metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(nicotinamide-κN1)nickel(II) bis­­(2-fluoro­benzoate)

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 10 September 2009; accepted 4 October 2009; online 10 October 2009)

The asymmetric unit of the title complex, [Ni(C6H6N2O)2(H2O)4](C7H4FO2)2, contains one-half of the complex cation with the NiII atom located on an inversion center, and a 2-fluoro­benzoate (FB) counter-anion. The four O atoms in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement with an average Ni—O bond length of 2.079 Å, and the slightly distorted octa­hedral coordination is completed by the two N atoms of the nicotinamide (NA) ligands in the axial positions. The dihedral angle between the carboxyl group and the attached benzene ring is 28.28 (11)°, while the pyridine and benzene rings are oriented at a dihedral angle of 8.31 (4)°. In the crystal structure, O—H⋯O, N—H⋯O, C—H⋯O, and C—H⋯F hydrogen bonds link the mol­ecules into a three-dimensional network. ππ Contacts between the pyridine and benzene rings [centroid–centroid distance = 3.626 (1) Å] may further stabilize the crystal structure. The 2-fluoro­benzoate anion is disordered over two orientations, with an occupancy ratio of 0.85:0.15.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (2009[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1101-m1102.]); Sertçelik et al. (2009[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m326-m327.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H6N2O)2(H2O)4](C7H4FO2)2

  • Mr = 653.23

  • Triclinic, [P \overline 1]

  • a = 7.2529 (1) Å

  • b = 7.3315 (1) Å

  • c = 14.3831 (3) Å

  • α = 82.115 (2)°

  • β = 77.332 (2)°

  • γ = 63.664 (1)°

  • V = 668.05 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 100 K

  • 0.33 × 0.28 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.768, Tmax = 0.868

  • 12196 measured reflections

  • 3339 independent reflections

  • 3241 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 1.04

  • 3339 reflections

  • 221 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O4 2.0925 (10)
Ni1—O5 2.0658 (10)
Ni1—N1 2.0834 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.03 2.8875 (17) 171
N2—H2B⋯O2ii 0.86 2.23 3.0654 (16) 164
O4—H4A⋯O3iii 0.887 (16) 2.01 (3) 2.8372 (15) 155 (2)
O4—H4B⋯O3iv 0.887 (16) 1.87 (2) 2.7288 (15) 163 (2)
O5—H5A⋯O2ii 0.887 (16) 1.82 (2) 2.7001 (15) 175 (3)
O5—H5B⋯O3v 0.887 (15) 1.94 (2) 2.7774 (15) 157 (2)
C10—H10⋯O2ii 0.93 2.52 3.339 (2) 147
C12—H12⋯F1vi 0.93 2.51 3.4314 (19) 173
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x+1, -y+2, -z+1; (vi) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a monomeric complex, with NiII ion on a centre of symmetry, consisting of two NA ligands, four coordinated water molecules and one FB molecule. The structures of some DENA and/or NA complexes of NiII ion, [Ni(C6H6N2O)2(H2O)4](C8H5O3)2.2H2O (Hökelek et al., 2009) and [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009) have also been determined.

In the title compound, NA ligands are monodentate. The four O atoms (O4, O5, and the symmetry-related atoms, O4', O5') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two pyridine N atoms (N1, N1') of the NA ligands at 2.0834 (11) Å from the Ni atom in the axial positions (Table 1, Fig. 1). The average Ni—O bond length is 2.0792 (10) Å. The dihedral angle between the planar carboxylate group (O2/O3/C13) and the benzene ring B (C7—C12) is 28.28 (11)°, while that between rings A (N1/C1—C5) and B is 8.31 (4)°. In the crystal structure, O—H···O, N—H···O, C—H···O and C—H···F hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the pyridine and benzene rings, Cg1—Cg2, [where Cg1 and Cg2 are centroids of the rings A (N1/C1—C5) and B (C7—C12), respectively] may further stabilize the structure, with centroid-centroid distance of 3.626 (1) Å.

Related literature top

For niacin, see: Krishnamachari (1974) and f/or the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (2009); Sertçelik et al. (2009).

Experimental top

The title compound was prepared by the reaction of NiSO4.6H2O (1.31 g, 5 mmol) in H2O (20 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 2-fluorobenzoate (1.62 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for five days, giving blue single crystals.

Refinement top

Atoms H4A, H4B, H5A and H5B (for H2O) were located in difference Fourier map and refined isotropically, with restrains of O4—H4A = 0.887 (16), O4—H4B = 0.887 (16), O5—H5A = 0.887 (16), O5—H5B = 0.887 (15) and H4A—O4—H4B = 106 (2), H5A—O5—H5B = 106 (2)°. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH2) and C—H = 0.93 Å for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The F1 and H9 atoms attached at C7 and C9, respectively, are disordered over two orientations. During the refinement process, the disordered F1, H9 and F1', H9' atoms were refined with occupancies of 0.85 and 0.15, respectively.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a monomeric complex, with NiII ion on a centre of symmetry, consisting of two NA ligands, four coordinated water molecules and one FB molecule. The structures of some DENA and/or NA complexes of NiII ion, [Ni(C6H6N2O)2(H2O)4](C8H5O3)2.2H2O (Hökelek et al., 2009) and [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009) have also been determined.

In the title compound, NA ligands are monodentate. The four O atoms (O4, O5, and the symmetry-related atoms, O4', O5') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two pyridine N atoms (N1, N1') of the NA ligands at 2.0834 (11) Å from the Ni atom in the axial positions (Table 1, Fig. 1). The average Ni—O bond length is 2.0792 (10) Å. The dihedral angle between the planar carboxylate group (O2/O3/C13) and the benzene ring B (C7—C12) is 28.28 (11)°, while that between rings A (N1/C1—C5) and B is 8.31 (4)°. In the crystal structure, O—H···O, N—H···O, C—H···O and C—H···F hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the pyridine and benzene rings, Cg1—Cg2, [where Cg1 and Cg2 are centroids of the rings A (N1/C1—C5) and B (C7—C12), respectively] may further stabilize the structure, with centroid-centroid distance of 3.626 (1) Å.

For niacin, see: Krishnamachari (1974) and f/or the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (2009); Sertçelik et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator:(') 1-x, 1-y, 1-z.
Tetraaquabis(nicotinamide-κN1)nickel(II) bis(2-fluorobenzoate) top
Crystal data top
[Ni(C6H6N2O)2(H2O)4](C7H4FO2)2Z = 1
Mr = 653.23F(000) = 338
Triclinic, P1Dx = 1.624 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2529 (1) ÅCell parameters from 9281 reflections
b = 7.3315 (1) Åθ = 2.9–28.5°
c = 14.3831 (3) ŵ = 0.81 mm1
α = 82.115 (2)°T = 100 K
β = 77.332 (2)°Block, blue
γ = 63.664 (1)°0.33 × 0.28 × 0.18 mm
V = 668.05 (2) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3339 independent reflections
Radiation source: fine-focus sealed tube3241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 28.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.768, Tmax = 0.868k = 99
12196 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.4742P]
where P = (Fo2 + 2Fc2)/3
3339 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.55 e Å3
7 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Ni(C6H6N2O)2(H2O)4](C7H4FO2)2γ = 63.664 (1)°
Mr = 653.23V = 668.05 (2) Å3
Triclinic, P1Z = 1
a = 7.2529 (1) ÅMo Kα radiation
b = 7.3315 (1) ŵ = 0.81 mm1
c = 14.3831 (3) ÅT = 100 K
α = 82.115 (2)°0.33 × 0.28 × 0.18 mm
β = 77.332 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3339 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3241 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.868Rint = 0.020
12196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0267 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.55 e Å3
3339 reflectionsΔρmin = 0.70 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.00977 (8)
F10.68826 (15)0.96457 (16)0.86081 (7)0.0165 (2)0.85
F1'0.3316 (12)0.9351 (12)0.6229 (2)0.0341 (16)0.15
O10.27958 (17)0.42766 (17)0.97115 (7)0.0185 (2)
O20.90572 (16)0.80284 (16)0.68605 (7)0.0151 (2)
O30.70091 (16)0.95073 (15)0.57688 (7)0.0139 (2)
O40.36327 (16)0.29566 (15)0.53691 (7)0.01338 (19)
H4A0.317 (4)0.256 (4)0.4950 (15)0.040 (6)*
H4B0.457 (3)0.184 (3)0.5609 (16)0.035 (6)*
O50.21175 (16)0.74407 (16)0.53176 (7)0.0165 (2)
H5A0.109 (3)0.771 (4)0.5817 (14)0.038 (6)*
H5B0.205 (4)0.863 (3)0.5056 (15)0.032 (6)*
N10.54874 (18)0.45933 (17)0.64030 (8)0.0115 (2)
N20.04456 (19)0.57587 (19)0.87183 (8)0.0159 (2)
H2A0.05960.58810.91690.019*
H2B0.02390.61810.81460.019*
C10.3928 (2)0.4781 (2)0.71424 (9)0.0119 (2)
H10.26510.49630.70170.014*
C20.4136 (2)0.4717 (2)0.80876 (9)0.0120 (2)
C30.6051 (2)0.4424 (2)0.82775 (10)0.0138 (3)
H30.62410.43680.89010.017*
C40.7670 (2)0.4217 (2)0.75166 (10)0.0141 (3)
H40.89660.40220.76230.017*
C50.7335 (2)0.4306 (2)0.65972 (10)0.0132 (3)
H50.84320.41600.60920.016*
C60.2383 (2)0.4915 (2)0.89077 (10)0.0134 (3)
C70.5243 (2)0.9628 (2)0.83226 (10)0.0148 (3)
H9'0.64170.95670.85110.018*0.15
C80.5354 (2)0.9368 (2)0.73699 (9)0.0116 (2)
C90.3553 (2)0.9481 (2)0.71176 (10)0.0135 (3)
H90.35650.93290.64850.016*0.85
C100.1751 (2)0.9811 (2)0.77808 (11)0.0173 (3)
H100.05790.98590.75960.021*
C110.1708 (2)1.0070 (2)0.87229 (11)0.0204 (3)
H110.04951.03100.91700.025*
C120.3461 (2)0.9975 (2)0.90026 (11)0.0200 (3)
H120.34401.01410.96350.024*
C130.7298 (2)0.8941 (2)0.66226 (9)0.0114 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00894 (12)0.01136 (12)0.00765 (12)0.00371 (9)0.00012 (8)0.00058 (8)
F10.0127 (5)0.0252 (5)0.0127 (4)0.0076 (4)0.0042 (4)0.0034 (4)
F1'0.030 (4)0.037 (4)0.036 (4)0.016 (3)0.006 (3)0.001 (3)
O10.0174 (5)0.0283 (6)0.0095 (4)0.0104 (4)0.0026 (4)0.0024 (4)
O20.0109 (5)0.0206 (5)0.0122 (4)0.0058 (4)0.0025 (4)0.0013 (4)
O30.0137 (5)0.0168 (5)0.0107 (4)0.0064 (4)0.0025 (4)0.0014 (4)
O40.0142 (5)0.0141 (5)0.0121 (4)0.0062 (4)0.0033 (4)0.0006 (4)
O50.0129 (5)0.0147 (5)0.0149 (5)0.0026 (4)0.0035 (4)0.0007 (4)
N10.0115 (5)0.0120 (5)0.0100 (5)0.0044 (4)0.0012 (4)0.0008 (4)
N20.0130 (6)0.0232 (6)0.0097 (5)0.0075 (5)0.0005 (4)0.0017 (4)
C10.0112 (6)0.0132 (6)0.0108 (6)0.0052 (5)0.0015 (5)0.0001 (5)
C20.0131 (6)0.0120 (6)0.0100 (6)0.0051 (5)0.0012 (5)0.0002 (5)
C30.0157 (6)0.0149 (6)0.0111 (6)0.0063 (5)0.0043 (5)0.0006 (5)
C40.0120 (6)0.0147 (6)0.0160 (6)0.0054 (5)0.0046 (5)0.0004 (5)
C50.0109 (6)0.0137 (6)0.0136 (6)0.0047 (5)0.0006 (5)0.0003 (5)
C60.0147 (6)0.0156 (6)0.0104 (6)0.0076 (5)0.0006 (5)0.0013 (5)
C70.0141 (6)0.0165 (6)0.0142 (6)0.0066 (5)0.0034 (5)0.0004 (5)
C80.0104 (6)0.0108 (6)0.0119 (6)0.0039 (5)0.0008 (5)0.0003 (4)
C90.0136 (6)0.0130 (6)0.0145 (6)0.0059 (5)0.0038 (5)0.0011 (5)
C100.0117 (6)0.0162 (6)0.0233 (7)0.0061 (5)0.0027 (5)0.0010 (5)
C110.0147 (7)0.0224 (7)0.0194 (7)0.0068 (6)0.0043 (5)0.0015 (6)
C120.0205 (7)0.0244 (7)0.0127 (6)0.0086 (6)0.0010 (5)0.0037 (5)
C130.0121 (6)0.0113 (6)0.0115 (6)0.0060 (5)0.0010 (5)0.0012 (5)
Geometric parameters (Å, º) top
Ni1—O42.0925 (10)C2—C31.3913 (19)
Ni1—O4i2.0925 (10)C2—C61.5012 (18)
Ni1—O52.0658 (10)C3—C41.3871 (19)
Ni1—O5i2.0658 (10)C3—H30.9300
Ni1—N12.0834 (11)C4—C51.3841 (19)
Ni1—N1i2.0834 (11)C4—H40.9300
O1—C61.2346 (17)C5—H50.9300
O2—C131.2507 (17)C7—C121.383 (2)
O3—C131.2728 (16)C7—C81.3894 (19)
O4—H4A0.887 (16)C7—H9'0.9300
O4—H4B0.887 (16)C8—C91.3963 (19)
O5—H5B0.887 (16)C8—C131.5088 (18)
O5—H5A0.887 (15)C9—C101.383 (2)
N1—C11.3427 (17)C9—H90.9300
N1—C51.3474 (18)C10—C111.386 (2)
N2—C61.3350 (18)C10—H100.9300
N2—H2A0.8600C11—C121.387 (2)
N2—H2B0.8600C11—H110.9300
C1—C21.3924 (18)C12—H120.9300
C1—H10.9300
O4—Ni1—O4i180.0C4—C3—C2118.59 (12)
O5—Ni1—O490.92 (4)C4—C3—H3120.7
O5i—Ni1—O489.08 (4)C2—C3—H3120.7
O5—Ni1—O4i89.08 (4)C5—C4—C3119.22 (13)
O5i—Ni1—O4i90.92 (4)C5—C4—H4120.4
O5i—Ni1—O5180.0C3—C4—H4120.4
O5i—Ni1—N187.25 (4)N1—C5—C4122.81 (13)
O5—Ni1—N192.75 (4)N1—C5—H5118.6
O5i—Ni1—N1i92.75 (4)C4—C5—H5118.6
O5—Ni1—N1i87.25 (4)O1—C6—N2123.50 (13)
N1—Ni1—O486.98 (4)O1—C6—C2119.09 (13)
N1i—Ni1—O493.02 (4)N2—C6—C2117.41 (12)
N1—Ni1—O4i93.02 (4)C12—C7—C8122.85 (13)
N1i—Ni1—O4i86.98 (4)C12—C7—H9'118.6
N1—Ni1—N1i180.000 (1)C8—C7—H9'118.6
C1—N1—C5117.73 (12)C7—C8—C9116.63 (12)
C1—N1—Ni1121.30 (9)C7—C8—C13123.60 (12)
C5—N1—Ni1120.73 (9)C9—C8—C13119.76 (12)
C6—N2—H2A120.0C10—C9—C8121.97 (13)
C6—N2—H2B120.0C10—C9—H9119.0
H2A—N2—H2B120.0C8—C9—H9119.0
Ni1—O4—H4A122.6 (16)C9—C10—C11119.44 (14)
Ni1—O4—H4B106.3 (15)C9—C10—H10120.3
H4A—O4—H4B106 (2)C11—C10—H10120.3
Ni1—O5—H5B115.1 (15)C10—C11—C12120.41 (14)
Ni1—O5—H5A133.2 (15)C10—C11—H11119.8
H5B—O5—H5A106 (2)C12—C11—H11119.8
N1—C1—C2123.02 (12)C7—C12—C11118.69 (14)
N1—C1—H1118.5C7—C12—H12120.7
C2—C1—H1118.5C11—C12—H12120.7
C3—C2—C1118.63 (12)O2—C13—O3124.22 (12)
C3—C2—C6118.92 (12)O2—C13—C8119.65 (12)
C1—C2—C6122.44 (12)O3—C13—C8116.10 (12)
O5i—Ni1—N1—C1139.82 (11)C3—C4—C5—N10.2 (2)
O5—Ni1—N1—C140.18 (11)C3—C2—C6—O119.6 (2)
O4—Ni1—N1—C150.59 (10)C1—C2—C6—O1159.27 (13)
O4i—Ni1—N1—C1129.41 (10)C3—C2—C6—N2161.24 (13)
O5i—Ni1—N1—C545.93 (11)C1—C2—C6—N219.8 (2)
O5—Ni1—N1—C5134.07 (11)C12—C7—C8—C90.3 (2)
O4—Ni1—N1—C5135.16 (11)C12—C7—C8—C13178.58 (13)
O4i—Ni1—N1—C544.84 (11)C7—C8—C9—C100.7 (2)
C5—N1—C1—C20.8 (2)C13—C8—C9—C10178.17 (12)
Ni1—N1—C1—C2173.61 (10)C8—C9—C10—C111.0 (2)
N1—C1—C2—C30.7 (2)C9—C10—C11—C120.8 (2)
N1—C1—C2—C6179.57 (12)C8—C7—C12—C110.1 (2)
C1—C2—C3—C40.3 (2)C10—C11—C12—C70.4 (2)
C6—C2—C3—C4179.22 (12)C7—C8—C13—O228.4 (2)
C2—C3—C4—C50.1 (2)C9—C8—C13—O2150.41 (13)
C1—N1—C5—C40.6 (2)C7—C8—C13—O3153.53 (13)
Ni1—N1—C5—C4173.85 (10)C9—C8—C13—O327.64 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.862.032.8875 (17)171
N2—H2B···O2iii0.862.233.0654 (16)164
O4—H4A···O3i0.89 (2)2.01 (3)2.8372 (15)155 (2)
O4—H4B···O3iv0.89 (2)1.87 (2)2.7288 (15)163 (2)
O5—H5A···O2iii0.89 (2)1.82 (2)2.7001 (15)175 (3)
O5—H5B···O3v0.89 (2)1.94 (2)2.7774 (15)157 (2)
C10—H10···O2iii0.932.523.339 (2)147
C12—H12···F1vi0.932.513.4314 (19)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y+2, z+1; (vi) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C6H6N2O)2(H2O)4](C7H4FO2)2
Mr653.23
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2529 (1), 7.3315 (1), 14.3831 (3)
α, β, γ (°)82.115 (2), 77.332 (2), 63.664 (1)
V3)668.05 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.33 × 0.28 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.768, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
12196, 3339, 3241
Rint0.020
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.04
No. of reflections3339
No. of parameters221
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.70

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—O42.0925 (10)Ni1—N12.0834 (11)
Ni1—O52.0658 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.86002.032.8875 (17)171
N2—H2B···O2ii0.86002.233.0654 (16)164
O4—H4A···O3iii0.887 (16)2.01 (3)2.8372 (15)155 (2)
O4—H4B···O3iv0.887 (16)1.87 (2)2.7288 (15)163 (2)
O5—H5A···O2ii0.887 (16)1.82 (2)2.7001 (15)175 (3)
O5—H5B···O3v0.887 (15)1.94 (2)2.7774 (15)157 (2)
C10—H10···O2ii0.93002.523.339 (2)147
C12—H12···F1vi0.93002.513.4314 (19)173
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y+2, z+1; (vi) x+1, y+2, z+2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1101–m1102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m326–m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds