metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ3-Oxido-hexa-μ2-pivalato-tris­[(methanol-κO)cobalt(III)] chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, bCollege of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China, and cDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: whsunyu@163.com

(Received 22 September 2009; accepted 13 October 2009; online 23 October 2009)

The crystal structure of the title compound, [Co3(C5H9O2)6O(CH4O)3]Cl, consists of trinuclear CoIII complex cations and chloride anions. The CoIII cation has site symmetry m, and is coordinated by four oxygen atoms from four bridging pivalate groups, one central O anion and a methanol oxygen atom, forming a distorted octa­hedral geometry. The coordinated methanol mol­ecule is located on a crystallographic special position, the C and O atoms being located on the mirror plane. The central O anion lies in the crystallographic [\overline6] position, and acts as a μ3-O bridge, linking three equivalent CoIII cations and generating the oxo-centered trinuclear CoIII complex. The chloride anion, which acts as the counter-ion, is located on crystallographic [\overline6] position. O—H⋯Cl hydrogen bonding between the Cl anion and hydroxyl group of the coordinated methanol mol­ecule links the mol­ecules into a supra­molecular network.

Related literature

For oxido-centered triangular Co complexes, see: Aromì et al. (2003[Aromì, G., Batsanov, A. S., Christian, P., Helliwell, M., Parkin, A., Parsons, S., Smith, A. A., Timco, G. A. & Winpenny, R. E. P. (2003). Chem. Eur. J. 9, 5142-5161.]); Fursova et al. (2007[Fursova, E., Kuznetsova, O., Ovcharenko, V., Romanenko, G., Ikorskii, V., Eremenko, I. & Sidorov, A. (2007). Polyhedron, 26, 2079-2088.]). For related structures, see: Beattie et al. (1996[Beattie, J. K., Hambley, T. W., Kleptko, J. A., Masters, A. F. & Turner, P. (1996). Polyhedron 15, 2141-2150.]).

[Scheme 1]

Experimental

Crystal data
  • [Co3(C5H9O2)6O(CH4O)3]Cl

  • Mr = 931.10

  • Hexagonal, P 63 /m

  • a = 10.4868 (15) Å

  • c = 22.794 (5) Å

  • V = 2170.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 293 K

  • 0.16 × 0.14 × 0.11 mm

Data collection
  • Rigaku SCXmini 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.818, Tmax = 0.871

  • 9038 measured reflections

  • 1317 independent reflections

  • 1133 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.11

  • 1317 reflections

  • 89 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3D⋯Cl1 0.90 (2) 2.17 (2) 3.070 (3) 175 (6)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oxo-centered triangular Co complexes, Co33-O), have been considered as effective models for studying M—M interactions in metal clusters (Aromì et al., 2003; Fursova et al.,2007). We report here the synthesis and crystal structure of the title complex, (I). The complex is a typical oxo-centered carboxylate triangle, featuring exclusively, CoIII sites around a central µ3-oxide. Each edge of the triangle is further bridged by two pivalates with a terminal methanol ligand completing the coordination environment around each octahedral cobalt site (Fig. 1). The CoIII cation has site symmetry m. The central µ3-O lies in the -6 rotainversion axis. The coordinated methanol molecule is located on a crystallographic special position, the C and O atoms have site symmetry m. A similar oxo-centered cobalt(III) triangle has been reported for acetate (Beattie et al., 1996). The O—H···Cl hydrogen bond between the Cl ion serving as a trifurcated acceptor and hydroxyl of the coordinated methanol molecule as donor link molecules into two-dimensional hydrogen-bonded networks (Fig. 2).

Related literature top

For oxo-centered triangular Co complexes, see: Aromì et al. (2003); Fursova et al. (2007). For related structures, see: Beattie et al. (1996).

Experimental top

Hydrochloric acid (0.01 mmol) was added with constant stirring to a methanol solution (15 ml) containing Co(OOCC(CH3)3)2.4H2O (0.5 mmol), then filtered off. After a few days, red well shaped single crystals in the form of rectangular blocks deposited in the mother liquid. They were separated off, washed with cold methanol and dried in air at room temperature.

Refinement top

H atoms of the methyl groups were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.96 Å, Uiso(H) = 1.2Ueq(C). The hydride H3D was refined isotropically.

Structure description top

Oxo-centered triangular Co complexes, Co33-O), have been considered as effective models for studying M—M interactions in metal clusters (Aromì et al., 2003; Fursova et al.,2007). We report here the synthesis and crystal structure of the title complex, (I). The complex is a typical oxo-centered carboxylate triangle, featuring exclusively, CoIII sites around a central µ3-oxide. Each edge of the triangle is further bridged by two pivalates with a terminal methanol ligand completing the coordination environment around each octahedral cobalt site (Fig. 1). The CoIII cation has site symmetry m. The central µ3-O lies in the -6 rotainversion axis. The coordinated methanol molecule is located on a crystallographic special position, the C and O atoms have site symmetry m. A similar oxo-centered cobalt(III) triangle has been reported for acetate (Beattie et al., 1996). The O—H···Cl hydrogen bond between the Cl ion serving as a trifurcated acceptor and hydroxyl of the coordinated methanol molecule as donor link molecules into two-dimensional hydrogen-bonded networks (Fig. 2).

For oxo-centered triangular Co complexes, see: Aromì et al. (2003); Fursova et al. (2007). For related structures, see: Beattie et al. (1996).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted for clarity [symmetry codes: (A) x, y, -z + 1/2; (B) -y + 1, x-y + 1, z; (C) -x + y, -x + 1, z].
[Figure 2] Fig. 2. Crystal packing of the compound (I). The tertbutyl methyl groups and H atoms, except for those of the methanol ligands, have been omitted for clarity. Hydrogen bonds are shown as dashed lines.
µ3-Oxido-hexa-µ2-pivalato-tri(methanol-κO) tricobalt(III) chloride top
Crystal data top
[Co3(C5H9O2)6O(CH4O)3]ClDx = 1.424 Mg m3
Mr = 931.10Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 1832 reflections
Hall symbol: -P 6cθ = 2.8–25.3°
a = 10.4868 (15) ŵ = 1.26 mm1
c = 22.794 (5) ÅT = 293 K
V = 2170.9 (6) Å3Block, red
Z = 20.16 × 0.14 × 0.11 mm
F(000) = 980
Data collection top
Rigaku SCXmini 1K CCD area-detector
diffractometer
1317 independent reflections
Radiation source: fine-focus sealed tube1133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 1.8°
thin–slice ω scansh = 1210
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.818, Tmax = 0.871l = 2326
9038 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0515P)2 + 1.7379P]
where P = (Fo2 + 2Fc2)/3
1317 reflections(Δ/σ)max < 0.001
89 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
[Co3(C5H9O2)6O(CH4O)3]ClZ = 2
Mr = 931.10Mo Kα radiation
Hexagonal, P63/mµ = 1.26 mm1
a = 10.4868 (15) ÅT = 293 K
c = 22.794 (5) Å0.16 × 0.14 × 0.11 mm
V = 2170.9 (6) Å3
Data collection top
Rigaku SCXmini 1K CCD area-detector
diffractometer
1317 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1133 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.871Rint = 0.046
9038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.40 e Å3
1317 reflectionsΔρmin = 0.33 e Å3
89 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.51834 (5)0.84488 (5)0.25000.0226 (2)
Cl11.00001.00000.25000.0400 (5)
O40.33330.66670.25000.0196 (9)
O30.7249 (3)1.0326 (3)0.25000.0325 (7)
O20.6044 (2)0.7791 (2)0.18650 (10)0.0401 (6)
O10.4642 (2)0.9451 (2)0.18684 (9)0.0343 (5)
C10.3430 (3)0.9136 (3)0.16434 (12)0.0249 (6)
C20.3400 (3)0.9828 (3)0.10576 (13)0.0303 (7)
C30.2450 (4)1.0559 (4)0.11139 (17)0.0530 (10)
H3A0.14730.98380.12340.079*
H3B0.24081.09660.07420.079*
H3C0.28761.13310.14010.079*
C40.4953 (4)1.0946 (4)0.08584 (16)0.0508 (9)
H4B0.55281.04700.08210.076*
H4C0.54021.17230.11430.076*
H4D0.49081.13510.04860.076*
C60.7597 (6)1.1820 (5)0.25000.0530 (14)
H6A0.86471.24500.25000.080*
H6B0.71901.20100.28440.080*0.50
H6C0.71901.20100.21560.080*0.50
C50.2695 (5)0.8587 (5)0.06128 (16)0.0605 (11)
H5A0.32840.81260.05740.091*
H5B0.26300.89770.02400.091*
H5C0.17260.78730.07430.091*
H3D0.801 (5)1.016 (7)0.25000.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0220 (3)0.0214 (3)0.0235 (3)0.0101 (2)0.0000.000
Cl10.0312 (6)0.0312 (6)0.0575 (13)0.0156 (3)0.0000.000
O40.0184 (13)0.0184 (13)0.022 (2)0.0092 (7)0.0000.000
O30.0204 (14)0.0222 (14)0.0514 (19)0.0081 (12)0.0000.000
O20.0346 (12)0.0285 (11)0.0463 (14)0.0076 (9)0.0183 (10)0.0086 (10)
O10.0280 (11)0.0297 (11)0.0382 (13)0.0091 (9)0.0056 (9)0.0128 (9)
C10.0303 (15)0.0219 (13)0.0251 (15)0.0150 (11)0.0001 (12)0.0010 (11)
C20.0311 (16)0.0334 (15)0.0274 (16)0.0170 (13)0.0008 (12)0.0073 (12)
C30.061 (2)0.068 (2)0.049 (2)0.047 (2)0.0104 (18)0.0244 (19)
C40.045 (2)0.057 (2)0.046 (2)0.0223 (17)0.0121 (17)0.0272 (18)
C60.052 (3)0.028 (2)0.067 (4)0.011 (2)0.0000.000
C50.081 (3)0.064 (2)0.032 (2)0.032 (2)0.0127 (19)0.0090 (18)
Geometric parameters (Å, º) top
Co1—O41.9055 (5)C2—C51.519 (5)
Co1—O2i2.002 (2)C2—C41.524 (4)
Co1—O22.002 (2)C2—C31.537 (4)
Co1—O1i2.0244 (19)C3—H3A0.9600
Co1—O12.0244 (19)C3—H3B0.9600
Co1—O32.074 (3)C3—H3C0.9600
Cl1—Cl10.0000C4—H4B0.9600
O4—Co1ii1.9055 (6)C4—H4C0.9600
O4—Co1iii1.9055 (6)C4—H4D0.9600
O3—C61.420 (5)C6—H6A0.9600
O3—H3D0.90 (2)C6—H6B0.9600
O2—C1iii1.252 (3)C6—H6C0.9600
O1—C11.251 (3)C5—H5A0.9600
C1—O2ii1.252 (3)C5—H5B0.9600
C1—C21.528 (4)C5—H5C0.9600
O4—Co1—O2i94.33 (6)C4—C2—C1111.0 (2)
O4—Co1—O294.33 (6)C5—C2—C3108.9 (3)
O2i—Co1—O292.60 (15)C4—C2—C3110.5 (3)
O4—Co1—O1i95.56 (6)C1—C2—C3109.7 (3)
O2i—Co1—O1i87.52 (10)C2—C3—H3A109.5
O2—Co1—O1i170.07 (9)C2—C3—H3B109.5
O4—Co1—O195.56 (6)H3A—C3—H3B109.5
O2i—Co1—O1170.07 (9)C2—C3—H3C109.5
O2—Co1—O187.52 (10)H3A—C3—H3C109.5
O1i—Co1—O190.66 (13)H3B—C3—H3C109.5
O4—Co1—O3177.12 (8)C2—C4—H4B109.5
O2i—Co1—O383.69 (8)C2—C4—H4C109.5
O2—Co1—O383.69 (8)H4B—C4—H4C109.5
O1i—Co1—O386.46 (8)C2—C4—H4D109.5
O1—Co1—O386.46 (8)H4B—C4—H4D109.5
Co1ii—O4—Co1120.0H4C—C4—H4D109.5
Co1ii—O4—Co1iii120.0O3—C6—H6A109.5
Co1—O4—Co1iii120.0O3—C6—H6B109.5
C6—O3—Co1128.1 (3)H6A—C6—H6B109.5
C6—O3—H3D117 (4)O3—C6—H6C109.5
Co1—O3—H3D115 (4)H6A—C6—H6C109.5
C1iii—O2—Co1134.27 (18)H6B—C6—H6C109.5
C1—O1—Co1131.72 (18)C2—C5—H5A109.5
O1—C1—O2ii123.9 (3)C2—C5—H5B109.5
O1—C1—C2119.5 (2)H5A—C5—H5B109.5
O2ii—C1—C2116.6 (2)C2—C5—H5C109.5
C5—C2—C4109.6 (3)H5A—C5—H5C109.5
C5—C2—C1107.0 (3)H5B—C5—H5C109.5
O2i—Co1—O4—Co1ii133.53 (7)O1—Co1—O2—C1iii111.7 (3)
O2—Co1—O4—Co1ii133.53 (7)O3—Co1—O2—C1iii161.6 (3)
O1i—Co1—O4—Co1ii45.60 (6)O4—Co1—O1—C112.6 (3)
O1—Co1—O4—Co1ii45.60 (6)O2—Co1—O1—C1106.7 (3)
O2i—Co1—O4—Co1iii46.47 (7)O1i—Co1—O1—C183.1 (3)
O2—Co1—O4—Co1iii46.47 (7)O3—Co1—O1—C1169.5 (3)
O1i—Co1—O4—Co1iii134.40 (6)Co1—O1—C1—O2ii16.6 (4)
O1—Co1—O4—Co1iii134.40 (6)Co1—O1—C1—C2162.2 (2)
O2i—Co1—O3—C6133.34 (7)O1—C1—C2—C5114.9 (3)
O2—Co1—O3—C6133.34 (7)O2ii—C1—C2—C564.0 (3)
O1i—Co1—O3—C645.44 (6)O1—C1—C2—C44.6 (4)
O1—Co1—O3—C645.44 (6)O2ii—C1—C2—C4176.5 (3)
O4—Co1—O2—C1iii16.3 (3)O1—C1—C2—C3127.0 (3)
O2i—Co1—O2—C1iii78.2 (3)O2ii—C1—C2—C354.0 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) y+1, xy+1, z; (iii) x+y, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···Cl10.90 (2)2.17 (2)3.070 (3)175 (6)

Experimental details

Crystal data
Chemical formula[Co3(C5H9O2)6O(CH4O)3]Cl
Mr931.10
Crystal system, space groupHexagonal, P63/m
Temperature (K)293
a, c (Å)10.4868 (15), 22.794 (5)
V3)2170.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.16 × 0.14 × 0.11
Data collection
DiffractometerRigaku SCXmini 1K CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.818, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
9038, 1317, 1133
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.11
No. of reflections1317
No. of parameters89
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.33

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···Cl10.90 (2)2.17 (2)3.070 (3)175 (6)
 

References

First citationAromì, G., Batsanov, A. S., Christian, P., Helliwell, M., Parkin, A., Parsons, S., Smith, A. A., Timco, G. A. & Winpenny, R. E. P. (2003). Chem. Eur. J. 9, 5142–5161.  PubMed Google Scholar
First citationBeattie, J. K., Hambley, T. W., Kleptko, J. A., Masters, A. F. & Turner, P. (1996). Polyhedron 15, 2141–2150.  CSD CrossRef CAS Web of Science Google Scholar
First citationFursova, E., Kuznetsova, O., Ovcharenko, V., Romanenko, G., Ikorskii, V., Eremenko, I. & Sidorov, A. (2007). Polyhedron, 26, 2079–2088.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds