)N2—H2C0.8900
C3—H3D0.9700N3—H3A0.8900
C3—H3E0.9700N3—H3B0.8900
Cl1—I12.5595 (10)N3—H3C0.8900
N1—C1—C1i111.4 (3)Cl2—I2—Cl3178.30 (3)
N1—C1—H1D109.3C1—N1—H1A109.5
C1i—C1—H1D109.3C1—N1—H1B109.5
N1—C1—H1E109.3H1A—N1—H1B109.5
C1i—C1—H1E109.3C1—N1—H1C109.5
H1D—C1—H1E108.0H1A—N1—H1C109.5
N2—C2—C3113.8 (3)H1B—N1—H1C109.5
N2—C2—H2D108.8C2—N2—H2A109.5
C3—C2—H2D108.8C2—N2—H2B109.5
N2—C2—H2E108.8H2A—N2—H2B109.5
C3—C2—H2E108.8C2—N2—H2C109.5
H2D—C2—H2E107.7H2A—N2—H2C109.5
N3—C3—C2114.7 (3)H2B—N2—H2C109.5
N3—C3—H3D108.6C3—N3—H3A109.5
C2—C3—H3D108.6C3—N3—H3B109.5
N3—C3—H3E108.6H3A—N3—H3B109.5
C2—C3—H3E108.6C3—N3—H3C109.5
H3D—C3—H3E107.6H3A—N3—H3C109.5
Cl1—I1—Cl1ii179.55 (4)H3B—N3—H3C109.5
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1iii0.892.653.410 (3)144
N1—H1A···Cl3iii0.892.763.341 (3)124
N1—H1B···Cl40.892.273.136 (2)164
N1—H1C···Cl5iii0.892.273.148 (3)168
N2—H2A···Cl4iv0.892.383.232 (3)161
N2—H2B···Cl5v0.892.263.123 (3)162
N2—H2C···Cl3iv0.892.403.246 (3)159
N3—H3A···Cl3vi0.892.423.297 (2)167
N3—H3B···Cl50.892.323.144 (3)154
N3—H3C···Cl1iv0.892.493.319 (2)155
Symmetry codes: (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC2H10N22+·Cl2I·Cl
Mr295.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)8.565 (2), 16.2186 (15), 19.9631 (16)
β (°) 101.164 (16)
V3)2720.8 (7)
Z12
Radiation typeMo Kα
µ (mm1)4.34
Crystal size (mm)0.36 × 0.30 × 0.28
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.230, 0.301
No. of measured, independent and
observed [I > 2σ(I)] reflections
13418, 3106, 2821
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.10
No. of reflections3106
No. of parameters114
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.65

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.892.653.410 (3)144.3
N1—H1A···Cl3i0.892.763.341 (3)123.9
N1—H1B···Cl40.892.273.136 (2)163.9
N1—H1C···Cl5i0.892.273.148 (3)167.5
N2—H2A···Cl4ii0.892.383.232 (3)161.0
N2—H2B···Cl5iii0.892.263.123 (3)162.0
N2—H2C···Cl3ii0.892.403.246 (3)158.5
N3—H3A···Cl3iv0.892.423.297 (2)167.0
N3—H3B···Cl50.892.323.144 (3)154.4
N3—H3C···Cl1ii0.892.493.319 (2)154.8
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z; (iv) x+3/2, y+3/2, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology, China.

References

First citationBandoli, G., Clemente, D. A. & Nicolini, M. (1978). J. Cryst. Mol. Struct. 8, 279–293.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLang, E. S., Burrow, R. A. & Diniz, J. (2000). Acta Cryst. C56, 471–472.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTucker, P. A. & Kroon, P. A. (1973). Acta Cryst. B29, 2967–2968.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWang, Y.-Q., Wang, Z.-M., Liao, C.-S. & Yan, C.-H. (1999a). Acta Cryst. C55, 1503–1506.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-M., Wang, Y.-Q., Liao, C.-S. & Yan, C.-H. (1999b). Acta Cryst. C55, 1506–1508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds